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CEGELY - C.N.R.S. URA 829 

Abstract - A procedure is presented for the efficient 
computation of multiwire shielded cable parameters. In order to 
reduce the calculation time. a special technique is used to 
calculate the magnetic field using Bessel functions. The skin and 
proximity effects are taken into account in a frequency range 
where displacement currents can be neglected. 

The results obtained with the present model were compared 
successfully with those obtained by the FEM. 

located in the hollow of the shield and carrying currents Ii 
which return via the shield when the cable is in  free space as 
shown in Fig. I .  
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I. INTKODUCTION 

In many applications of circular conductors. high accuracy 
is required for the computation of' tlux densities and cable 
parameters. It is well known that the skin and the proximity 
effects cause nonuniform current distributions and increased 
[I]-[7] power losses i n  multiwire shielded cables. 
Approximate analytical mcthods are often not advised. 
Numerical methods are used for improvcd accuracy. 
Expensive time is needed to compute all the parameters by 
solving Maxwell's equations with numerical methods for 
applications in a wide range of' frequencies (from 0 Hz to I O  
MHz). The existing models suppose an infinite external 
radius [SI, [9] and cannot take account of proximity effects in 
inner conductors [SI, 191. Even if proximity effects are 
introduced in parameter calculations. a symmetrical 
configuration of inner conductors with equal radii is imposed 
[IO] .  A new approach has been developcd with the aim of 
determining the values of multiwire shielded cable parameters 
using a special technique. The proposed method takes into 
account the finite thickness of the shield, skin and the most 
important proximity effects in all conductors and the shield. 
The generated formulae could be used in a symmetrical or 
non-symmetrical configuration of inner conductors and, their 
radii could be different. The obtained results are given in a 
matrix form. In order to verify the validity 01' the proposed 
method, the results obtained were compared with those from 
the Finite Element Method. 

11. FORMULATION 

Conductors are assumed parallel l o  one another and their 
lengths infinite (no edge effects). The displacement current is 
neglected in the conductor medium. Currcnts and fields are 
sinusoidal with an angular frequency w. The inner conductor i 
of the system and the shield g have permeabilities pi = po pri 
and pg = po p, and conductivities oi, og that are assumed to 
be linear, homogenous, and isotropic. A system of cylindrical 
co-ordinates is used. The system consists of P conductors 

Fig. 1 Multiwire shielded cable section. 

A formulation based on magnetic vector potential A is used 
to solve this problem [ I  I ] .  All current densities and magnetic 
vector potentials are assumed to be in the z direction. In this 
configuration. let the shield be the reference conductor. In 
order to determine the per unit length self and mutual 
impedances of the system, we use the superposition theorem, 
taking into account the magnetic vector potential 
contributions of the conductors and the shield. 

For the i-th self impedance calculation Faraday's law with 
flux linkage techniques is applied to the i-th conductor and 
the shield. For the ij-th mutual impedance, the same principle 
is applied by considering conductors i and j with the shield as 
reference. 

111. SELF IMPEDANCE OF CONDUCTOR I AND THE SHIELD 

In this part, i t  is first considered that conductor i is a 
filamentary one. An application of Faraday's law with flux 
linkage technique is then applied to the circuit consisting of 
the conductor i and the shield as shown in  Fig. 2 .The basic 
equations are expressed as follows : 

aVi d@i 
aZ - ( R  g + j L g w ) I i = d t + E z ( c 1 , 8 )  (1) 
where, 

%= jw { Aint(p,B) dl = j w  [Aint(c,,B) - Aint(bi,O)] (2 )  
1 

I 
EZ (cl ,e) = (-) J,CC,,B) ( 3 )  
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A I  - 
Fig. 2. Faraday's law application to the conductor i and the shield for self 

impedance calculation. 

E4c.B) 

In these expressions. Aint(p.0) characterizes the magnetic 
vector potential inside the hollow of the shield while Ez(c1,8) 
represents the axial electric field at the inner surface of the 
shield. Hence, we can derive the formula for the impedance 
(Rg + jLgw) of the considered circuit with the previous 
equations (1, 2, 3) as follows: 

I fuI!Ln,(c ,2-bi2) ,  
27c C I  ai 

+ jw (4) 

In this formula, the first term of the right hand side is due 
to the skin effect development in the shield material while the 
second is due to the proximity effects and the third 
characterizes the external inductance between the conductor i 
and the shield. Constants A, Bo An Bn are obtained by 
boundary conditions applied at the shield's surfaces. 

+ I ' , ( c 2 d G g )  1 (6 )  
In these expressions, Ii : characterizes the current carrying 

by the conductor i which returns through the shield, while In 
and K,, denote respectively modified Bessel functions of the 
first and second kind of order n. 

1 
-for n = 0 we have : PO = c and, Qo = 0 

-and for (n>O), we have : Pn = 1 (:)n and, Qn = (t)n 
We also give the following expression of A. 

