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Vector Absorbing Boundary Conditions 
for Nodal or Mixed Finite Elements 

J.L. Yao Bi, L. Nicolas, A. Nicolas 
CEGELY - URA CNRS 829 

BPI63 - 69 13 1 Ecully cedex - France 

Abstract- We present 2D and 3D vector absorbing boundary 
conditions for unbounded microwave problems. Coupling with 
vector formulation leads to a non-symmetric system matrix. We 

A.B.C., working with a rectangular outer boundary, or B.T. 
type, working with a circular boundary. 

show how it is possible to symmetrise these conditions with the 
same degree of precision. Edge and corner conditions are also 
presented for rectangular boundaries. 

The object of this paper is to review both of these A,B,c,, 
to present their vector form and to show how they can be 
symmetrized. A special attention is paid to their theoretical 

I. INTRODUCTION accuracy. For the case of the E.M. A.B.C., we also show how 
edge and corner problems may be solved. 

Modeling an electromagnetic problem with a finite 
element (F.E.) method requires the truncation of the infinite 
domain with a fictitious boundary. Absorbing boundary 
conditions (A.B.C.) taking into account the external domain 

11. 29  BAYLISS-TURKEL A.B.C 

A. 2 0  scalar Bayliss-Turkel A.B.C. 

are then written on this outer boundary. In their asymptotic 
form, when the boundary is located at the infinite, these 
conditions have to be identified with the Sommerfeld (for 

A solution to the 2D cylindrical scalar wave equation may 
be developed as the asymptotic expansion [4]: 

an(@) e - j k r  - scalar wave equation) or the Silver-Muller (for vector wave 
equation) radiation conditions. u ( r > e )  =pc- ?n 

n=O 
These boundary conditions are generally presented as 

integral or differential operators [l]. They can be of two where w is the magnetic or electric field. 

types: global or local. Global operators are exact and allow in 
principle to locate the outer boundary as close as possible to 
the modeled device. But the resulting boundary matrix is full 
and non-symmetric, preventing their use in 3D. On an other 
hand, local A.B.C. preserve the sparsity of the F.E. system 

The basic idea of Bayliss and Turkel was to build a 
sequence of differential operators to cancel out the first terms 
of (1) .  The sequence of B.T. A.B.C. for the 2D scalar wave 
equation is then given recursive’y by [31: 

matrix, but they are built up as an approximation of the exact 

solution: they are not totally absorbing and spurious Bm,,=O(R- 2m- 112) with B m =  g ( ” + j k + s )  (2) 
reflexions come back inside the F.E. domain. Because of the 
use in 3D, we will consider here only local A.B.C. 

a r  2R 

One can find many kinds of local A.B.C., but two of them 
are often shown up: the Engquist-Majda (E.M.) condition [2], 
based on the approximation of a non-local pseudodifferential 
operator by a local differential operator, absorbs perfectly 
plane waves at given incidence angles. The Bayliss-Turkel 
(B.T.) condition [3] is based on an asymptotic expansion of 
the solution of the scalar wave equation; it is built as a 
sequence of differential operators which annihilate the first 
terms of this expansion. 

The location of the A.B.C. is a crucial point, especially in 
3D: its location as close as possible to the microwave device 
saves CPU time and memory space. Depending on the 
geometry of the device, one will choose either E.M. type of 

To minimize the error due to the operator Bm, either one 
can move away the A.B.C., or one can use an higher order 
condition. A larger radius R leads to a larger F.E. domain and 
then to a larger system matrix. On an other hand, the 
numerical implementation of high order conditions (m22) 
implies numerical derivations of high order, which lead to the 
use of high order finite elements. Furthermore, because of the 
asymptotic nature of the Bm operators, it does not lead 
necessarily to a continuous improvement of the solution when 
the boundary come close to the microwave objects [5] .  
Actually, 2nd order conditions are often sufficient to locate 
the structure close to the device (Fig. 2). 

