
HAL Id: hal-00141592
https://hal.science/hal-00141592

Submitted on 18 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel computing for the finite element method
Christian Vollaire, Laurent Nicolas, Alain Nicolas

To cite this version:
Christian Vollaire, Laurent Nicolas, Alain Nicolas. Parallel computing for the finite element method.
European Physical Journal: Applied Physics, 1998, 1 (3), pp.305-314. �10.1051/epjap:1998151�. �hal-
00141592�

https://hal.science/hal-00141592
https://hal.archives-ouvertes.fr

PARALLEL COMPUTING FOR THE
FINITE ELEMENT METHOD

C. Vollaire, L. Nicolas and A. Nicolas

CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon-
BP 163 - 69131 Ecully Cedex - France.

vollair@trotek.ec-lyon.fr

laurent@trotek.ec-lyon.fr

nicolas@trotek.ec-lyon.fr

Fax: 04 78 43 37 17

Abstract: A finite element method is presented to compute time harmonic

microwave fields in three dimensional configurations. Nodal-based finite elements have

been coupled with an absorbing boundary condition to solve open boundary problems.

This paper describes how the modeling of large devices has been made possible using

parallel computation. New algorithms are then proposed to implement this formulation

on a cluster of workstations (10 DEC ALPHA 300X) and on a CRAY C98. Analysis of

the computation efficiency is performed using simple problems. The electromagnetic

scattering of a plane wave by a perfect electric conducting airplane is finally given as

example.

Abstract: Une formulation de type éléments finis pour la résolution

tridimensionnelle de problèmes de diffraction électromagnétique est décrite. Les

problèmes ouverts sont modélisés à l’aide d’un couplage avec des conditions aux limites

absorbantes. Cet article décrit comment l’utilisation du calcul parallèle a rendu possible

la modélisation de grandes structures. De nouveaux algorithmes sont proposés pour une

implantation efficace sur une ferme de stations ainsi que sur un CRAY C98. L’analyse

des performances est réalisée sur des exemples simples. La réponse électromagnétique

d’un avion illuminé par une onde plane est ensuite présentée à titre d’exemple de

géométrie réaliste.

1 INTRODUCTION

Nodal-based finite element (FE) method has been previously developed for

microwave problems [1]. Open boundary domains are modeled by coupling with

Absorbing boundary conditions (ABC). The time harmonic formulation is written in

terms of vector fields. Because nodal-based finite elements are used, a penalty term is

added to the formulation in order to avoid spurious reflections.

This code has been first developed on scalar workstation. This implies that only

simple problems can be modeled. For instance, a 3 wavelengths side cubic geometry (30

cm at 3 GHz), meshed with 10 nodes per wavelength, leads to 81000 complex

unknowns. With first order hexahedral FE, 181 Mbytes of memory are necessary to

store the matrix. Obviously, the modeling of large geometry such as airplane can not be

performed on scalar computers. Only parallel computation actually enables to modelize

such devices: it reduces the computation time and, aboveall, it arranges enough

memory.

The objective of this paper is to describe how the existing code has been modified in

order to implement it efficiently on parallel computers. A cluster of ten DEC ALPHA

workstations linked by a FDDI ring has been first used. This distributed memory

computer is a multi instruction - multi data streams (MIMD) type. Parallel virtual

machine (PVM) software is used to pass messages between workstations. The

formulation has also been implemented on a CRAY C98 which is a shared memory

computer (MIMD type) with vector capabilities.

Note that the algorithms and the methodology presented in this paper are not specific

to a high frequency electromagnetic formulation. They can actually be applied to any

physical problem discretized with a FE method.

2 FE FORMULATION COUPLED WITH ABC

We are dealing with frequency domain open boundary electromagnetic field

problems. According to Maxwell equations, the magnetic field H and the electric field

E satisfy to the vector wave equations. Following developments are made only for the

H field formulation. All the steps can be applied to the E field formulation as well.

The weak Galerkin formulation of the vector wave equation for H is given by (1):

 () ()∇ × ∇× −
⎡

⎣
⎢

⎤

⎦
⎥ − × ∇×

⎡

⎣
⎢

⎤

⎦
⎥ =∫ ∫W W v W s1 1 00

2

ε
μ

εr
r

v rs

k d dH H n H (1)

A penalty term is added to the formulation to avoid spurious reflections [1]. It makes

the field divergence free. Its Galerkin form is given by (2):

 [] []− ∇ ∇⋅ + ∇⋅∫ ∫W v W s()H n H
v s

d d (2)

ABC is used to truncate the 3D finite element region and to minimize the spurious

reflections due to the outer boundary of the FE domain. A 3D vector Engquist-Majda

condition [2] is used. Outer surfaces are then rectangles, which is less mesh-consuming

for a large number of geometries:

 n H H H H×∇× ≅ = − ∇g j k j
kABC t t t() 0

0

2

2
 (3)

Finally, the formulation for scattering problems in term of total field is given by (4).

