N

N

The notion of y)-weak dependence and its applications to
bootstrapping time series

Paul Doukhan, Michael Neumann

» To cite this version:

Paul Doukhan, Michael Neumann. The notion of ¢-weak dependence and its applications to boot-
strapping time series. Probability Surveys, 2008, 5, pp.146-168. 10.1214/06-PS086 . hal-00141589

HAL Id: hal-00141589
https://hal.science/hal-00141589
Submitted on 3 May 2007

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00141589
https://hal.archives-ouvertes.fr

THE NOTION OF WEAK DEPENDENCE AND ITS APPLICATIONS TO
BOOTSTRAPPING TIME SERIES

Paul Doukhan
Laboratoire de Statistique du CREST, Timbre J340
3, avenue Pierre Larousse, 92240 MALAKOFF, and
SAMOS, Statistique Appliquée et Modélisation Stochastique,

Université Paris 1, Centre Pierre Mendes France,
90 rue de Tolbiac, F-75634 Paris Cedex 13, France

E-mail: doukhan@ensae.fr

Michael H. Neumann
Friedrich-Schiller-Universitat Jena
Institut fiir Stochastik

Ernst-Abbe-Platz 2, 07743 Jena, Germany

E-mail: mi.neumann@tu-bs.de

Abstract

We give an introduction to the notion of weak dependence which is more general
than mixing and allows to treat for example processes driven by discrete innova-
tions as they appear with time series bootstrap. As a typical example, we analyze
autoregressive processes and their bootstrap analogues in detail and show how weak
dependence can be easily derived from a contraction property of the process. Fur-
thermore, we provide an overview of classes of processes possessing the property
of weak dependence and describe important probabilistic results under such an

assumption.
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1. MIXING VS. WEAK DEPENDENCE

For a long time mixing conditions have been the dominating type of condi-
tions for imposing a restriction on the dependence between time series data.
They are considered to be useful since they are fulfilled for many classes of
processes and since they allow to derive tools similar to those in the indepen-
dent case. On the other hand, it turns out that certain classes of processes
which are of interest in statistics are not mixing although a successive decline
of the influence of past states takes place. The simplest example of such a
process is an AR(1)-process, X; = 6X;_1 + €, where the innovations are
independent and identically distributed with P(e; = 1) = P(gy = —1) = 1/2
and 0 < € < 1/2; see also Rosenblatt (1980). It is clear that this process
has a stationary distribution supported on [—2,2], and for a process in the
stationary regime, it can be seen from the equality X; = e +0g¢_1 4+ --- +
0=5"le, 1 + 075X, that a past state X, can always be recovered from Xj.
(Actually, since |e¢| > Oles—1| + -+ + 075 Heg1| + 017°| Xs| X; has always
the same sign as &; which means that we can recover ¢; and therefore X;
from X;. Continuing in this way we can finally compute X;.) This, however,
excludes any of the commonly used mixing properties to hold. On the other
hand, X, loses its impact on X; as t — oc.

Besides this somehow artificial example, there are many other processes
of this type which are of great interest in statistics. For example, for boot-
strapping a linear autoregressive process of finite order, it is most natural to
estimate first the distribution of the innovations by the empirical distribu-
tion of the (possibly re-centered) residuals and to generate then a bootstrap
process iteratively by drawing independent bootstrap innovations from this
distribution. Now it turns out that commonly used techniques to prove
mixing for autoregressive processes fail; because of the discreteness of the
bootstrap innovations it is in general impossible to construct a coupling of
two processes with different initial values.

Inspired by such problems, Doukhan and Louhichi (1999) and Bickel and
Bithlmann (1999) introduced the alternative notions of weak dependence
and v-mixing, respectively, which focus on covariances rather than the total
variation norm between the joint distribution and the product of marginal
distributions of random variables. A slightly simplified version of Doukhan
and Louhichi’s (1999) definition is given here:
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Definition 1.1. A process (X;)iez is called weakly dependent if there exists
a universal null sequence (€, ),cn such that, for any k-tuple (sq,...,s;) and
any [-tuple (¢1,...,¢) with s < ... < sp < sp+7r =1 < ... <t and
arbitrary measurable functions g : R¥ — R, h: Rl — R with ||g||c < 1 and
Ih|loo < 1, the following inequality is fulfilled:

lcov (9(Xsy, .-, X)) h( Xy, ..., Xy,))| < ¥(k,l,Lipg,Liph) €.
Here Lip A denotes the Lipschitz modulus of continuity of &, that is,
h(z) —h
Linh — o 1@ = hw)
oty 12—yl

where ||z]|;, = 3, |2, and ¢ : N2 x R2 — [0, 0c) is an appropriate function.

