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Modeling Unbounded Wave Propagation Problems 
In Terms Of Transverse Fields 

Using 2D Mixed Finite Elements 

J.L. Yao Bi, L. Nicolas, A. Nicolas 

Ecole Centrale de Lyon - BP163 - 691 3 1 Ecully cedex - France 
CEGELY - URA CNRS 829 

Abstract -We present in this paper an approach for the condition. To formulate the problem via the E M ,  it is 
modeling of open boundary "M+We Problems in the necessary to enclose the objects with an artificial outer 
frequency domain by using high order 2D mixed ek"ts boundary r on which the radiation condition at infinity is conforming in H(cur1). The Galerkin formulation for the vector 
wave equation in two dimensions is used to discreti. the enforced via an exterior boundary operator T (see Fig. 1). 
problem. The analysis region is truncated using a 2D vector 
Absorbing Boundary Condition that satisfies the Sommerfeld 
radiation condition at infinity. This modeling is applied to 
scattering problems or to open ended waveguides. 

I. INTRODUCTION 

The finite element method (FEM) is used with success to 
modelize open boundary electromagnetic problems. The 
coupling with Absorbing Boundary Conditions (A.B.C's) 
preserves the sparsity of the F.E. matrix. Usually methods 
used are nodal-based F.E. formulations with the component 
of the field perpendicular to the studied domain as an 
unknown: Hz in the case of a tranverse electric (T.E.) wave 
for example [9]. In such a case, due to the numerical 
derivation, the computation of the transverse field from the 
scalar field is inaccurate. Furthermore, singularities of the 
transverse field at sharp, perfectly conducting edges are 
difficult to modelize. 

To avoid these difficulties, we have developed a 
formulation written in terms of the transverse field, E for a 
T.E. case, and H for a T.M. case. Mixed elements conforming 
in H(cur1) of degree two, R2 and P2 on the triangle [ 1, 21, are 
used to enforce tangential continuity and to allow the normal 
discontinuity of transverse fields at interfaces of materials. It 
is this floating of normal continuity that allows the mixed- 
based elements to handle objects with sharp edges [ 3 ] .  

This vector formulation, with transverse field as unknown, 
is coupled with 2D vector A.B.C's, based on the second-order 
scalar Bayliss-Turkel (BT) condition applied on the circular 
boundary [4], and on the Engquist-Majda (EM) condition 
applied on a rectangular one [ 5 ] .  These boundary conditions 
are modified to preserve the symmetry of the finite-element 
matrix [6-71. 

11. THE MIXED FINITE ELEMENT FORMULATION 

Fig. I .  Schematic configuration of a problem 

The problem in the interior domain, R, can be mathematically 
formulated in terms of E, for example, as 

VxE=-jcopOp,H inR/R,, , (1) 

ne x E = 0 on rpee , (3) 

n x V x E = T ( E )  on I?, (4) 

V x pi'V x E - kiErE = - jwpoJe, in R / Ope , (2) 

where n is the unit outward normal to the contour r and ne is 
the unit normal to the pec boundary rpec 
The Galerkin weighted residual method applied on the 
inhomogeneous vector wave equation ( 2 )  yields the 
formulation : 

(5 )  

where Je denote the electric source term and W is an 
arbitrary vector weighting function generated by the mixed 
elements. 
In the scattering case, the source term Je represents the 
source induced by the incident wave inside domain filled with 
dielectric and eventually on rpec (for a scattered field 

+JrT(E)' W ds = - j q 0  I, J e .  WdR 

In this section we consider the problem of finding an formulation) 181. For open ended waveguides, it is an 
electromagnetic field E, H in inhomogeneous medium with 

harmonic Maxwell equations and the Silver-Muller radiation 

current line L91. 
perfect electric conductors (pec), QFc, obeying the time- The required continuity Of tangentia1 E at Inaterial 

interfaces is automatically ensured by mixed-based elements; 
however, the boundary condition (3 )  must be imposed. This is 
simply done by setting the degrees of freedom associated with 
edges located on pec boundary to zero. 
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A same type of formulation may be obtained with the 
magnetic field H as unknown. 

resulting from the discretization of (10) non-symmetric. To 
deal with this problem and to preserve the symmetry of the 
matrix, we use an approach suggested in [7]. We obtain the 
following approximation 111. DERIVATION OF 2D VECTOR ABC'S 