H and Hi are respectively the total field and the incident field. Two types of surface are

considered:

- external surface (Sext)

- Perfect Electric Conductor (PEC) surface (Spec).

[]

[]

(H) H ()(H) n H

(H) (H) n H

∇ × ∇ × +
⎡

⎣
⎢

⎤

⎦
⎥ − ∇ ∇ ⋅ + ∇ ⋅

− = − × ∇ ×

∫ ∫ ∫

∫ ∫
+

W W v W v W s

W s W s

1
0

2

ε
μ

r

r
v v Sext

Spec

ABC
Sext Sext

ABC i i

k d d d

g d g d
 (4)

3 IMPLEMENTATION ON THE CLUSTER OF WORKSTATIONS

Algorithms designed to operate on scalar calculators do not fit to parallel distributed

memory computers because data are interdependent. It is not sufficient to add directives

of messages passing in a program to allow good performances. Algorithms have to be

deeply modified. The key point to respect consists in minimizing the message passing

because this step is expensive in CPU time.

The implementation of the formulation on such a computer has been made by using

an algorithm to distribute the data over the different workstations. The developed code

is a Single Program Multi Data type (SPMD).

Main characteristics of the cluster are :

-10 workstations

-80 Mflops (linpack) per processor

-64 Mo of RAM

-175 MHz clock frequency

-1 Go of swap per processor

-FDDI network in ring (100 Mbits / s)

-PVM 3.3

Performances are analyzed with the PARAGRAPH software. Because its utilization

involves the manipulation of post-mortem files, parallel performances can be analyzed

only with simple problems. A 60000 degrees of freedom problem is then used because it

is the bigger matrix which can be solved on one processor (this step is necessary to

evaluate the speedup).

3.1. Parallel FE algorithm on the cluster of workstations

3.1.1. Distributing the data

The entire data file is duplicated on each processor. Indeed, the program is a SPMD

type performing a parallel reading. An other strategy would consist in storing no more

than what is required for one processor at a time and in reading and updating data files

during the processing. But this method would result in unacceptable Input/Output (I/O)

overhead [3]-[5].

3.1.2. Assembling in parallel

Most of the parallel FE codes use domain decomposition techniques to assemble the

FE matrix. These methods are efficient but they require a pre-processing step.

Moreover, the number of processors is limited by the decomposition method. This

prevents the use of massively parallel computer.

Hence, we have preferred to perform the assembling step of the global matrix by

degree of freedom [6], [9], instead of by elementary contribution as in a classical

sequential code. It allows to assemble at once the three lines (three coordinates)

corresponding to a node. Each element including the considerate node is sought and

contributions with the related nodes are computed. These three lines are then

compressed by storing only non-zero values. Space is left in the compressed storage if

the volume element includes a surface element. Same method is used to introduce ABC

on the external boundary and BC on conductors.

This method does not require the creation of the structure of the matrix (called

symbolic assembling). To solve a problem meshed with N nodes, if P processors of the

cluster are available, each workstation assembles a part of the system including N/P

nodes. The load balancing is nearly perfect because of the constant bandwidth of the

global matrix. The program is a SPMD type: no message passing is required. Hence, the

speedup of the assembling stage is optimal (Fig. 3).

3.1.3. BC on symmetry planes and conductors

Messages passing are necessary to introduce the BC on conductors (only when

solving for the E field) and on the symmetry planes because a global modification of the

matrix system is required. This is due to the method used to introduce the BC (Fig. 1).

In the case of the H formulation the field verifies (6a) or (6b) on a symmetry plane:

On a symmetry plane: n H⋅ = 0 (6a)

On an antisymmetry plane: n H× = 0 (6b)

The speedup related to this step is low due to the large amount of massage passing

(Fig. 3). However, its effect on the global performances of the code is negligible: the

length of this step is less than one percent of the total computation time.

3.1.4. Symmetrizing the global matrix

The introduction of ABC and penalty function leads to a non-symmetric system

matrix. This one is approximately symmetrized by adding it to its transposed matrix.

This has been shown previously to give correct results. This operation requires a large

amount of messages passing (Fig. 2). The speedup related to this operation is also low

(Fig. 3). But once again, the time needed to perform this step is small and does not have

any significant effect on the total computation time.

3.1.5. Solving in parallel

Because the FE matrix is sparse, iterative methods are used to solve the matrix

system. Conjugate Gradient (CG) with diagonal, incomplete Cholesky or block

incomplete Cholesky preconditioning methods have then been implemented [7], [8].