Remark 1. In Bickel and Biithlmann (1999), another type of weak depen-

dence, called v-mixing, was introduced. Similarly to Definition

Remark 2. (Some classes of weak dependence)
Specific functions v yield notions of weak dependence appropriate to de-

scribe various examples of models:

e x-weak dependence for which ¢(u,v,a,b) = wvab; in this case we
simply denote €, as k.

e ' (causal) weak dependence for which ¢ (u,v,a,b) = vab; in this
case we simply denote ¢, as /.. This is the causal counterpart of
coefficients which we recall only for completeness.

e n-weak dependence, ¥(u,v,a,b) = ua + vb; in this case we write
€, = n, for short.

e (-weak dependence is a causal dependence which refers to ¥ (u, v, a, b)
vb; we simply denote €, = 6, (Dedecker and Doukhan (2003)) for this
causal counterpart of n coefficients.

e \-weak dependence ¥ (u,v,a,b) = uvab 4+ ua + vb; in this case we
write €, = A, (Doukhan and Wintenberger (2006)). Besides the
fact that it includes n- and k-weak dependence, this new notion of
A-weak dependence is convenient, for example, for Bernoulli shifts

with associated inputs.

It turns out that the notion of weak dependence is more general than

mixing and allows to treat, for example, also Markovian processes driven
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by discrete innovations as they appear with time series bootstrap. In the
next section we consider as an instructive example linear autoregressive pro-
cesses of finite order and a corresponding bootstrap version thereof. We will
demonstrate that the desired property of weak dependence readily follows
from a contraction property which is typical for such models under stan-
dard conditions on the parameters. The approach described there is also
applicable to proving weak dependence for many other classes of processes.

Section

2. AUTOREGRESSIVE PROCESSES AND THEIR BOOTSTRAP ANALOGUES

In this section we intend to give a gentle introduction to the basic ideas
commonly used for verifying weak dependence. Most parts in this section
are specialized to autoregressive processes of finite order and their bootstrap
analogues.

We consider first a general real-valued stationary process (Xi)iez. A sim-
ple and in many cases the most promising way of proving a property of weak
dependence is via contraction arguments. For probability distributions P
and Q on (R?, B%) with finite mean, we define the metric

APQ) = | il EIX = Y.
For d = 1 and the Lo instead of the L; distance, we obtain Mallows dis-
tance; see Mallows (1972). It is well known that such distances are suitable
for metrizing weak convergence, that is, d(P,, P) . 0 implies P, = P;
see e.g. Bickel and Freedman (1981). Similar distances have also been used
in the context of Markov processes to derive convergence of stationary distri-
butions from convergence of the conditional distributions; see e.g. Dobrushin
(1970) and Neumann and Paparoditis (2005). The following lemma shows
that closeness of the conditional distributions in the above metric gives rise

to estimates for covariances.

Lemma 2.1. Suppose that (X;)iez is a real-valued stationary process. Fur-
thermore, let s1 < -+ < s < t1 < -+ < t; be arbitrary and let g : RF - R
and h : RY — R be measurable functions. Let (X!);cz be another ver-

sion of the process, where Xy, = (X, Xg,—1,...) is independent of X =
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(X!, X! ...). If g is bounded and E|h(Xy,,... , Xy,)| < oo, then

Sk sp—1
lcov (9(Xsyy- -y X ), h( Xty ..o, X))
< lglloo Liph Ba (Pt Xl pria Xl )

This lemma shows that a property of weak dependence follows from a
convergence of the conditional distributions as the time gap to the lagged
variables tends to infinity. The latter property can often be shown by ap-
propriate coupling arguments. Note that there is a close connection to the
notion of 7-dependence introduced by Dedecker and Prieur (2004). Accord-
ing to their Lemma 5, Ed(PX:Xs | PXilX0) is actually equal to their coefficient
7(t —s). Dedecker and Prieur used such coupling arguments to derive expo-
nential inequalities and other interesting results, with applications to density
estimation.