ABC's have been derived to approximate the global 
operator T and their use in FEM solutions of open region 
two-dimensional electromagnetic problems has been 
extensive [8-91. However these scalar 2D ABC's are not 
directly suitable for use with our vector formulation. But, as 
E is a priori a radiation vector field (obeying (2 )  and Silver- 
Muller condition), it follows that the Cartesian components of 
E are scalar radiation fields (obeying Helmholtz scalar 
equation and Sommerfeld condition) and then they verify 
scalar 2D ABC's. Thus E must satisfy, in cylindrical 
coordinates (p , @) [4], 

where a and P, for the second order BT condition, are given 
by 

Using the vector identity 

( ep . V)E = V( ep . E) - ep x V x E 

T(E) = a'E,  + p'V,(V. E,) + yV,(n. E) 

(8) 
and considering the tangential parts of equations (6) and (8), 
it can be shown that E satisfies [ 101 the vector BT condition, 
on the circular boundary 

(9) 

where E, and V, denote tangential parts on the exterior 
boundary r. The coefficients a ' ,  P' and y are given by 

P'(P) = -P2P(P) 

Y(P) = (1- 2PP(P)) 
The second-order Enquist-Majda condition applied on the 

rectangular boundary is obtained from (9) assuming that p 
tends to infinity (this supposition is only formal) in the above 
coefficients. 

The ABC is incoporated into the integral formulation ( 5 )  
by substituting operator T with its approximation (9). The line 
integral term in (5) becomes after integration by parts: 

jrT(E). W d2 = a' 4, E, . W, d2 - P'dr(V. E,)(V. W,) d7 

+ yd, W . V,(n. E)dz (10) 

The first-order derivative contained in (9) makes the matrix 

(1 1) 

Then, substituting ( 1 1 )  in (9), we have an alternative 
symmetric version of (9) 

V,(n.E) = - -V,(V.E,)  J 

T(E) =a,(p)E, +P,(P)V,(V.E,) (12) 

a,@) =a'@) +ob-') 

PJP) = -PYP)+O(P-') 

k 

where a,  and p, are given by 

Finally, the contour integral term (10) coupled with (11) 
becomes 

(13) 

IV. DISCRETIZATION 

As was mentioned previously, finite elements conforming 
in space H(cur1) i.e. having tangential continuity property, are 
used to discretize the integral formulations (5 )  and (13). The 
mixed elements of order two, R2 and P2, on the triangle 
shown in Fig. 2 have been implemented. In [l-21 these finite 
elements are defined by a list of space of interpolation and 
corresponding degrees of freedom. 
The unknown vector field E is expanded as 

N 

E = f , E i W i  and H =  j/(( iYLop,)~EiVxWi , 
i=l i=l  

where Ei = oi(E). 
The linear form oi is the degree of freedom associated with 
vector shape function Wi and N is the total number of 
degrees of freedom associate with the mesh. 
The details for deriving an explicit expression of each vector 
basis function can be found in [ 101. Here, we rewrite only the 
final results. 

A. Mixed elements R2 

0 Vector basis functions Wir , 1 5  m 5 2 ,  associated with 
edge C = { ai , aj ] 

w.! 'J = (-3+4& +4hj)hiVhj -(-3+4h, +4hj)hjVhi 

p .z i j  ds and o:(p) = i p . ~ ~ ~ ( h ~  - hj )  ds 

W i  = (-1 + 4hi - 4Lj)hiVhj - (1 + 4hi - 4hj)hjVhi 

have degrees of freedom 0; , 1 I m I 2, 
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where 
- hi , 1 I i I 3 ,  are barycentric coordinates within a triangle 
associated with vertices ( ai }, 1 I i I 3 ,  
- zij is a unit tangent vector to edge C and orientates it, 
- p is an arbitary vector definied inside the triangle. 

Vector basis functions W z  , 1 I m 2 2 ,  associated with 

the volume K, can be written in the base (Vh, , Vh,) as 

functions of order two within a triangle associated with nodes 
{ ai ), 1 I i I 3 , and ( aij 1, 1 I i < j I 3 .  

Vector basis functions WF , 1 I m 1 3 ,  associated with 
the volilme K, can be written as 

W i  = N,,VX, , W i  = N,,Vh2 , W i  = N,,Vh, , 

and have degrees of freedom cr; , 1 I m I 3 ,  

W i  = 8(-I+ h, + 2h2)h1Vh2 - 8(-2 + h, + 2h,)h,Vh, 0 3 P )  = .lJKP.qm dx 1 

where 
W: = 8( 2 - 21, - h2)hlVh2 - 8( 1 - 2h, - h,)h,Vh, 

qm(x) =(sfn+ t"hl)V,h2 +(s;+tmh2)V,h, , 
and have degrees of freedom cj; , 1 5 m 5 2, 

the constants s$ , s y  and tm verify: 
&PI = .lJKP.V,h2 dx and &P) = .lJKP.V,h, dx 

where cr;(w;) = 6, ,  . 
- V,hi = Vh, xe, , 1 I i I 3 .  