1 

I 1  

It is -imporiaG to note that the surface impedance of the 
shield in the case of excentric conductor located in the hollow 
of the shield, noted (R,+jLsw) is given by: 

(7) 
( c I 2 - b i 2 ) ]  

C l  ai (R, + jLsw) = (Rg + jLgo) - j o  27c Ln[ 

and in the case of bi = 0 this impedance becomes the skin 
effect surface impedance given by Shelkunhoff [ 121. 

We also deduce from formula (4) the self inductance 
expression in a losseless case (Lii) and the capacitance (Cii) 
between conductor i and the shield as follows : 

(E" is the relative permeability of the dielectric inside the 
shield). 

In the formula (4) . it was supposed that the conductor i 
was a current filament. The calculated impedance (R g +jL . g .  O) 

is added to the impedance (z'iii ) of the conductor i with Its 
own radius. Hence, the sum of these two impedances 
characterizes the total impedance (Zi,iTot) of the considered 
circuit. 

The impedance of the conductor i consists therefore of the 
sum of the skin effect impedance of the conductor i and the 
impedance due to eddy currents development in all the other 
(P- 1 near conductors I 1  31. This gives: 

with, 

I (10) 
1 

.[ 
( : ) I n ( a d G ) + (  G ) I l n ( a d G k )  k k  

It is important to note that in this expression, bik is the 
interaxial distance between conductor i and conductor k, 
while ak, pk and (Tk, denote the radii, the relative permeability 
and the conductivity of conductor k, respectively. Hence, the 
total impedance is given by the following expression : 

Zi,iTot = ( R i . i ~ ~ t  + jLi,iTot w) = (Rg + jLgo) + z'iii 
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Iv. MUTUAL IMPEDANCE OF CONDUCTOR 1 AND J \\ 
For the mutual calculation, we first consider conductors i 

and j as current filaments. With this configuration, we inject a 
current Ii through the filament i and apply Faraday's law to 
conductor j and the shield which is considered as the return 
conductor (Fig. 3). Secondly, we take into account eddy 
current 1131 development duc to conductor I in  conductorj. 

The application of Faraday's law along the dashed line 
permit to establish the following equations. 

with, 

%= jm 4 Aint(p,B) dl = j w  [Aini(cl.6) - A1nt(bj,Oi,$] (13) 
1 

The resolution of the previous cquations gives the mutual 
impedance formula (Rj., + jLi,iw) in the case where 
conductors i and j are filamentary. 

(Rj,i+jL. .U> Ii=(L)[A&c I ~ ~ ~ ) + B & o ( ~  14=)]+ 
52 1.1 

c , ~  + (b, b,)? -2 (b, b,)ci' Cos(6, ,) 
+Jm?$Ln[ c , ~ [  b: b,' - 2 b,'b, Cos(B, ,) 'i 1 (14) 

. .  

With this expression. L e  can derive the classical mutual 
inductance (L..) in the case of losseless conductors and the 
potential coeficient (pii ). 

We must add to the preceding impedance + iL,.,m), the 
impedance (Zlnd,]) due to eddy currents of  conductor i in 
conductor j [ 131. 

1 (17) 
1 

.[ 
(f) I n ( a j d G )  + ( =) I*Ja;l/%) 

J h i  
The sum of the two impcdanccs gives the total mutual 

impedance (Z. .Tot) of conductors i and ,i with the shield as 
reference contictor. 
2. .Tot = (R. .Tot + jL- -Tot w) = (R, , I  + .jL. W )  + Zind.j 

conduct the calculations as wc madc for Zi,iTot 

(1 8) J J  J.1 J.f 1.1 

Finally , to determine ZI,,Tot we iinposc (Ii = 0, Ii # 0) and 

Fig. 3. Faraday's law application for mutual impedance determination. 

V. MATHEMATICAL ROUTINES 

Asymptotic expansions are often used for Bessel function 
computations. However, in our applications. a wide range of 
frequencies is considered. Hence, the asymptotic forms can 
not be used succesfully in the whole interval. To avoid 
accumulation of errors due to small differences between large 
numbers, a recurrence relation is carried out : a backward 
recurrence for decreasing functions (In(z)) and a forward one 
for increasing functions (ker,(x), kein(x) with z=x j 
expCjn/4)). K,(z) is calculated via kern(x) and kein(x). Due to 
space limitations, we describe briefly the calculation 
procedure of the function I,(z) [ 131. 

-First. we determine the starting order of recurrence. It 
must not be small to avoid errors and. not too large to avoid 
supplementary time calculation [ 141. 

-Secondly. a normalising factor built of a combination of 
Bessel functions is considered [ 131. 