In the rest of this section we restrict our attention to a real-valued au-

toregressive process (X¢)iez, which obeys the equation
X =01 X1 + - + ertfp + &, teZ. (21)

The innovations (g¢)¢cz are assumed to be independent and identically dis-
tributed with Ee; = 0. Furthermore, we make the standard assumption that
the characteristic polynomial §(z) =1 — 61z — - -- — 6,2P has no zero in the
unit circle. It is well known that there exists then a stationary solution to
the model equation (

Convergence of Ed(PXfl’“"thlx%,szl""’Xéz‘X;k) as t; — s — 00 can
now be shown by a simple coupling argument. For this purpose, we consider
a second (stationary) version of the autoregressive process, (X{);cz, where
X, is independent of X;,. Note that (X/);cz can also be written as a linear
process,

00
X[ = ey
k=0

Independence of ng and X, is equivalent to the fact that e,,,e5,—1,...

/
Sk

dom to couple the innovations after time s;. Here we only have to take

and €, _1,... are independent. On the other hand, we have some free-

care that both sequences (¢;)tcz and (¢} )tz consist of independent random
variables. A reasonably good coupling is obtained by feeding both pro-

cesses after time s, with one and the same sequence of innovations, that is,



/ o / o . .
Egptl = Esp+1:E5, 42 = Esp42, - - - - Lhis gives that
[e.9]
/ /
X — Xy = Zat—5k+l(53k_l - 6sk*l)‘ (2'2)
=0

_ X o X [Xe XL XX !
Since d(PXt1 M sk, P 4l oK) §E(2j:1 | Xt, —X£j|

obtain in conjunction with (

Xsk,X’Sk) we

Lemma 2.2. Let (X¢)iez and (X])iez be two versions of the autoregressive
process as described above. If Eleg| < oo, then
1

Ed (Pthy--.7th IXSk,PX’gl"v?Xt,lngk) S 21 Ke ﬁ pilfsk E’EO‘.
€

Lemma

Corollary 2.1. Suppose that (X;)iez is a stationary process satisfying the
above conditions. Furthermore, let s1 < --- < s < t1 < --- < 17 be arbitrary
and let g : R¥ — R and h : R* — R be measurable functions. If g is
bounded and E|h(Xy,, ..., Xy,)| < oo, then

|COV (g(XSN st 7X8k)7h(Xt1a s ’th))| < HgHOO Llph Kyl pil_Sk’
where K1 = 2 17—1)% K Eleg|.

Now we define the autoregressive bootstrap. We assume that observations
Xi—p,..., X, are available. Let §n = (gn,l,--- ,ém,)’ be any consistent
estimator of § = (6,...,6,), that is, 0, £, 0, as n — oco. (The least
squares and the Yule-Walker estimator are even /n-consistent.) Let X; =
(X¢—1,...,X¢—p)" be the vector of the p lagged observations at time ¢. We
define residuals

&= X; — X0,
and re-center them as
E =& — &,
where €. = (1/n) Y1~ &. Now we draw independent bootstrap innovations
¢; from the empirical distribution P, given by the &;. A bootstrap version

of the autoregressive process is now obtained as
X; = g Xiy + o+ O, X7, + €. (2.3)

For simplicity, we assume that (X;)icz is in its stationary regime. (This

will be justified by (i) of the next lemma.) Before we state weak dependence



6

of the bootstrap process, we show that it inherits those properties from the

initial process which were used for proving weak dependence.

Lemma 2.3. Suppose that Ee < oo and §n L. 0 are fulfilled.
(i) With a probability tending to 1, (X} )icz can be written as a station-

ary causal linear process,
[ee]
Xt* = Zan,k‘gzﬁ—k’
k=0
where, for all € > 0, there exists a fe < oo such that, with p. =

(1+€)/p,

P(|an,ky < K.k vk eN) 1

n—oo

(i) B(ef? | X1—pr- .., Xn) — Ee2.