V. NUMERICAL RFSULTS 

Fig. 2. Node-based (left) and mixed-based (right) second order triangular 
elements. For mixed elements, k degrees of freedom associated with a 
simplex are symbolized by a point located at its center of gravity and a local 
vector basis. 

B. Mixed elements P2 

0 Vector basis functions Wi.y , 1 I m I 3 ,  associated with 
edge C, 

Wiy = ( a$Ni  + py(  Nij - Nil))Vhj + 

(a;Nj + a y ( N j l  -Njl))Vhi , 

have degrees of freedom 0:: , 1 I m I 3 ,  

~ y ( p > =  I, p.zijcp"'(~)ds, 
where 

I ,  a , = O  , l 2  a2 =-1 , 
la: = p i  = l / 8  (a: = 0: = -1 /8  (a, =-p3 = -114 

a: = O  

ai = O  
3 3  
i a: = O  a; = I  

cp"(s) = cp$Ni(s)+cp~Nj(s)+cp:N,,(s) 

the constants cpr , (p; and cp: verify 

In order to valid the vector formulation, a study of numerical 
error as a function of the mesh density is done for a scattering 
case. A cylinder of radius OSh, centered in a 4h x 3h 
rectangular domain which is submitted to the second order 
vector EM-ABC, is illuminated by a plane wave incident at 
30". The frequency is 3 Ghz. The global error, over a 
centered 3h x 2h window , is evaluated as 

Wc - Wa with E=- err=- 

y.rc : computed field at each node of the domain 
va : analytical field. 

From Fig.3 and Fig.4, it appears that the transverse field is 
more accurate when computed by a mixed-based 
approximation while the dual field is more accurate when 
computed by a single scalar formulation. However when the 
mesh becomes more refined, the error runs low and the two 
formulations concur regarding global error. Fig.4 points out 
an interesting property of H(cur1) elements R2 and P2; their 
curls belong to the same space of interpolation [2]. 

jjEldS 

S "(% ) 

4 6 8 10 12 14 16 18 20 22 

number of nodes per wavelength 

Fig. 3 . global error on field component Hz, companson analytical- 

1 , si l=m 
o , si l+m ' 

computed 
N I  , 1 I i I 3  , and N,, , 1 I i < j I 3 , are Lagrange shape 
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4 6 8 10 12 14 16 18 20 22 

number of nodes per wavelength 

Fig. 4. global error on transverse field Exy, comparison analytical- 
computed 

The behaviour of the vector formulation in problems with 
material discontinuities is evaluated. The test case, considered 
here, is the scattering of plane wave by a penetrable 
inhomogeneous cylinder. The frequency is 3 Ghz. The 
cylinder has relative magnetic permeability p, = 2 and radius 
a = 0.51 . The computational domain is bounded by a circle 
of radius R = 2 1  subjected to the second-order vector Bayliss- 
Turkel ABC. 
In table I, we give some information on the computation. The 
mesh density is about 14 nodes per wavelength in each media. 
The global error is evaluated on a centered window 0.751 x 
0.751. 
In Fig.5, we plot the transverse field ear the interface 

Fig. 5. Transverse magnetic field in magnetic cylinder. 

TABLE I 
PRATICAL INFORMATION ON THE COMPUTATION 

Solving by Nested Dissection Renumbering Algorithm on HP900/710. 

Elements R2 Elements P2 Nodal 

error on Ez 1.09 % 1.09 % 0.79 % 
error on Hxy 1.42 % 1.22 % 2.13 W 
Nb. unk. 8152 12228 3317 
Non-zeros 50916 111504 20381 
CPU 101 s 178 s 78 s 

Elements 

In Fig.6 we show the direction of the transverse electric field 
at the upper extremity of an open ended waveguide. It 
illustrates the fact that edge-based elements allow the field to 
change direction abruptly at the sharp, perfectly conducting 
edge [3]. 

~~ 

4 , ., , 6 . c I - c C----- 
d . ,  , / I . I / ,  A - - - -  

< . . . - . - . \ a  , , I / - - -  

. . * I . .  - .  , , ,//.-- 

Fig. 6. Near transverse electric field at upper extremity of an open ended 
waveguide. 

CONCLUSION 

In this paper, we have shown that the finite element 
formulation, in terms of transverse fields, with 2D H(cur1) 
vector basis functions, when coupled with ABC's, is a 
efficient method in modeling two-dimensional unbounded 
microwave problems. These 2D vector ABC's preserve the 
symmetry of the finite-element matrix. Further, the use of 
second-order H(cur1) elements, allows the formulation to treat 
transverse fields discontinuities at interfaces and singularities 
at sharp conducting edges. The coupling of this formulation 
and the usual single scalar formulation may be the best 
procedure for solving two-dimensional electromagnetic 
problems. 
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