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Abstract:  A finite element method is presented to compute time harmonic 

microwave fields in three dimensional configurations. Nodal-based finite elements have 

been coupled with an absorbing boundary condition to solve open boundary problems. 

This paper describes how the modeling of large devices has been made possible using 

parallel computation. New algorithms are then proposed to implement this formulation 

on a cluster of workstations (10 DEC ALPHA 300X) and on a CRAY C98. Analysis of 

the computation efficiency is performed using simple problems. The electromagnetic 

scattering of a plane wave by a perfect electric conducting airplane is finally given as 

example. 

 

 

Abstract: Une formulation de type éléments finis pour la résolution 

tridimensionnelle de problèmes de diffraction électromagnétique est décrite. Les 

problèmes ouverts sont modélisés à l’aide d’un couplage avec des conditions aux limites 

absorbantes. Cet article décrit comment l’utilisation du calcul parallèle a rendu possible 

la modélisation de grandes structures. De nouveaux algorithmes sont proposés pour une 

implantation efficace sur une ferme de stations ainsi que sur un CRAY C98. L’analyse 

des performances est réalisée sur des exemples simples. La réponse électromagnétique 

d’un avion illuminé par une onde plane est ensuite présentée à titre d’exemple de 

géométrie réaliste. 

 

 

 

 

1 INTRODUCTION 



Nodal-based finite element (FE) method has been previously developed for 

microwave problems [1]. Open boundary domains are modeled by coupling with 

Absorbing boundary conditions (ABC). The time harmonic formulation is written in 

terms of vector fields. Because nodal-based finite elements are used, a penalty term is 

added to the formulation in order to avoid spurious reflections. 

This code has been first developed on scalar workstation. This implies that only 

simple problems can be modeled. For instance, a 3 wavelengths side cubic geometry (30 

cm at 3 GHz), meshed with 10 nodes per wavelength, leads to 81000 complex 

unknowns. With first order hexahedral FE, 181 Mbytes of memory are necessary to 

store the matrix. Obviously, the modeling of large geometry such as airplane can not be 

performed on scalar computers. Only parallel computation actually enables to modelize 

such devices: it reduces the computation time and, aboveall, it arranges enough 

memory. 

The objective of this paper is to describe how the existing code has been modified in 

order to implement it efficiently on parallel computers. A cluster of ten DEC ALPHA 

workstations linked by a FDDI ring has been first used. This distributed memory 

computer is a multi instruction - multi data streams (MIMD) type. Parallel virtual 

machine (PVM) software is used to pass messages between workstations. The 

formulation has also been implemented on a CRAY C98 which is a shared memory 

computer (MIMD type) with vector capabilities. 

Note that the algorithms and the methodology presented in this paper are not specific 

to a high frequency electromagnetic formulation. They can actually be applied to any 

physical problem discretized with a FE method. 

 

2 FE FORMULATION COUPLED WITH ABC 



We are dealing with frequency domain open boundary electromagnetic field 

problems. According to Maxwell equations, the magnetic field H and the electric field 

E satisfy to the vector wave equations. Following developments are made only for the 

H field formulation. All the steps can be applied to the E field formulation as well. 

The weak Galerkin formulation of the vector wave equation for H is given by (1): 
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A penalty term is added to the formulation to avoid spurious reflections [1]. It makes 

the field divergence free. Its Galerkin form is given by (2): 
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ABC is used to truncate the 3D finite element region and to minimize the spurious 

reflections due to the outer boundary of the FE domain. A 3D vector Engquist-Majda   

condition [2] is used. Outer surfaces are then rectangles, which is less mesh-consuming 

for a large number of geometries: 
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Finally, the formulation for scattering problems in term of total field is given by (4). 

H and Hi  are respectively the total field and the incident field. Two types of surface are 

considered: 

- external surface (Sext ) 



- Perfect Electric Conductor (PEC) surface (Spec). 
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3 IMPLEMENTATION ON THE CLUSTER OF WORKSTATIONS 

Algorithms designed to operate on scalar calculators do not fit to parallel distributed 

memory computers because data are interdependent. It is not sufficient to add directives 

of messages passing in a program to allow good performances. Algorithms have to be 

deeply modified. The key point to respect consists in minimizing the message passing 

because this step is expensive in CPU time. 