In parallel FE codes which use domain decomposition techniques to assemble the FE

matrix, the solving step is first performed on the sub-domains and then on the global FE

matrix [9]-[12]. With our assembling method (degrees of freedom), the solver works on

the entire FE matrix. So, we have chosen to use a small-scale parallelism.

3.1.5.1. Diagonal Preconditioning (DP)

Each processor computes his part of the preconditioning matrix by inversion of the

diagonal terms of the FE matrix. No message passing is required and the memory space

to store the preconditioning matrix is small. However, the generated preconditioning is

low.

The preconditioning is performed by a multiplication vector-vector. A multiplication

matrix-vector is also required to compute the residual vector at each iteration. This

multiplication is done in parallel (fig. 4). Each processor computes a partial residual

vector by multiplicating his part of the FE matrix by the vector duplicated on each

processor. The load balancing is nearly perfect because of the constant bandwidth of the

matrix.

To operate the concatenation of these partial residual vectors, each processor

broadcasts it to all the others. Only non-zero values are sent. Then, each processor adds

these partial residual vectors to obtain the final residue: this is the SPMD mode. This

operation needs (P2-P) messages passing per iteration. An other way to calculate the

residual vector consists in sending each partial residual vector to one processor called

the master. This one (Master processor number 1) computes the final residue and

broadcasts it. This Master-Slave (MS) method minimizes the number of

communications: only (P-1)x2 messages per iterations are required. On the other hand,

it introduces an additional idle time. Furthermore, because only non zero terms are sent,

the messages broadcasted by the master are larger than in the SPMD mode: their size is

equal to the size of the matrix. For these reasons the SPMD mode is more efficient. In

any case, for both methods, the cost of communications is very penalizing, because

small-scale parallelism is not adapted to distributed memory computer fitted with this

kind of network. Some others methods can be found in [16] but they require more

memory space.

Figure 5 shows an average of the state of every processor, on the total execution

time, for both methods of concatenation (solving of a 60000 degrees of freedom

problem on 4 processors). Figure 6 shows the corresponding speedups.

3.1.5.2. Incomplete Cholesky Preconditioning (ICP)

This preconditioning is performed by the decomposition of the FE in two matrices:

A= L . Lt (L and Lt are computed). The building of the incomplete Cholesky matrix is

performed by column (5) [15], [16] (fig. 7). This algorithm is implicitly parallel because

the L(ij) terms can be computed independently once the diagonal L(jj) term has been

computed. The knowledge of both lines j and i is required to compute L(ij). If both lines

are not stored on the same processor, a message passing is necessary. Fig. 7 and fig. 8

illustrate this strategy on an example of a 4x4 matrix stored on 3 processors. The

incomplete Cholesky matrix is assembled in 5 parallel steps. Between each step, a

processors synchronization is required.

For j = 1 to number of lines

 Ljj = Ajj - (Ljk)

For i = j +1 to number of lines

 Lij = 1
Lii

Aji - Lik Ljk

End

End

2

k=1

j-1

k=1

i-1

∑

∑()

 (5)

While solving using CG, both matrix-vector multiplication and back-forward

substitution steps are necessary (6). They have also to be parallelized if possible.

The system A x = b is classically substituted by (L.Lt) x = b. Then, L y = b and (Lt) x =

y are computed to solve the system. This algorithm is implicitly sequential because

there is a back dependency on y and x: for example, the first processor computes his

part of y and broadcasts it to all the others (in SPMD mode). The second processor can

then start to compute and so on. This step is very penalizing in term of parallel

performances, because it is performed at each iteration of the solver (fig. 9). Figure 10

shows the corresponding speedup.

Forward substitution

 For i = 1 to number of lines (n)

 yi (bi Lik yk) Lii

k =1

k = i -1

= − ∑ /

 End
 (6)

Back substitution

 For i = number of lines (n) to 1

 xi (yi Lki xk) Lii

k = i +1

k = n

= − ∑ /

 End

This method allows to reduce the number of iterations necessary to solve the system

of equations (tab. 1). However, because of the large amount of message passing

required, it cannot be applied to large problems. The memory space needed to achieve

the ICP is 1.5 time larger than when using the DP because L and Lt have the same

structure than A after its symmetrization. Lt is built to achieve a quick access by

columns to the terms. This means that the terms are stored by lines in L and by columns

in Lt.

3.1.5.3. Block Incomplete Cholesky Preconditioning (BICP)

To avoid messages passing during the building of the incomplete Cholesky matrix,

this one is assembled only with the terms stored on the considerate processor. So a part

of the matrix is not built (fig. 11), and the terms effectively assembled are approximated

because of the back dependency. This method applied with one processor corresponds

to the classical ICP.