VI. RESULTS 

Many examples of cables are analyzed. 
First, the case of a three core shielded cable system is 

considered. It is characterized by the following physical and 
geometrical parameters: 

pri = 1 ,  (si = 3.3387 S/m. a ,  = 7E-3 m, a2 = 6E-3 m,. 
a3 = 6E-03 m, e,,? = 02,3 = 83,1 = n/3. 
c I  = 26.8E-3 m, c2 = 28.8E-3 m, b, = 12E-3 m, 
b2 = 13E-3 in. b, = 13E-3 m, prg = 1,  o = 4.76E6 S/m. 
One can notice according to Table f that the obtained 

results by the proposed model are in good agreement with 
those obtained by FEM. 

TABLE 1 
SELF RESISTANCE CALCULATION (R1,]Tot (am). 

Frequency F ( H z j  I IE2 1E3 IE4 1E5 1E6 1E7 
Present model 

FEM 
XE-4 8.3E-4 l . lE-3  2.lE-3 6.2E-3 2E-2 6.3E-2 

8E-4 8.IE-4 l . lE-3 2E-3 5.9E-3 1.9E-2 6.8E-2 
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The second validation concerns a four core shielded cable. 
The physical and geometrical parameters are expressed as 
follow: 
c l  = 2.37E-3 m, c2=2.37E-3 m, bI=1.27E-3 m,b2=1.27E-3 m, 
b, = 1.27E-3 m, b4 = 1.27E-3 m, a I  = a2= a3= a4= 0.45E-3 m, 
p = 1, o - 5.8E07 S/m, pri = I ,  (si = 5.8E7 S/m. rg g - e,, = e,, = e,, = e4, = 7~12, o,, = 024 = 7 ~ ,  E,~= 3. 

The inductance matrix (L) of the cable calculated at F=10 
MHz by the present method is compared to those (L') 
obtained by measurement values of Cii and Cij [15]. The 
maximum relative obtained error is about 10%. 

r 238 4Y.l 27.9 4Y.11 r221.1 45.2 x.1 45.21 

26.1 45.2 221.1 4 5 2  
45.2 26.7 45.2 221.1 

21.9 49.7 2-38 49.1 

49.1 27.9 49.1 2311 

The third example concerns a validation in the case of 
coaxial excentric shielded cable system. The physical and 
geometrical parameters are given in the following form. 

c1 = 5E-3 m, c2 = 7E-3 m, b,  = 3E-3 m, a I  = IE-3 m, 
( p g  = 1 )  et (og = 5.8807 S/m) 
The shield inner surface resistance (R,) is calculated for 

different frequencies. The results obtained by the present 
model are first compared with those obtained by usual 
analytical models (with only skin effect consideration) and 
second with results obtained by FEM. 

From Table I1 we point out that the results obtained with 
the skin effect model is only valid for low frequencies 
applications. The results obtained by the present model are in 
good agreement with those from FEM (the maximum relative 
error is 12% for F=10 MHz). 

Finally, a two wire shielded cable system is investigated. 
The cable parameters are expressed as follow: 
pri = 1, oi = 5.8E7 S/m, ai = IE-03 m, c I  = 5E-3 m, p = I ,  
c2 = 7E-3 m, b, = 1 SE-3 m, b2 = 1 SE-3 in, (sg = 5.8807 S/m. 

The frequency dependant mutual resistance ( R 2 , 1 T ~ t  ) and 

rg 

reactance ( X2,1Tot ) are reported in Table 111. 

TABLE II 
SHIELD INNER RESISTANCE CALCULATIONS. R, ( ~ 1 1 1 ) .  

Frequency F(Hz) 1 IE2 1E3 IE4 IES 1E6 IE7 
Skin effect alone 

Present model 

FEM 

2.3E-4 2.3E-4 2.SE-4 7.8E-4 2.6E-3 8.2E-3 2.6E-2 

2.3E-4 2.4E-4 4. IE-4 I .SE-3 S.3E-3 I .8E-2 S.6E-2 

2.58-4 2.6E-4 4. IE-4 I .SE-? 6E-3 2E-2 6.4E-2 

TABLE 111 

FREQUENCY DEPENDENT MUTUAL IMPEDANCE. 

Frequency F(Hz) I IE03 IE04 IEOS lEO6 IE07 

R 2 , 1 T o t ( q m )  2.3E-4 2.3E-4 1.2E-3 SE-3 1.7E-2 S.4E-2 

It is important to note that, for high frequencies 
applications the internal inductances decay and become 
negligible. In this case, the main contribution to the overall 
inductance comes from the external inductances (X2,1Tot = j w  
L 2  1). 

VII. CONCLUSION 

A new and efficient model has been developed in this 
paper. Various investigations have been made for different 
cable configuration. The obtained results are in good 
agreement with validations in a frequency range about [0 Hz, 
I O  MHz]. The proposed model is about ten time faster than 
the FEM. 
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x 2 3 1 T o t ( q m )  9.6E-7 IE-3 9.3E-3 8.IE-2 0.77 7.6 