The implementation of the formulation on such a computer has been made by using 

an algorithm to distribute the data over the different workstations. The developed code 

is a Single Program Multi Data type (SPMD). 

Main characteristics of the cluster are : 

-10 workstations 

-80 Mflops (linpack) per processor 

-64 Mo of RAM 

-175 MHz clock frequency 

-1 Go of swap per processor 

-FDDI network in ring (100 Mbits / s) 

-PVM 3.3 

 

Performances are analyzed with the PARAGRAPH software. Because its utilization 

involves the manipulation of post-mortem files, parallel performances can be analyzed 



only with simple problems. A 60000 degrees of freedom problem is then used because it 

is the bigger matrix which can be solved on one processor (this step is necessary to 

evaluate the speedup). 

3.1. Parallel FE algorithm on the cluster of workstations 

3.1.1. Distributing the data 

The entire data file is duplicated on each processor. Indeed, the program is a SPMD 

type performing a parallel reading. An other strategy would consist in storing no more 

than what is required for one processor at a time and in reading and updating data files 

during the processing. But this method would result in unacceptable Input/Output (I/O) 

overhead [3]-[5]. 

3.1.2. Assembling in parallel 

Most of the parallel FE codes use domain decomposition techniques to assemble the 

FE matrix. These methods are efficient but they require a pre-processing step. 

Moreover, the number of processors is limited by the decomposition method. This 

prevents the use of massively parallel computer. 

Hence, we have preferred to perform the assembling step of the global matrix by 

degree of freedom [6], [9], instead of by elementary contribution as in a classical 

sequential code. It allows to assemble at once the three lines (three coordinates) 

corresponding to a node. Each element including the considerate node is sought and 

contributions with the related nodes are computed. These three lines are then 

compressed by storing only non-zero values. Space is left in the compressed storage if 

the volume element includes a surface element. Same method is used to introduce ABC 

on the external boundary and BC on conductors. 



This method does not require the creation of the structure of the matrix (called 

symbolic assembling). To solve a problem meshed with N nodes, if P processors of the 

cluster are available, each workstation assembles a part of the system including N/P 

nodes. The load balancing is nearly perfect because of the constant bandwidth of the 

global matrix. The program is a SPMD type: no message passing is required. Hence, the 

speedup of the assembling stage is optimal (Fig. 3). 

3.1.3. BC on symmetry planes and conductors 

Messages passing are necessary to introduce the BC on conductors (only when 

solving for the E field) and on the symmetry planes because a global modification of the 

matrix system is required. This is due to the method used to introduce the BC (Fig. 1). 

In the case of the H formulation the field verifies (6a) or (6b) on a symmetry plane: 

 

On a symmetry plane: n H⋅ = 0  (6a) 

On an antisymmetry plane: n H× = 0  (6b) 

 

The speedup related to this step is low due to the large amount of massage passing 

(Fig. 3). However, its effect on the global performances of the code is negligible: the 

length of this step is less than one percent of the total computation time. 

3.1.4. Symmetrizing the global matrix 

The introduction of ABC and penalty function leads to a non-symmetric system 

matrix. This one is approximately symmetrized by adding it to its transposed matrix. 

This has been shown previously to give correct results. This operation requires a large 

amount of messages passing (Fig. 2). The speedup related to this operation is also low 



(Fig. 3). But once again, the time needed to perform this step is small and does not have 

any significant effect on the total computation time. 

3.1.5. Solving in parallel 

Because the FE matrix is sparse, iterative methods are used to solve the matrix 

system. Conjugate Gradient (CG) with diagonal, incomplete Cholesky or block 

incomplete Cholesky preconditioning methods have then been implemented [7], [8]. 

In parallel FE codes which use domain decomposition techniques to assemble the FE 

matrix, the solving step is first performed on the sub-domains and then on the global FE 

matrix [9]-[12]. With our assembling method (degrees of freedom), the solver works on 

the entire FE matrix. So, we have chosen to use a small-scale parallelism. 

3.1.5.1. Diagonal Preconditioning (DP) 

Each processor computes his part of the preconditioning matrix by inversion of the 

diagonal terms of the FE matrix. No message passing is required and the memory space 

to store the preconditioning matrix is small. However, the generated preconditioning is 

low. 