Compared to the Incomplete Cholesky Preconditioning, this scheme leads to a

degradation (tab. 1) of the preconditioning. On the other hand, the preconditioning

matrix is now constituted by independent sub-blocks. Each processor can compute

independently his part of the result vector. The concatenation of these partial results,

necessary at the end of the forward and the back substitution, is performed by message

passing in SPMD mode. As show is tab. 1, the number of iterations required to solve the

system of equations depends on the number of processors available: the increase of the

number of processors leads to an increase of the number of iterations. On the other

hand, the parallel rate of the method is increased (fig. 9-12). Figure 12 shows that the

processors are better used than when solving with a classical ICP. The number of

operations required to compute both preconditioning matrix and result vector depends

on the number of processors available because of the not-computed terms in the

preconditioning matrix. So, the parallel performances cannot be estimated in term of

speedup because the solver on 2 processors is three times faster than on 1 processor.

Figure 13 shows the CPU time per processor for a solving of a 60000 degrees of

freedom matrix versus the number of processors used.

For this size of matrix, the method loses efficiency when more than 5 processors are

used. The increase of the matrix size tends to reject this limit.

Note that the memory space needed to achieve the BICP is 1.5 time larger than when

using the DP because L and Lt have the same structure than A after its symmetrization.

3.1.5.4. Comparison between methods

Table 1 compares the performances of the preconditioning methods when solving a

60000 degrees of freedom matrix on 2, 4 and 8 processors.

For this small example, on 2 processors, the Diagonal Preconditioning is the most

efficient. The Block Incomplete Cholesky Preconditioning becomes interesting when

more than 4 processors are used. For large problems, because of the large amount of

messages passing, the building of the incomplete preconditioning matrix requires too

much CPU time. Only the Block Incomplete Cholesky Preconditioning can be used.

3.2. Modeling a large problem

The electromagnetic scattering of a plane wave by a perfect electric conducting

airplane (fig. 14) is presented as realistic problem. The frequency of the incident plane

wave is 0.3 Ghz and this problem is meshed with 51183 nodes (307098 degrees of

freedom). To solve the system of equations of this problem on 8 processors, the

conjugate gradient with Diagonal Preconditioning requires 7476 iterations and 80280 s

per processor while the conjugate gradient with the Block Incomplete Cholesky

Preconditioning requires only 4902 iterations and 58950 s per processor.

4 IMPLEMENTATION ON THE CRAY C98

The CRAY C98* is a high performance parallel vector computer. It is a shared

memory multi instruction, multi data streams (MIMD) computer. It supports therefore a

parallelism of strong scale. Indeed, every processor can execute a different program or a

part of same program. All the processors have access to the global shared memory

through a central connection.

Main characteristics of the CRAY C98 are the following:

-8 vector processors

-1 GFlops of peak performance per processor

-4 GBytes memory (= 512 Mw)

-8 128-words vector registers

-4,17 ns clock cycle

-120 GBytes of disk space

4.1. Programming model

Parallelism and vectorization are introduced by compiler directives. A vectorization

directive leads the compiler to use the vector registers. There are several ways to use

parallelism. Two of them are mainly used:

* This work was supported in part by the Institut du Développement et des Ressources
en Informatique Scientifique (CNRS).

-The first one consists in putting a parallelization directive before a loop. This

one will be split, and the number of iterations performed by each processor can be

specified. The variables used in the loop must have a scope, which means that they must

be either private or shared. Each processor has its own copy of the private variable,

while a shared variable is shared by all processors. Memory write conflicts on a shared

variable may result in data corruption and must be avoided.

-The second way consists in creating a parallel region, which includes a loop.

All the variables inside the parallel region must have a scope. The loop is parallelized,

but the private variables can be used outside of the loop. This is useful for

initializations, or to create private buffers to avoid memory conflicts. Semaphores can

also prevent these conflicts.

A loop will be broken in packets that are long enough to enable vectorization (128

Words). Data streams must be as longer as possible to allow a good vectorization.

The CRAY compiler can try to parallelize and vectorize the code automatically due

to compilation directives, by checking the data dependencies in the loops. It is

automatic, but it works only on simple loops. For example, a subroutine call inside a

loop prevents it from being parallelized. This automatic method leads then to bad

parallel performances.

In order to parallelize loops which have not been made automatically, an higher level

tool (BROUSE) may be used. It tries to find the scope of each variable in a specified

loop. There are also mainly profiling tools as 'hpm', 'proview', 'atexpert', ... which give

to the user many information about the performances of the code such as: parallelism

ratio, average vector length, parallel / sequential portion of the code, most important

loops / subroutines, ...