Armed with the basic properties stated in Lemma

Lemma 2.4. Suppose that the initial process (Xy)ez satisfies the above con-
ditions and that the bootstrap process (X )iez is in its stationary regime. Let

(X;"/)tez; be another version of the bootstrap process, where Xi = (X7 , X7

Sk Sp—1r-+

is (conditionally on X1_p, ..., X,) independent of X:; = (X;k;, ;‘;_1, cel)e
For any € > 0, let pc = (1 +¢€)/p and K. < 0o be an appropriate constant.
Then there exists a sequence of events €, such that P(€,) = 1 and if Qy

occurs, then

’ ’ ’ —~
Ed (PX:I,..qX:lX:k,PXfla-.qX:l X;k) S 2 l Ke pilfsk /E&%.

From Lemma

Corollary 2.2. Suppose that the conditions of Lemma
Let s1 < -+ < s <t1 <--- <t be arbitrary andlezﬁg:R’C — R and h:
R — R be measurable functions. If g is bounded and E|h(X], ... , X3)| <

oo, then

lcov (92, X)X X7)| < llgllo Liph Ko 1 g%,

where Ky = 2 K \/Ee2.
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Besides the useful property of weak dependence of the bootstrap pro-
cess, the asymptotic validity of a bootstrap approximation requires that the
(multivariate) stationary distributions of the bootstrap process converge to
those of the initial process. Often, and in the case of the autoregressive
bootstrap in particular, one has no direct access to these stationary distri-
butions. However, according to Lemma 4.2 in Neumann and Paparoditis
(2005), convergence of the stationary distributions can be derived from an
appropriate convergence of conditional distributions. The latter, however,
follows directly from §n . ¢ and g 4, g¢. Therefore, consistency of
the autoregressive bootstrap can be shown by simple arguments which were
already used for proving weak dependence of the bootstrap; for details see
Section 4.2 in Neumann and Paparoditis (2005).

Remark 3. Motivated by the desire to have some sort of mixing for a
smoothed sieve bootstrap for linear processes, Bickel and Bithlmann (1999)
considered a condition called v-mixing which is similar to the notion of weak
dependence in our Definition

In contrast, the approach described here is fundamentally different. We
intend to prove weak dependence for processes driven by innovations with a
possibly discrete distribution and achieve this goal by exploiting a contrac-

tion property of the initial and the bootstrap process.

Remark 4. Arguing in the same way as above we could also establish the

property of weak dependence for nonlinear autoregressive processes,
X; = m(Xt) + &4, t e,

where (g¢)tc7 is a sequence of independent and identically distributed inno-
vations. If Lipm < 1, then we have obviously a contraction property being
fulfilled which immediately yields weak dependence.

It is interesting to note that such a contraction property can still be proved
if Lipm < 1 is not fulfilled. To this end, define the local Lipschitz modulus

of continuity

and assume that



Then

d (PXeeslXeme pXeslXi=y) < phL Az) - o — g, (2.4)

which implies weak dependence by Lemma

3. SOME EXAMPLES OF WEAKLY DEPENDENT SEQUENCES

Note first that sums of independent weakly dependent processes admit

the common weak dependence property where dependence coefficients are

the sums of the initial ones. We now provide a non-exhaustive list of weakly

dependent sequences with their weak dependence properties. Further exam-
ples may be found in Doukhan and Louhichi (1999). Let X = (X};):cz be a

stationary process.

(1)

If this process is either a Gaussian process or an associated pro-

cess and lim¢_. | cov(Xp, X¢)| = 0, then it is a x-weakly dependent

process such that k, = O | sup | cov(Xp, X¢)| |. It is also k'-weakly
t>r

dependent with . = O (Z | cov(Xo, Xt)|) .
t>r
ARM A(p, q) processes and more generally causal or non-causal lin-

ear processes: X = (Xy)iez is a such that

o0

X; = Z op&_k for t € Z,
k=—00

where (ag)rez € R% and (&)ez is a sequence of independent and
identically distributed random variables with E& = 0. If ap =
O(|k|~*) with u > 1/2, then X is a n-weakly dependent process with
Ny = O(m) In the general case of dependent innovations, prop-
erties of weak dependence are proved in Doukhan and Wintenberger
(2006).