The preconditioning is performed by a multiplication vector-vector. A multiplication 

matrix-vector is also required to compute the residual vector at each iteration. This 

multiplication is done in parallel (fig. 4). Each processor computes a partial residual 

vector by multiplicating his part of the FE matrix by the vector duplicated on each 

processor. The load balancing is nearly perfect because of the constant bandwidth of the 

matrix. 

To operate the concatenation of these partial residual vectors, each processor 

broadcasts it to all the others. Only non-zero values are sent. Then, each processor adds 

these partial residual vectors to obtain the final residue: this is the SPMD mode. This 



operation needs (P2-P) messages passing per iteration. An other way to calculate the 

residual vector consists in sending each partial residual vector to one processor called 

the master. This one (Master processor number 1) computes the final residue and 

broadcasts it. This Master-Slave (MS) method minimizes the number of 

communications: only (P-1)x2 messages per iterations are required. On the other hand, 

it introduces an additional idle time. Furthermore, because only non zero terms are sent, 

the messages broadcasted by the master are larger than in the SPMD mode: their size is 

equal to the size of the matrix. For these reasons the SPMD mode is more efficient. In 

any case, for both methods, the cost of communications is very penalizing, because 

small-scale parallelism is not adapted to distributed memory computer fitted with this 

kind of network. Some others methods can be found in [16] but they require more 

memory space. 

Figure 5 shows an average of the state of every processor, on the total execution 

time, for both methods of concatenation (solving of a 60000 degrees of freedom 

problem on 4 processors). Figure 6 shows the corresponding speedups. 

3.1.5.2. Incomplete Cholesky Preconditioning (ICP) 

This preconditioning is performed by the decomposition of the FE in two matrices: 

A= L . Lt (L and Lt are computed). The building of the incomplete Cholesky matrix is 

performed by column (5) [15], [16] (fig. 7). This algorithm is implicitly parallel because 

the L(ij) terms can be computed independently once the diagonal L(jj) term has been 

computed. The knowledge of both lines j and i is required to compute L(ij). If both lines 

are not stored on the same processor, a message passing is necessary. Fig. 7 and fig. 8 

illustrate this strategy on an example of a 4x4 matrix stored on 3 processors. The 

incomplete Cholesky matrix is assembled in 5 parallel steps. Between each step, a 

processors synchronization is required. 



 

 

For j = 1 to number of lines

              Ljj =  Ajj -  (Ljk)

For i =  j +1 to number of lines

                    Lij =  1
Lii

Aji -  Lik Ljk

End

End

2

k=1

j-1

k=1

i-1

∑

∑( )

 (5) 

 

While solving using CG, both matrix-vector multiplication and back-forward 

substitution steps are necessary (6). They have also to be parallelized if possible. 

The system A x = b is classically substituted by (L.Lt) x = b. Then, L y = b and (Lt) x = 

y are computed to solve the system. This algorithm is implicitly sequential because 

there is a back dependency on y and x: for example, the first processor computes his 

part of y and broadcasts it to all the others (in SPMD mode). The second processor can 

then start to compute and so on. This step is very penalizing in term of parallel 

performances, because it is performed at each iteration of the solver (fig. 9). Figure 10 

shows the corresponding speedup. 

 

Forward substitution 
 

          For i = 1 to number of lines (n) 
 
            yi (bi Lik yk ) Lii

k =1

k = i -1

= − ∑ /  

 
          End 
 (6) 
 

Back substitution 
 

          For i = number of lines (n) to 1 



 
            xi (yi Lki xk ) Lii

k = i +1

k = n

= − ∑ /  

 
          End 
 

This method allows to reduce the number of iterations necessary to solve the system 

of equations (tab. 1). However, because of the large amount of message passing 

required, it cannot be applied to large problems. The memory space needed to achieve 

the ICP is 1.5 time larger than when using the DP because L and Lt have the same 

structure than A after its symmetrization. Lt is built to achieve a quick access by 

columns to the terms. This means that the terms are stored by lines in L and by columns 

in Lt. 