4.2. FE algorithm on the CRAY

The algorithms operating on mono-processor calculator do not need to be entirely

revised in order to work on the CRAY C98. The code remains the same and runs quite

immediately with more or less automatic parallelism-vectorization and progressively

gains parallelism-vectorization while the user manually adds parallelization-

vectorization directives.

Our code was first developed on a workstation, in a well structured way with many

subroutine calls, error handling, Those points prevent the compiler from getting a

good parallelization level. The compiler itself got only 17% of parallelization on a

problem meshed with 10000 nodes. Only simple loops, like initializations had been

processed. Neither the matrix assembly portion nor the solver had gained parallelism.

They only gained some vectorization. It was then necessary to help the compiler to get

better results by adding manually compiler directives and by finding the scope of every

variables.

The experience in the implementation of codes on such computer has shown that the

matrix representation has a great influence on vector performances. So, two types of

representations have been used.

A. Sparse row-wise matrix representation (storage # 1): because of the FE matrix is

sparse and symmetric, only the non zero terms of its lower part are stored [2] after its

symmetrization.

B. Redundant Sparse row-wise matrix representation (storage # 2) : because the

algorithms used in the solver need to access to the FE terms by column, the entire FE

matrix stays in memory even after its symmetrization. The memory space used is twice

larger, but the access to the non zero terms of a column are adjacent in memory [16].

Some other methods like Sky line matrix representation have been implemented.

Because all the terms contained in the bandwidth of the FE matrix are stored, the

number of terms stored for a line of the FE matrix increases with the size of the

problem. This is due to the renumbering algorithm. So, this method requires too much

memory and it can not be used to compute realistic devices.

All the performances are analyzed as previously with a 10000 nodes problem

because the use of the ATEXPERT software (analysis of parallel performances)

involves a mono-processor computation.

4.2.1. Creation of the global matrix structure

This step prepares the storage of the non-zero terms of the matrix. Its parallelization

is difficult because there are many data dependencies. This part of code is especially

vectorized.

4.2.2. Assembling by elementary contributions

This step is easy to parallelize. The elementary matrix related to a FE needs to have a

private scope, and semaphores are used when the global matrix, stored in shared

memory, is modified. So a parallel region is created which includes the loop on the FE.

The global matrix is modified in a critical region, inside the parallel region, in which the

code is executed in a sequential way.

An other solution can be found in [4] but it needs a 'pre-processing' step to split the

set of FE into subsets made of independent elements. This method is efficient when

write access conflicts in the global matrix for contiguous elements decrease the

performances.

4.2.3. Introduction of BC on conductors (E field solving) and on the symmetry planes

Due to the method used to introduce BC, a global modification of the matrix system

is required. Each processor performs a part of the modifications which are made on the

global matrix. Semaphores are used to avoid memory conflicts.

4.2.4. Symmetrization of the matrix

Non-symmetric global matrix is symmetrized by adding it to its transposed matrix:

all the terms of each line are added with those corresponding of the transposed matrix.

The external loop (on the lines) is parallelized while the internal one (on the columns) is

vectorized. The variables used for this step can be shared because no memory conflict is

possible.

Figure 15 shows the speedups for the creation of the FE matrix (steps 4.2.1, 4.2.2,

4.2.3, 4.2.4) versus the data representation. The creation of the global structure matrix

decreases the parallel performances because this step is especially sequential.

4.2.5. Solver

As previously presented, the conjugate gradient is used to solve the system of

equations.

4.2.5.1. Diagonal Preconditioning

The use of this method requires only a multiplication matrix-vector per iteration to

compute the new residual vector. So this step is parallelized by splitting the loop on the

lines.

For the storage # 1, each processor computes a partial residual vector in private

memory (parallel region). The addition of these partial results is performed in shared

memory in a critical region (vectorization).

For the storage # 2, the multiplication is done in shared memory because the entire

FE matrix is stored.

The speedups versus the matrix representation of the CG with the Diagonal

Preconditioning are presented in figure 16.

4.2.5.2. Incomplete Cholesky Preconditioning

The storage # 1 requires the research of the lines (i) with a non zero term on the

column (j). The parallelization is made by splitting this loop. Indeed, this algorithm

needs the multiplication of the line (j) by the line (i). So an other search on the terms of

the line (i) is necessary for all the terms of the line (j). This matrix representation is not

adapted to the Incomplete Cholesky Preconditioning because of the vector performances

obtained (tab. 2 and 3). On the other hand, only the lower part of the preconditioning

matrix is built. Because only the lower part of the FE is stored in memory after its

symmetrization, no more allocation of memory is required: the preconditioning matrix

is stored in memory at the place of the upper FE matrix.