To be coupled with a finite element formulation, radial 
derivatives are replaced with angular derivatives. After 
expansion of the coefficients, second order B.T. condition is 
given by ( 3 ) ,  similar to the condition found in [SI: 
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a2v 
ar a02 
aw = alp + b - + o( R ' 2 ,  

1 1  1 where a(R)=-jk----+- 
2R 8kR2 8k2R3 

j 1 
b(R) = --+- 

2kR2 2k2R3 

B. 2 0  vector Bayliss-Turkel A.B.C. 

(3) 

The scalar A.B.C. is not directly suitable to a mixed-based 
vector finite element formulation [6], because there is no link 
between the components of the field in the scalar condition, 
To obtain a vector form of this A.B.C., we just have to state 
that each Cartesian component of the field A verifies the 
previous scalar condition. The vector field A verifies then the 
condition: 

a2A -=aA+b- 
aA 
ar ae2  

(4) 

Using the divergence-free condition for the vector A and 
basis relations in cylindrical coordinates, we get: 

a2At 
~ = (a - b)At + b-+ 2RbVt(r.A) 
aAt 
ar a w  

l a  with At = Ae ee and Vt = --eo 
r a0 

Using vector identities, ( 5 )  may be rewritten as the 2D 
vector B.T. absorbing condition [7]: 

r x V x  A = a' At + b' Vt(V.At) + gVt(r.A) + O( R - ~ / ~ )  (6) 

+ 0 ( ~ - 4 )  
1 3 j  where a' (R)  = jk  -+- 

2R 8kR2 8k2R3 

b'(R)=--- J + o ( R p 2 )  
2k  2k2R 

g(R) = 1+---+o(R-3) j 1  
kR k2R2 

When inserted in the F.E. formulation, (6) leads to a non- 
symmetric system matrix, due to the last Vt term: hence it can 
be seen as a non-symmetric condition. 

C. 2 0  symmetric vector Bayliss-Turkel A.B. C. 

It is however important to symmetrize the previous 
condition for storage capabilities considerations. A first 
method, suggested in [8] for 3D, substitutes the first 
derivative of the radial component of A in (6) by the 
derivatives of the tangential component of A, by using the 
A.B.C. itself for the r.A term. But the residual error goes 
from O(I--"~) to O(r-7/2), and it can be seen as a weakening of 
the condition. A better expression for r.A, obtained from (4), 
is given by [7]: 

r . A = - -  I+- V . A ~ + O ( R - ~ / ~ )  k (  2;) (7) 

The Substitution in (6) leads to the following symmetric 
absorbing boundary condition, which has theoritically the 
same precision as the non-symmetric one: 

r x V x A = a" At + b' ' Vt( V. At) + O(R - 9 1 2 )  (8) 

where a"(R)= jk----+- 1 3 j  f o ( R - 4 )  
2R 8kR2 8k2R3 

b" (R) = --+-+O(R-2) j 1  
2k k2R 

Note: this derivation of symmetric and non-symmetric 
conditions may be easily extended to the 3D case. 

D. Numerical example. 

As a numerical example, we modelize the scattering of a 
TEZ wave by a perfect electric conducting cylinder. An 
analytical solution may be found in [9]. We compare here the 
accuracies given by an exact A.B.C. (B.E.M.) and the 
Bayliss-Turkel condition (scalar and symmetric vector), when 
the outer boundary is moved away from the cylinder (from 
0.25 h to 3 A). The mesh density is about 20 nodes per 
wavelength; kr=n, where r is the radius of the cylinder. 

Fig. 1. Scattering by a p.e.c. cylinder 
Magnitude of the magnetic field Hz. 

Fig. 2 shows the global error, estimated as in [lo]. This 
error becomes lower than 2% when the distance between the 
cylinder and the outer boundary is greater than 0.75 h. At 1 h, 
results may be considered as good. Note that, for a distance D 
greater than 1.5 h, it was not possible to use the B.E.M., 
because of the CPU time and the memory storage. 