3.1.5.3. Block Incomplete Cholesky Preconditioning (BICP) 

To avoid messages passing during the building of the incomplete Cholesky matrix, 

this one is assembled only with the terms stored on the considerate processor. So a part 

of the matrix is not built (fig. 11), and the terms effectively assembled are approximated 

because of the back dependency. This method applied with one processor corresponds 

to the classical ICP. 

Compared to the Incomplete Cholesky Preconditioning, this scheme leads to a 

degradation (tab. 1) of the preconditioning. On the other hand, the preconditioning 

matrix is now constituted by independent sub-blocks. Each processor can compute 

independently his part of the result vector. The concatenation of these partial results, 

necessary at the end of the forward and the back substitution, is performed by message 

passing in SPMD mode. As show is tab. 1, the number of iterations required to solve the 

system of equations depends on the number of processors available: the increase of the 

number of processors leads to an increase of the number of iterations. On the other 



hand, the parallel rate of the method is increased (fig. 9-12). Figure 12 shows that the 

processors are better used than when solving with a classical ICP. The number of 

operations required to compute both preconditioning matrix and result vector depends 

on the number of processors available because of the not-computed terms in the 

preconditioning matrix. So, the parallel performances cannot be estimated in term of 

speedup because the solver on 2 processors is three times faster than on 1 processor. 

Figure 13 shows the CPU time per processor for a solving of a 60000 degrees of 

freedom matrix versus the number of processors used. 

For this size of matrix, the method loses efficiency when more than 5 processors are 

used. The increase of the matrix size tends to reject this limit. 

Note that the memory space needed to achieve the BICP is 1.5 time larger than when 

using the DP because L and Lt have the same structure than A after its symmetrization. 

3.1.5.4. Comparison between methods 

Table 1 compares the performances of the preconditioning methods when solving a 

60000 degrees of freedom matrix on 2, 4 and 8 processors. 

For this small example, on 2 processors, the Diagonal Preconditioning is the most 

efficient. The Block Incomplete Cholesky Preconditioning becomes interesting when 

more than 4 processors are used. For large problems, because of the large amount of 

messages passing, the building of the incomplete preconditioning matrix requires too 

much CPU time. Only the Block Incomplete Cholesky Preconditioning can be used. 

3.2. Modeling a large problem 

The electromagnetic scattering of a plane wave by a perfect electric conducting 

airplane (fig. 14) is presented as realistic problem. The frequency of the incident plane 

wave is 0.3 Ghz and this problem is meshed with 51183 nodes (307098 degrees of 



freedom). To solve the system of equations of this problem on 8 processors, the 

conjugate gradient with Diagonal Preconditioning requires 7476 iterations and 80280 s  

per processor while the conjugate gradient with the Block Incomplete Cholesky 

Preconditioning requires only 4902 iterations and 58950 s per processor. 

4 IMPLEMENTATION ON THE CRAY C98 

The CRAY C98* is a high performance parallel vector computer. It is a shared 

memory multi instruction, multi data streams (MIMD) computer. It supports therefore a 

parallelism of strong scale. Indeed, every processor can execute a different program or a 

part of same program. All the processors have access to the global shared memory 

through a central connection. 

 

Main characteristics of the CRAY C98 are the following: 

-8 vector processors 

-1 GFlops of peak performance per processor 

-4 GBytes memory (= 512 Mw) 

-8 128-words vector registers 

-4,17 ns clock cycle 

-120 GBytes of disk space 

4.1. Programming model 

Parallelism and vectorization are introduced by compiler directives. A vectorization 

directive leads the compiler to use the vector registers. There are several ways to use 

parallelism. Two of them are mainly used: 

* This work was supported in part by the Institut du Développement et des Ressources 
en Informatique Scientifique (CNRS). 



-The first one consists in putting a parallelization directive before a loop. This 

one will be split, and the number of iterations performed by each processor can be 

specified. The variables used in the loop must have a scope, which means that they must 

be either private or shared. Each processor has its own copy of the private variable, 

while a shared variable is shared by all processors. Memory write conflicts on a shared 

variable may result in data corruption and must be avoided. 

-The second way consists in creating a parallel region, which includes a loop. 

All the variables inside the parallel region must have a scope. The loop is parallelized, 

but the private variables can be used outside of the loop. This is useful for 

initializations, or to create private buffers to avoid memory conflicts. Semaphores can 

also prevent these conflicts. 