The storage # 2 allows to access directly to the lines (i) which have a non zero term

on the column (j). Therefore, this loop is parallelized. The multiplication of the line (j)

by the line (i) requires a search (for all the terms of the line (j)) on the terms of the line

(i). This matrix representation improves the vector performances of the code during the

building of the preconditioning matrix (tab. 2 and 3). The entire preconditioning matrix

is built to keep the advantage of the adjacent access to the terms of a same column.

Because the entire FE matrix is stored in memory after its symmetrization, this type of

representation requires to double the memory space.

Figure 17 shows the speedups obtained for the building of the Cholesky matrix versus

the matrix representation.

The parallelization of the forward substitution cannot be made by splitting the loop

on the line because of the back dependency. So, the produce of the terms L(ik) . y(k) is

parallelized by creating a parallel region. The addition of the partial results is made in a

critical region. The access to the terms L(ik) is performed by line, leading to good

vector performances.

The parallelization of the back substitution is made in the same way but the access to

the terms L(ki) decreases the vector performances (tab. 2 and 3). So the influence of the

type of representation is the same as in the building of the Cholesky matrix. Figure 18

shows the speedups for back-forward substitution versus the matrix representation.

For the storage # 1, the research of the term L(ki) is penalizing in term of vector

performances (tab. 2 and 3). The overhead introduced by splitting the loop on the

produce L(ki) . x(k) is then negligible.

The use of the storage # 2 involves less efficiency in term of parallel performances

because of the overhead introduced by splitting the produce L(ki) . x(k). On the other

hand, because the terms L(ki) are adjacent in memory, the vectors performances are

increased (tab. 2 and 3).

4.2. Comparison between the methods

Table 2 compares parallel and vector performances of the preconditioning methods

when solving a 60000 degrees of freedom matrix with both types of matrix

representation (total CPU time). Table 3 compares same performances of the

preconditioning methods when solving a 307098 degrees of freedom matrix (scattering

by a pec airplane). Both tables show the efficiency of the storage #2.

5 CONCLUSION

We have presented in this paper the implementation of an electromagnetic scattering

code on parallel shared and distributed memory computers.

5.1. Cluster of stations

The parallel performances obtained when building the FE matrix are satisfying.

Because of the low preconditioning, the cost of communications with the Diagonal

Preconditioning is penalizing. This is due to the small-scale parallelism which is not

adapted to distributed memory computer equipped with this type of network. The

Incomplete Cholesky Preconditioning allows to reduce the number of iterations but

cannot be used on large devices because of the large amount of messages passing

required. So, our new preconditioning method named ‘Block Incomplete Cholesky

Preconditioning’ seems a good compromise in term of convergence rate and CPU time.

However, the memory space needed to achieve the BICP is 1.5 times larger than when

using the DP.

Computed examples show that the modeling of realistic problem is still not possible

on such a cluster because of the memory available. For example, the illumination of a

fighter by a 3 GHz plane wave -high range radar freqency- would lead to a 106 nodes

problem.

On an other hand, this code is immediately implementable on a computer such as the

CRAY T3E. This parallel distributed memory computer is a MIMD type. Given its

characteristics (256 processors and 32 Go of memory) it should allow to arrange enough

memory to modelize large devices. Moreover, this machine is equipped with a very high

performances network.

5.2. CRAY C98

The adaptation to a shared memory computer is easy because it does not ask a

complete restructuring of program. The code remains the same and runs quite

immediately. The CRAY compiler can try to parallelize and vectorize the code

automatically due to compilation directives, by checking the data dependencies in the

loops. It is automatic, but it leads to bad parallel performances. So the programmer has

to manually add parallelization-vectorization directives and to cheek the scope of every

variable to keep the control on the parallelism granulity.

The relative performances due to the vectorization are very low with a classical

matrix representation method because the data streams are short (the matrix is sparse).

The use of the Redundant Sparse row-wise storage allows to obtain acceptable vector

performances but it requires to double the memory space. Our experience shows that it

is more important to favor the vectorization than the parallelization because every

computation node of this machine is especially vectorial.

REFERENCES

[1] L. Nicolas, K. A. Connor, S. J. Salon, B. G. Ruth, and L. F. Libelo, "Three

Dimensional FE Analysis of High Power Microwave Devices", IEEE Trans. Mag.,

no. 2, pp. 1642-1645, March 1993.

[2] B. Engquist, A. Majda, "Absorbing Boundary Conditions for the Numerical

Simulation of Waves", Math. of comp., vol. 31, n° 139, pp. 629-651, July 1977.