850 

e 
9 

L 0 
..- 

5 

(11) 
1 + cos 81 cos 02 j 1 

a = j k  and p = - 
cosel+cose2 k cos0i+cos0z 

-A-, sym vector 

0 1 2 3 

distance (in wavelength) 

E .  2 0  vector Engquist-Mujdu A.B.C. 

The same development is made as for the vector B.T. 
A.B.C.: because each Cartesian coordinate of the vector wave 
A verifies the scalar Helmoltz equation, it may be 
approximated by the scalar conditon (10); this is also true for 
the tangential part of A. Using then vector identities, we have 
the vector A.B.C.: 

n x  V x A = aAt+ pVt(V.At)+Vt(n.A)+O(s4) (12) 
where a and p are the same as in (10) or (1 1) 

Fig. 1. Scattering by a p.e.c. cylinder: global error as a function of the 
distance between the cylinder and the outer boundary. 

C. 2 0  symmetric vector Engquist-Mujdu A.B.C. 111. 20 ENGQUIST-MAJDA A.B.C. 

We use first the same method as the one exposed in [8] 
for the B.T. A.B.C. (see section 1I.C). By multipling the 
vector wave equation by the unit normal vector n, and using 
the condition (12), we get the following approximation for 
the normal component of A: 

If the geometry of the device is not adapted to a 2D 
circular or a 3D spherical outer boundary, it would be better 
to use an Engquist-Majda condition, which is working with a 
rectangular outer boundary, in order to minimize the number 
of nodes of the mesh generated in the free space. 

(13) -k2An = aV.At+Vt2An+PVt-?At+O(s5) A. 2 0  scalar Engquist-Mujdu A.B.C. 

The two-dimensional wave equation is written in an 
operator form, which is itself factored into a forward operator 
Lf and a backward operator Lb: 

On an other hand, the scalar condition (10) is also verified 
by A,. Combining it with the free divergence condition leads 
to: 

-aAn = -V .At+pVt2An+O(~4)  (14) a i a  
ax c a t  

L ~ J  = LbLfy = 0, with Lf = -+---, (9) 

By eliminating the Vt2An term between (13) and (14), we 
get an approximation for n.A which leads to the symmetric 
condition: 

Engquist and Majda showed that the Lb operator applied 
to ty will absorb a backward wave. The numerical 
implementation is done by approximating the irrational 
square root function by a rational function (Taylor 
expansion), which is valid for small values of s. 

n x V x A = aAt + p’ Vt(V. At) + 0 ( s 4 )  (15) 
j where a = jk and p’ = -- 

2k 

E. Remark 
On the second order, the general form of E.M. A.B.C. is: 

When the radius R of the spherical outer boundary 
becomes infinite in the expressions of the 2D vector Bayliss- 
Turkel A.B.C. (6) and (8), one finds again the 2D vector 
Engquist-Majda A.B.C. (12) and (15). Of course, this remains 
formal. because R has to be of finite dimension. 

j k.r . . where a = j k  and p = -, s = - (incidence angle) 
2k k 

F. 2 0  corner condition. The primary error associated with this condition is in the 
approximation applied for the square root, which is only exact 
for a wave incident normally on the outer boundary (Fig. 2). 
When the directions of propagation of the waves (81 and 02 
for example) are known a priori, the condition introduced by 
Higdon [ I l l  leads to better results. This condition may be 
seen as a generalization of the E.M. A.B.C., and only the 
coefficients a and p are changed in (10): 

Because a rectangular boundary is no more smooth, a 
special condition has to be specifically written at the corners 
of this rectangle to avoid spurious reflections. It is proposed 
in [6] to combine the scalar wave equation (16) and the 
absorbing boundary conditions (17.a) and (17.b), derivated 
from (lo), written on both sides Tx and Ty of the corner: 
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a Z u  a 2 u  

a x 2  a y 2  
scalar wave equation: -+-+ k2u = 0 

boundary l-x: --+ jku+-- = 0 
aU . j a h  
ay 2 k  a x 2  
iU j a 2 u  

ax 2 k  a y 2  
boundary r y :  --+ jku +-- = 0 

(16) 

(17.a) 

(17.b) 

Adding both conditions (17.a) and (17.b) and substracting 
(16) with the coefficient jf2k lead to the corner condition 
(18). This condition may be compared with the one proposed 
by Engquist and Majda [2], obtained from very different 
considerations, where y = A. 

du du yjku =-+--, withy = 31 2 ax ay 
The vector corner condition is obtained by the same way. 