A loop will be broken in packets that are long enough to enable vectorization (128 

Words). Data streams must be as longer as possible to allow a good vectorization. 

The CRAY compiler can try to parallelize and vectorize the code automatically due 

to compilation directives, by checking the data dependencies in the loops. It is 

automatic, but it works only on simple loops. For example, a subroutine call inside a 

loop prevents it from being parallelized. This automatic method leads then to bad 

parallel performances. 

In order to parallelize loops which have not been made automatically, an higher level 

tool (BROUSE) may be used. It tries to find the scope of each variable in a specified 

loop. There are also mainly profiling tools as 'hpm', 'proview', 'atexpert', ... which give 

to the user many information about the performances of the code such as: parallelism 

ratio, average vector length, parallel / sequential portion of the code, most important 

loops / subroutines, ... 

4.2. FE algorithm on the CRAY 



The algorithms operating on mono-processor calculator do not need to be entirely 

revised in order to work on the CRAY C98. The code remains the same and runs quite 

immediately with more or less automatic parallelism-vectorization and progressively 

gains parallelism-vectorization while the user manually adds parallelization-

vectorization directives. 

Our code was first developed on a workstation, in a well structured way with many 

subroutine calls, error handling, .... Those points prevent the compiler from getting a 

good parallelization level. The compiler itself got only 17% of parallelization on a 

problem meshed with 10000 nodes. Only simple loops, like initializations had been 

processed. Neither the matrix assembly portion nor the solver had gained parallelism. 

They only gained some vectorization. It was then necessary to help the compiler to get 

better results by adding manually compiler directives and by finding the scope of every 

variables. 

The experience in the implementation of codes on such computer has shown that the 

matrix representation has a great influence on vector performances. So, two types of 

representations have been used. 

 

A. Sparse row-wise matrix representation (storage # 1): because of the FE matrix is 

sparse and symmetric, only the non zero terms of its lower part are stored [2] after its 

symmetrization. 

B. Redundant Sparse row-wise matrix representation (storage # 2) : because the 

algorithms used in the solver need to access to the FE terms by column, the entire FE 

matrix stays in memory even after its symmetrization. The memory space used is twice 

larger, but the access to the non zero terms of a column are adjacent in memory [16]. 

 



Some other methods like Sky line matrix representation have been implemented. 

Because all the terms contained in the bandwidth of the FE matrix are stored, the 

number of terms stored for a line of the FE matrix increases with the size of the 

problem. This is due to the renumbering algorithm. So, this method requires too much 

memory and it can not be used to compute realistic devices. 

All the performances are analyzed as previously with a 10000 nodes problem 

because the use of the ATEXPERT software (analysis of parallel performances) 

involves a mono-processor computation. 

4.2.1. Creation of the global matrix structure 

This step prepares the storage of the non-zero terms of the matrix. Its parallelization 

is difficult because there are many data dependencies. This part of code is especially 

vectorized. 

4.2.2. Assembling by elementary contributions 

This step is easy to parallelize. The elementary matrix related to a FE needs to have a 

private scope, and semaphores are used when the global matrix, stored in shared 

memory, is modified. So a parallel region is created which includes the loop on the FE. 

The global matrix is modified in a critical region, inside the parallel region, in which the 

code is executed in a sequential way. 

An other solution can be found in [4] but it needs a 'pre-processing' step to split the 

set of FE into subsets made of independent elements. This method is efficient when 

write access conflicts in the global matrix for contiguous elements decrease the 

performances. 

4.2.3. Introduction of BC on conductors (E field solving) and on the symmetry planes 



Due to the method used to introduce BC, a global modification of the matrix system 

is required. Each processor performs a part of the modifications which are made on the 

global matrix. Semaphores are used to avoid memory conflicts. 

4.2.4. Symmetrization of the matrix 

Non-symmetric global matrix is symmetrized by adding it to its transposed matrix: 

all the terms of each line are added with those corresponding of the transposed matrix. 

The external loop (on the lines) is parallelized while the internal one (on the columns) is 

vectorized. The variables used for this step can be shared because no memory conflict is 

possible. 

Figure 15 shows the speedups for the creation of the FE matrix (steps 4.2.1, 4.2.2, 

4.2.3, 4.2.4) versus the data representation. The creation of the global structure matrix 

decreases the parallel performances because this step is especially sequential. 