[3] G. J. Bendzsak, and T. W. Ma, "Parallel Computation of 3-D Electric and Magnetic

Fields", IEEE Trans. Mag., vol. 27, no. 5, pp. 4205-4209, September 1991.

[4] S. Ratnajeevan, and H. Hoole, "FE Electromagnetic Field Computation on the

Sequent Symmetry 81 Parallel Computer", IEEE Trans. Mag., vol. 26, no. 2, pp.

837-840, March 1990.

[5] M.L.Barton, "Three-Dimensional Magnetic Field Computation on a Distributed

Memory Parallel Processor", IEEE Trans. on Mag., vol. 26, no. 2, pp. 834-836,

March 1990.

[6] D. Zois, "Parallel Processing Techniques for FE Analysis: Stiffness, Loads and

Stresses Evaluation", Comp. & St., vol. 34, no. 3, pp. 355-374, 1990.

[7] R. W. Freund, "Conjugate Gradient Type Methods for Linear Systems with

Complex Symmetric Coefficient Matrices", SIAM J. Stat. Comput., vol. 13, no. 1,

January 1992.

[8] P. JOLY, Mise en Oeuvre de la Méthode des Elements Finis, SMAI, Ellipes, n°2,

1990.

[9] C. Vollaire, L. Nicolas, and A. Nicolas, "Finite Elements Coupled with Absorbing

Boundary Conditions on parallel Distributed Memory Computer". IEEE trans. on

Mag, vol. 33, n° 2, pp. 1448-1451, March 1997.

[10] Y. Saad, A. V. Malvesky, "P. SPARSLIB: A Portable Library of Distributed

Memory Sparse Iterative Solvers", Supercomputer Institute Research Report, UMSI

95/180, September 1995.

[11] Y. Saad, "Kyrlov Subspace Methods on Parallel Computers", Supercomputer

Institute Research Report, UMSI 95/276, December 1995.

[12] R. Lee, V. Chupongstimn, "A Partitioning Technique for Finite Element Solution of

Electromagnetic Scattering from Electrically Large Dielectric Cylinders", IEEE

Trans. on Antennas and Propagation, vol. 42, no. 5, pp. 737-741, May 1994.

[13] Y. Shirley, Choi-Grogan, K. Eswar, P. Sadayappan, R. Lee, "Sequential and

Parallel Implementations of Partitioning Finite Element-Method", IEEE Trans. on

Antennas and Propagation, vol. 44, no. 12, pp. 1609-1616, December 1996.

[14] R. F. Lucas, T. Blank, and J. J. Tiemann, "A Parallel Solution for Large Sparse

Systems of Equations", IEEE Trans. Comp. Aided Des., vol. 6, no. 6, pp. 981-991,

November 1987.

[15] H. Magnin, J.L. Coulomb, "Parallel and Vectorial Solving of FE Problems on a

Shared-Memory Multiprocessor", IEEE Trans. on Mag., Vol.28, no 2, pp. 1712-

1715, March 1992.

[16] H. Magnin, J.L. Coulomb, "A Parallel and Vectorial Implementation of Basic

Linear Algebra Subroutines in Iterative Solving of Large Sparse Linear Systems of

Equations", IEEE Trans. on Mag., Vol.25, no 4, pp. 2895-2897, July 1989.

Processor 1

Processor 2

Processor 3

Processor 4

node on symmetry0 0 0 0 0 0
0
0

0
0
0
0

1

Message passing

plane

Figure 1. Message passing for the symmetry planes - Example of 4 processors.

Processor 3

Processor 4

Processor 2

Processor 1
Message passing

Figure 2. Message passing for the symmetrization - Example of 4 processors.

 S
pe

ed
up

0
1
2
3
4
5
6

7
8

0 1 2 3 4 5 6 7 8

Assembling
BC and Symmetrization

Number of processors

Figure 3. Speedups for a 10000 nodes problem (60000 degrees of freedom).

a11
a21 a22
a31 a32 a33

a44a41 a42 a43

Proc. 1

Proc. 2

x1
x2
x3
x4

Proc. 1 executes:

a11 x1 + a21 x2
a21 x1 + a22 x2

Proc. 2 executes:

a31 x3 + a41 x4
a32 x3 + a42 x4
a31 x1 + a32 x2 + a33 x3 + a43 x4
a41 x1 + a42 x2 + a43 x3 + a44 x4

x1
x2
x3
x4

a11 x1 + a21 x2 + a31 x3 + a41 x4
a21 x1 + a22 x2 + a32 x3 + a42 x4
a31 x1 + a32 x2 + a33 x3 + a43 x4
a41 x1 + a42 x2 + a43 x3 + a44 x4

Duplicated vector

Residual vector

Partial residual vectors

Figure 4. Parallel matrix-vector multiplication- Example of a 4x4 matrix on 2

processors.