Using also the property of A to be divergence free, we get the 
condition (19), where n is the unit vector normal to the line 
attached to the corner (Fig. 3). An example of implementation 
of this condition into a F.E. formulation is presented in 
section IV E. 

Fig. 3: discontinuity of the unit vectors n and t at the corner 

G. Example of implementation of the 2 0  scalar E.M. A.B.C. 
into the F.E. formulation. 

A general formulation for 2D scattering problems may be 
found in [IO]. It is written for the magnetic field H: 

1 
V N . T V H + J O ~ N . H  [( JOE 

The implementation is performed through the line 
integral. By inserting (10) into (20), this line integral 
becomes: 

The second term of (21) is then integrated by parts. The 
aH N.  ~ term coming from this integration is null everywhere, a% 

except on the corners. Using then the corner condition (l8), 
the final expression of (21) becomes: 

(22) 

corn. 
--I k 

OE r 

H. Numerical example. 

Fig. 4 shows the error due to the scalar Engquist-Majda 
A.B.C. in relation with the incidence angle, with and without 
corner condition (C.C.). We study a free space region, 
without scatterer. The F.E. domain is a 1.5 h side rectangle, 
and the mesh density is about 18 nodes per wavelength. The 
global error over the domain is calculated in the same way as 
in the previous example. 

The corner condition divides the global error almost by 2. 
As theoritically expected from (1 0), the error depends on the 
incidence angle. But the results remain acceptable, even for a 
90" incidence angle (the error is less than 1.5%). 

1 ,I5 

I S  

I ,25 

I 

0,75 

se 
e 
i. 

0,25 
- 0,5 t 

0 4  I 

0 20 40 60 80 100 

incidence angle in 

Fig. 4: global error as a function of the incidence angle 
E.M. A.B.C., with and without corner condition (C.C.) 

free-space region. 

Iv. 3D ENGQUIST-MAJDA A.B.C. 

A. 30 scalar Engquist-Majda A.B.C. 

3D E.M. A.B.C. has been first presented in [13]. It is a 
natural extension of the two-dimensional one (10): 

a~ - a,,, + pv: + o(S4)  
an 

where a and p are the same as in (10) 

B. 3 0  vector Engquist-Majda A. B. C. 

The extension of the scalar case to the vector case is led in 
the same way as for the 2D case. Each component of the 
vector wave is solution of the scalar wave equation. Thus, the 
tangential part of the vector field satisfies (23): 
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- a A t  + PV2t At + 0(s4)  (24) 
aAt 
an 

A similar expression to the 2D one (12) is then obtained: 

n x  V x A = aAt + PVt2At + Vt(n.A)+ O(s4), (25) 

where a and P are the same as in (12) 
surface r, 

l 2 I  __I 
Note that, when developing the Vt2 term, (25) leads to the 

(26) 

U 
non-symmetric vector A.B.C. proposed by Peterson in [ 141: 

Fig. 5: definition of edge and comer 
on the 3D rectangular outer boundary. 

n x  V x A = aAt - PV x {n. (V x A)}n + PVt(V. At) 
The corner condition in 3D is formally the same as the 2D 

one (19). The sign + or - depends on the orientation of the 
tangent vector 1 on the corner. We have then: 

+ Vt(n. A) + 0(s4) ,  

C. 3 0  symmetric vector Engquist-Majdu A.B. C. 

Once more, due to the last term Vt , the implementation of 
(25) into a F.E. formulation leads to a non-symmetric system 
matrix. Proceeding as previously leads to the symmetric 
condition: 

n x V x A = aAt + PVt2At + P' '  Vt(V. At) + 0(s4)  

where a = j k ,  P = - and p" = -J 
2k k 

(27) j 

Again, when the Vt2 term is developed, one identifies the 
shape of the second order symetric conditions introduced in 
(8). 