4.2.5. Solver 

As previously presented, the conjugate gradient is used to solve the system of 

equations. 

4.2.5.1. Diagonal Preconditioning 

The use of this method requires only a multiplication matrix-vector per iteration to 

compute the new residual vector. So this step is parallelized by splitting the loop on the 

lines. 

For the storage # 1, each processor computes a partial residual vector in private 

memory (parallel region). The addition of these partial results is performed in shared 

memory in a critical region (vectorization). 



For the storage # 2, the multiplication is done in shared memory because the entire 

FE matrix is stored. 

The speedups versus the matrix representation of the CG with the Diagonal 

Preconditioning are presented in figure 16. 

4.2.5.2. Incomplete Cholesky Preconditioning 

The storage # 1 requires the research of the lines (i) with a non zero term on the 

column (j). The parallelization is made by splitting this loop. Indeed, this algorithm 

needs the multiplication of the line (j) by the line (i). So an other search on the terms of 

the line (i) is necessary for all the terms of the line (j). This matrix representation is not 

adapted to the Incomplete Cholesky Preconditioning because of the vector performances 

obtained (tab. 2 and 3). On the other hand, only the lower part of the preconditioning 

matrix is built. Because only the lower part of the FE is stored in memory after its 

symmetrization, no more allocation of memory is required: the preconditioning matrix 

is stored in memory at the place of the upper FE matrix. 

The storage # 2 allows to access directly to the lines (i) which have a non zero term 

on the column (j). Therefore, this loop is parallelized. The multiplication of the line (j) 

by the line (i) requires a search (for all the terms of the line (j)) on the terms of the line 

(i). This matrix representation improves the vector performances of the code during the 

building of the preconditioning matrix (tab. 2 and 3). The entire preconditioning matrix 

is built to keep the advantage of the adjacent access to the terms of a same column. 

Because the entire FE matrix is stored in memory after its symmetrization, this type of 

representation requires to double the memory space. 

Figure 17 shows the speedups obtained for the building of the Cholesky matrix versus 

the matrix representation. 



The parallelization of the forward substitution cannot be made by splitting the loop 

on the line because of the back dependency. So, the produce of the terms L(ik) . y(k) is 

parallelized by creating a parallel region. The addition of the partial results is made in a 

critical region. The access to the terms L(ik) is performed by line, leading to good 

vector performances. 

The parallelization of the back substitution is made in the same way but the access to 

the terms L(ki) decreases the vector performances (tab. 2 and 3). So the influence of the 

type of representation is the same as in the building of the Cholesky matrix. Figure 18 

shows the speedups for back-forward substitution versus the matrix representation. 

For the storage # 1, the research of the term L(ki) is penalizing in term of vector 

performances (tab. 2 and 3). The overhead introduced by splitting the loop on the 

produce L(ki) . x(k) is then negligible. 

The use of the storage # 2 involves less efficiency in term of parallel performances 

because of the overhead introduced by splitting the produce L(ki) . x(k). On the other 

hand, because the terms L(ki) are adjacent in memory, the vectors performances are 

increased (tab. 2 and 3). 

4.2. Comparison between the methods 

Table 2 compares parallel and vector performances of the preconditioning methods  

when solving a 60000 degrees of freedom matrix with both types of matrix 

representation (total CPU time). Table 3 compares same performances of the 

preconditioning methods  when solving a 307098 degrees of freedom matrix (scattering 

by a pec airplane). Both tables show the efficiency of the storage #2. 



5 CONCLUSION 

We have presented in this paper the implementation of an electromagnetic scattering 

code on parallel shared and distributed memory computers. 

5.1. Cluster of stations 

The parallel performances obtained when building the FE matrix are satisfying. 

Because of the low preconditioning, the cost of communications with the Diagonal 

Preconditioning is penalizing. This is due to the small-scale parallelism which is not 

adapted to distributed memory computer equipped with this type of network. The 

Incomplete Cholesky Preconditioning allows to reduce the number of iterations but 

cannot be used on large devices because of the large amount of messages passing 

required. So, our new preconditioning method named ‘Block Incomplete Cholesky 

Preconditioning’ seems a good compromise in term of convergence rate and CPU time. 