GARCH (p,q) processes and more generally ARC H (0cc) processes:
X = (Xt)tez is a such that

o0
Xe=p-&  with pf =bo+ > bX}, fork€eZ,
k=1

with a sequence (b )y, depending on the initial parameters in the case

of a GARCH (p, q) process and a sequence (&;)iez of independent and
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identically distributed innovations. Then, if E(|£y|™) < oo, with the
oo

condition of stationarity, ||&|?, - Z |bj] < 1, and if:

e there exists C' > 0 and p ej]O,ll[ such that Vj € N, 0 < b; <
C -7, then X is a f-weakly dependent process with 6, =
O(e=*V") and ¢ > 0 (this is the case of GARCH (p, q) processes).

e thereexists C' > 0and v > 1suchthat Vk e N, 0 < by < C-k™Y,
then X is a n-weakly dependent process with 6, = O(r—"*1)

(Doukhan, Teyssiere and Winant (2006) introduce vector valued
LARCH(o00) models including the previous ones).
(4) Causal bilinear processes introduced by Giraitis and Surgailis (2002)

are such that

o0 o0
X =& (ao + Z akXt_k) + ¢y + Z L Xi_k, for k € Z.
k=1 k=1

Assume that there exists m > 1 with |||l < oo and ||&o]lm -
(ZZ":l lag| + > hey ]ck|> < 1. Then, if:
dK € N such that Vk > K, a = ¢, = 0, or,
* { 3p €]0, 1 such that 3 |exlp™ <1 and Vk €N, 0 < ap < pF
then X is a f-weakly dependent process with 6, = O(e~V"),
for some ¢ > 0;
e Vk € N, ¢ > 0, and dv; > 2 and dvy > 0 such that ap =
O(k="1) and Y, k2 < oo, then X is a f-weakly dependent
o)) 4= {1 s )
(see Doukhan, Teyssiere and Winant (2006)).
(5) Non-causal LARCH(o00) processes X = (X})ez satisfying

process with 7, = O((

Xy =&+ (ao + > akthk)a teZ,
kez\{0}

where [|&]|lcc < o0 (bounded random variables) and (ag)rez is a
sequence of real numbers such that A = [ollec = 200 la;] < 1
(stationarity condition). Assume that the sequence (ay)recz satisfies
ar = O(|k|™#) with g > 1, then X is a n-weakly dependent process
with 7, = O(TTl_l) (see Doukhan, Teyssiere and Winant (2006)).
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(6)

(7)

Causal and non-causal Volterra processes write as Xy = > 74 Y;(p )
with

Yt(p) — Z aj1,...,jp£t*j1 e gt*jp’ fOl“ t € Z

o0
Assume Z Z laji,... .| I1€ollB, < oo, with m > 0, and

P=0 j; <jo < - <ijp
1, .dp €Z

that there exists pg € N\ {0} such that aj, .. ;, = 0 for p > po. If

Q... jp = O(lr%a%{\jilfuw with g > 0, then X is a n-weakly de-

pendent process with 7, = O(m) (see Doukhan (2002)).

Finite order Volterra processes with dependent inputs are also
considered in Doukhan and Wintenberger (2006): again, n-weakly
dependent innovations yields n-weak dependence and A-weakly de-
pendent innovations yields A-weak dependence of the process.

Very general models are the causal or non-causal infinite memory

processes X = (X¢);ez such that

X = F(Xi—1,Xe—2,...1&), and Xy = F(Xs,8 # &),

where the functions F' defined either on RN\ x R or RZ\M0} x R
satisfy

1E(0: &0)llm < 00,
1F((z5)5:€0) — F((w)i:60)llm < > ajlay — yjl,
J#0
with a = >, 9a; < 1. Then, works in progress by Doukhan and
Wintenberger as well as Doukhan and Truquet, respectively, prove
that a solution of the previous equations is stationary in L™ and
either -weakly dependent or n-weakly dependent with the following

decay rate for the coefficients:
: r/p A
;Izlfi {a + Z aj} .
lil>p

This provides the same rates as those already mentioned for the cases
of ARCH (c0) or LARC H (00) models.
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4. SOME PROBABILISTIC RESULTS

In this section, we present results derived under weak dependence which
are of interest in probability and statistics. This collection clearly shows that
the notion of weak dependence, although being more general than mixing,

allows one to prove results very similar to those in the mixing case.