 %
 o

f t
he

 e
xe

cu
tio

n
tim

e

0

20

40

60

80

100

1 2 3 4

0

20

40

60

80

100

1 2 3 4

Processor number

SPMD M / S

Busy

Overhead

Idle

Figure 5. Average of the processors states for the CG with the Diagonal
Preconditioning.

 S
pe

ed
up

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8

Number of processors

SPMD mode
M / S mode

CPU time on 1 processor: 615s

Figure 6. Speedups of the CG with the Diagonal Preconditioning for both methods of
concatenation.

j

i

j

Necessary to compute the term (i,j)
In computation
To be computed
Already computed

Figure 7. Building of the Incomplete Cholesky matrix L by columns.

Comp. of

L11

FE matrix stored on 3 processors

a11
a21 a22
a31 a32 a33

a44a41 a42 a43

Computation of L11 L11T

L31 L31T L41 L41T
L21 L22

L32 L32T L42 L42T
L33 L33T L31 L32 L33L31 L32 L33

L43 L43T
L44 L44T

Insertion of L31T L32T
L41 L42 L43 L44

Insertion of L41T L42T Insertion of L43T

Proc. 1 Proc. 2 Proc. 3

Processor 1

Processor 2
Processor 3

Step

1

2

3

4

5

L21L21TComputation of

L22 L22TComputation of

Comp. of

Comp. of
Comp. of

Comp. of

Comp. of

Comp. of

Figure 8. Building of L and Lt in 5 parallel steps.

 %
 o

f t
he

 e
xe

cu
tio

n
tim

e

0

20

40

60

80

100

1 2 3 4

Processor number

Busy

Overhead

Idle

Figure 9. Average of the processors states for the CG with the Incomplete Cholesky
Preconditioning.

 S
pe

ed
up

0
1
2
3
4
5
6
7
8

0 1 2 3 4 5 6 7 8

Number of processors

CPU time on 1 processor: 3193s

Figure 10. Speedup of the CG with the Incomplete Cholesky Preconditioning

Not computed

Proc. 1

Proc. 2

Proc. 3

Exactly computed
Approximately computed

Figure 11. Lower triangular matrix L constructed per block (3 processors).

 %
 o

f t
he

 e
xe

cu
tio

n
tim

e

Processor number

0

20

40

60

80

100

1 2 3 4

Busy

Overhead

Idle

Figure 12. Average of the processors states for the CG with the Block Incomplete
Cholesky Preconditioning.

Ti

m
e

0

500

1000

1500

2000

0 2 4 6 8

Number of processors

CPU time on 1 processor: 3193s

Figure 13. CPU time used for the CG with the Block Incomplete Cholesky
Preconditioning.

Figure 14. Perfect electric conductor aeroplane enlighted by a plane wave (magnitude
of the magnetic field H).

 S
pe

ed
up

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 80

Storage # 2
Storage # 1

Number of processors

Figure 15. Speedups for the assembling step.

 S
pe

ed
up

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 80

Storage # 2
Storage # 1

Number of processors

Figure 16. Speedups for the CG with the Diagonal Preconditioning.

 S
pe

ed
up

0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 80

Storage # 2
Storage # 1

Number of processors

Figure 17. Speedups for the building of the Cholesky matrix.

 S
pe

ed
up

Storage # 1

Storage # 2

0
1 2 3 4 5 6 7 80

1
2
3
4
5
6
7
8

Number of processors

Figure 18. Speedups for the back-forward substitution.

Number of processors 2 4 8
 time (s) ite. time (s) ite. time (s) ite
Diagonal Precond. 415 204 367 204 316 204
Cholesky Precond. 1781 59 901 59 1773 59
Block. Cho. Precond. 1133 59 353 61 234 81

Table 1. CPU time per processor and number of iterations versus the preconditioning

method and the number of processors.

 CPU time (s) Mflops Iterations
Diag. Precond. storage # 1 263 20 232
 storage # 2 187 40.2 232
Cho. Precond. storage # 1 5314 2.3 76
 storage # 2 733 10 76

Table 2. Total CPU time, vector performances and number of iterations versus the

preconditioning method and the matrix representation (solving on 8
processors).

 CPU time (s) Mflops Iterations
Diag. Precond. storage # 1 23035 56 41507
 storage # 2 9981 161 41507
Cho. Precond. storage # 1 too much CPU time consuming
 storage # 2 8072 113 13667

Table 3. Total CPU time, vector performances and number of iterations versus the

preconditioning method and the matrix representation (solving on 8
processors).