However, the memory space needed to achieve the  BICP is 1.5 times larger than when 

using the DP. 

Computed examples show that the modeling of realistic problem is still not possible 

on such a cluster because of the memory available. For example, the illumination of a 

fighter by a 3 GHz plane wave -high range radar freqency- would lead to a 106 nodes 

problem. 

On an other hand, this code is immediately implementable on a computer such as the 

CRAY T3E. This parallel distributed memory computer is a MIMD type. Given its 

characteristics (256 processors and 32 Go of memory) it should allow to arrange enough 

memory to modelize large devices. Moreover, this machine is equipped with a very high 

performances network. 

5.2. CRAY C98 



The adaptation to a shared memory computer is easy because it does not ask a 

complete restructuring of program. The code remains the same and runs quite 

immediately. The CRAY compiler can try to parallelize and vectorize the code 

automatically due to compilation directives, by checking the data dependencies in the 

loops. It is automatic, but it leads to bad parallel performances. So the programmer has 

to manually add parallelization-vectorization directives and to cheek the scope of every 

variable to keep the control on the parallelism granulity. 

The relative performances due to the vectorization are very low with a classical 

matrix representation method because the data streams are short (the matrix is sparse). 

The use of the Redundant Sparse row-wise storage allows to obtain acceptable vector 

performances but it requires to double the memory space. Our experience shows that it 

is more important to favor the vectorization than the parallelization because every 

computation node of this machine is especially vectorial. 
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Figure 1. Message passing for the symmetry planes - Example of 4 processors. 
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Figure 2. Message passing for the symmetrization - Example of 4 processors. 
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Figure 3. Speedups for a 10000 nodes problem (60000 degrees of freedom). 
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Figure 4. Parallel matrix-vector multiplication- Example of a 4x4 matrix on 2 

processors. 
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Figure 5. Average of the processors states for the CG with the Diagonal 
Preconditioning. 
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Figure 6. Speedups of the CG with the Diagonal Preconditioning for both methods of 
concatenation. 
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Figure 7. Building of the Incomplete Cholesky matrix L by columns. 
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Figure 8. Building of L and Lt in 5 parallel steps. 
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Figure 9. Average of the processors states for the CG with the Incomplete Cholesky 
Preconditioning. 
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Figure 10. Speedup of the CG with the Incomplete Cholesky Preconditioning 
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Figure 11. Lower triangular matrix L constructed per block (3 processors). 
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Figure 12. Average of the processors states for the CG with  the Block Incomplete 
Cholesky Preconditioning. 
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Figure 13.  CPU time used for the CG with the Block Incomplete Cholesky 
Preconditioning. 

 



 
 

Figure 14. Perfect electric conductor aeroplane enlighted by a plane wave (magnitude 
of the magnetic field H). 
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Figure 15. Speedups for  the assembling step. 
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Figure 16. Speedups for the CG with the Diagonal Preconditioning. 
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Figure 17. Speedups for the building of the Cholesky matrix. 
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Figure 18. Speedups for the back-forward substitution. 
 
 

Number of processors     2      4            8 
 time (s) ite. time (s) ite. time (s) ite 
Diagonal Precond. 415 204 367 204 316 204 
Cholesky Precond. 1781 59 901 59 1773 59 
Block. Cho. Precond. 1133 59 353 61 234 81 

 
Table 1. CPU time per processor and number of iterations versus the preconditioning 

method and the number of processors. 
 
 

 CPU time (s) Mflops Iterations 
Diag. Precond. storage # 1 263 20 232 
 storage # 2 187 40.2 232 
Cho. Precond. storage # 1 5314 2.3 76 
 storage # 2 733 10 76 

 
Table 2. Total CPU time, vector performances and number of iterations versus the 

preconditioning method and the matrix representation (solving on 8 
processors). 

 
 

 CPU time (s) Mflops Iterations 
Diag. Precond. storage # 1 23035 56 41507 
 storage # 2 9981 161 41507 
Cho. Precond. storage # 1 too much CPU time consuming 
 storage # 2 8072 113 13667 

 
Table 3. Total CPU time, vector performances and number of iterations versus the 

preconditioning method and the matrix representation (solving on 8 
processors). 

 