4.1. Donsker invariance principle. We consider a stationary, zero mean,

and real valued sequence (X;)tez such that

w = E|Xo|™ < oo, for a real number m > 2. (4.1)
We also set
o® = cov(Xo, X¢) = > EXoXy, (4.2)
tez tez

W denotes the standard Brownian motion and
[nt]

1
=~ N"X;, fortel0,1], n>1. 4.3
\/ﬁ; orte|0,1], n (4.3)

We now present versions of the Donsker weak invariance principle under

W, (t)

weak dependence assumptions.

Theorem 4.1 (Donsker type results). Assume that the zero mean stationary
process (Xi)iez satisfies (

A-dependence. The process is A-weakly dependent and satisfies A\, =
O(r=) (asr 1 00) for A > 4+2/(m — 2).

6-dependence. The process is 0-weakly dependent and satisfies 0, = O(r~9)
(asr 1 oo) for >141/(m—2).

Remark 5. The result for x’-weak dependence is obtained in Bulinski and
Shashkin (2005). Results under x- and A-weak dependences are proved in
Doukhan and Wintenberger (2006); note that n-weak dependence implies
A-weak dependence and the Donsker principle then holds under the same
decay rate for the coefficients. The result for #-weak dependence is due to
Dedecker and Doukhan (2003). A few comments on these results are now

in order:

The difference of the above conditions under x and ' assumptions is natural.

The observed loss under k-dependence is explained by the fact that x’-weakly
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dependent sequences satisfy ;. > > .5, k. This simple bound directly
follows from the definitions.

Actually, it is enough to assume the f-weak dependence inequality for any
positive integer v and only for v = 1. Hence, for any 1-bounded function g
from R* to R and any 1-bounded Lipschitz function h from R to R with Lips-
chitz coefficient Lip(h), it is enough to assume |cov (9(X;,,... , Xi, ), b(X;,44))| <
0;Lip(h), for any u-tuple i; <ig < -+ < iy.

4.2. Empirical process. Let (X;):cz a real-valued stationary process. We
use a quantile transform to obtain that the marginal distribution of this
sequence is the uniform law on [0, 1]. The empirical process of the sequence
(Xt)tez at time n is defined as ﬁEn(x) where
n
En(z) =) (I[(ngx) —P(Xj < l‘)) -
k=1
Note that F,, = n(F, — F) if F,, and F denote the empirical distribution
function and the marginal distribution function, respectively. We consider
the following convergence result in the Skohorod space D([0,1]) when the
sample size n tends to infinity:
\}ﬁEn(:p) 4, B(a).
Here (B(z))4ep0, is the dependent analogue of a Brownian bridge, that is
B denotes a centered Gaussian process with covariance given by
0o
EB(z)B(y) = > (P(Xo <z, Xj <y)—P(Xo < 2)P(X; <y)).
h=—c0 (4.4)
Note that for independent sequences with a marginal distribution func-
tion F, this turns into B(z) = B(xz) for some standard Brownian bridge

B; this justifies the name of generalized Brownian bridge. We have:

Theorem 4.2. Suppose that the stationary sequence (X)iez has uniform
marginal distribution and is either n-weakly dependent with n, = O(r_15/2_”),
or k-weakly dependent k, = O(r=°7%) , for some v > 0. Then the following
empirical functional convergence holds true in the Skohorod space of real-
valued cadlag functions on the unit interval, D(]0,1]):

\}ﬁEn(x) . B(a).
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Remark 6. Under strong mixing, the condition Y o2, @, < oo implies fidi
convergence. The empirical functional convergence holds if, in addition, for
some a > 1, a, = O(n™%) (see Rio (2000)). In an absolutely regular frame-
work, Doukhan, Massart and Rio (1995) obtain the empirical functional con-
vergence when, for some a > 2, 3, = O(n~!(logn)™"). Shao and Yu (1996)
and Shao (1995) obtain the empirical functional convergence theorem when

the maximal correlation coefficients satisfy the condition > o2 p (2") < oc.