D. 3 0  edge and comer condition 

Let's consider the edge Lij, intersection of the rectangular 
outer surfaces l-i and rj (Fig. 5). From (24), we can write the 
absorbing boundary condition on the edge Lij for both 
surfaces Ti and l-j: 

aA1 - aA1 + p( a2Ai a 'Ai)  
Lij E Ti: -+- 

anj ill2 ani2 
(28.a) 

(28.b) 

Combining both of these conditions with the vector wave 
equation leads to the corner condition: 

E. Example of implementation of the 3 0  vector E.M. A.B.C. 
into the F. E. formulation. 

In [15], we presented a 3D vector F.E. formulation: 

5 [ L( V x H )  , (V x W )  - kO2 prH. W)Q 
R Er 

+ (n x V x H ) .  W d r  =. . 

The vector E.M. condition (27) is used to approximate the 
surface integral term. After an integration by parts, this 
surface term becomes: 

J- (aHt ~ . - dWt +-.- aHt dWt), (33) r a T  a7 av av 

.'I (V.Ht)(V.Wt)dT 
k r  

(V.Ht)(ni.Wt)dl 

Edge (30) and corner (31) conditions are used to evaluate 
the last two terms of (33). The final symmetric expression of 
the surface term in (32) is then: 

j (13Ht - . - dWt +-.- dHt J W t F  
(34) r a T  a T  av av 

+'J (V.Ht)(V. Wt)dT + z j ( H m W n i  + HnjWnj)dl 
k r  Lii 

- 1  

Because of the respective values of a and p, the final 
expression of the corner condition (29) is: 
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From (34), it is obvious that taking into account the 
geometric singularities makes the implementation of the 
A.B.C. more complex. In first approximation, edge and 
corner conditions could be omitted. By doing this, we assume 
that the spurious waves generated by these singularities are 
essentially local, and that only a small amount of them 
propagates toward the interior of the domain. Next exemple 
will justify this approximation. 

F. Numerical example. 

We compare the 3D scalar E.M. A.B.C., as it is 
implemented in nodal F.E. formulation [15], with the vector 
E.M. A.B.C., implemented in mixed F.E. formulation [16], 
for the radiation by an infinitesimal dipole (fig. 6). The 
dipole, with a constant current, is centered on the origin and 
directed along the z-axis. The problem has been modeled with 
two symmetries (xz and yz planes). The size of the 
computational domain is Ih x lh  x 2.lh. Each finite element 
is a brick O.lh x O.lh x O.lh. 

Fig. 6: instantaneous H radiated by an infinitesimal dipole 
plot on the symmetry planes and on the outer surfaces. 

analytical 
vect sym 

_ _ ~  

. - - . .  
600 

500 z 

200 

100 

0 
0 0,02 0,04 0,06 0,08 0,l 

distance (m) 

Fig. 7: instantaneous H along a line perpendicular to the dipole, 
going froin the dipole to the external boundary. 

Fig. 7 shows analytical and numerical solutions plotted on 
a vertical line, going from the dipole to the external boundary. 
In the interior of the domain, the solutions are quite close. 

The accuracy of the non-symmetric A.B.C. is approximately 
the same as the symmetric one. 

V. CONCLUSION 

We have presented in this paper two types of absorbing 
boundary conditions: the Bayliss-Turkel A.B.C., for spherical 
outer boundary, and the Engquist-Majda A.B.C., for 
rectangular outer boundary. We have shown how it is 
possible to symmetrize them with the same order of precision 
as the underlying non-symmetric conditions. Edge and 
corners conditions for the E.M. A.B.C. have also been 
presented. If these special conditions are easy to implement in 
2D, the 3D formulation becomes much more complex, and 
they can be omitted without notable damaging of the solution. 
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