To prove the result, we introduce the following dependence condition for
a stationary sequence (Xi)iez:
;juglcov (f (X ) (X ), f (X)) f(X2a))| < € (4.5)
€
where F = {z > Ticp<y, fors,t € [0,1]}, 0 < &3 < t9 < t3 < t4 and
r = t3 — to (in this case a weak dependence condition holds for a class of

functions R* — R working only with the values u =1 or 2).
Proposition 4.1. Let (X,,) be a stationary sequence such that (

4.3. Central limit theorems. First central limit theorems for weakly de-
pendent sequences were given by Corollary A in Doukhan and Louhichi
(1999) and Theorem 1 in Coulon-Prieur and Doukhan (2000). While the
former result is for sequences of stationary random variables, the latter one
is tailor-made for triangular arrays of asymptotically sparse random vari-
ables as they appear with kernel density estimators. Using their notion of
v-mizing Bickel and Bihlmann (1999) proved a CLT for linear processes of
infinite order and their (smoothed) bootstrap counterparts. Below we state
a central limit theorem for general triangular schemes of weakly dependent
random variables. Note that the applicability of a central limit theorem to
bootstrap processes requires some robustness in the parameters of the under-
lying process since these parameters have to be estimated when it comes to
the bootstrap. A result for a triangular scheme is therefore appropriate since
the involved random variables have changing properties as n varies, but also
for a fixred n. An interesting aspect of the following result is that no moment
condition beyond Lindeberg’s is required. Its proof uses the variant of Rio of

the classical Lindeberg method.

Theorem 4.3. (Theorem 6.1 in Neumann and Paparoditis (2005))



14

Suppose that (Xp i)kez, n € N, is a triangular scheme of (row-wise)
stationary random variables with EX,, , = 0 and IEX?M < C < . Further-

more, we assume that

1 n
- Y EXG (1 Xkl /R > €) =20 (4.6)
k=1
holds for all € > 0 and that
o = > EXpoXnp — 0% € [0,00). (4.7)
keZ

For n > ng, there exists a monotonously nonincreasing and summable se-
quence (0,)ren such that, for all indices s1 < sg < -+ < 8y < Sy +7 =11 <
to, the following upper bounds for covariances hold true: for all measurable

and quadratic integrable functions g : R — R,

oV (9( Kot Xns)s Xna))| € VES (Xnyso oo Xns,) br,

for all measurable and bounded functions g : R* — R,
lcov (9(Xns1s -+ s Xnsw)y Xy X)) < llglloe Or, (4.9)

where | gl|oo = supgere |f(2)]. Then
1
Vvn
Remark 7. Conditions (

The following multivariate central limit theorem, simply applicable to tri-

(X + -+ Xnn) —2 N(0,07).

angular schemes of weakly dependent random vectors, was derived in Bardet,
Doukhan, Lang and Ragache (2006). It fits better results where dependence

does not play any role in the limit.

Theorem 4.4. (Theorem 1 in Bardet, Doukhan, Lang and Ragache (2006))
Suppose that (Xpk)ken, n € N, is a triangular scheme of zero mean
random vectors with values in R, Assume that there exists a positive definite
matriz 3 such that
n
> Cov(Xpp) — %
n—oo
k=1
and that for each € >0

n

Y B Xkl yx,, 5e) == 0,

n—o00
k=1
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where || - || denotes the Euclidean norm. Furthermore, we assume the fol-

lowing condition is satisfied:

n
it e it
3 ‘cov(e” (K14 Xn o1 it X k)
k=2

— 0.
n—00

Then, as n — oo,

n

d
E Xng — Na(0g,%).
k=1

Remark. One common point of those two results is the use of the classical
Lindeberg assumption. Note that this assumption is more often checked by
using a higher order moment condition. A main distinction between those
two results is that while the first one yields direct application to partial sums,
the second one is more adapted to triangular arrays where limit does not
write as a sum. In this setting Doukhan and Wintenberger (2006) use Bern-

stein blocks to prove a CLT for partial sums.

4.4. Probability and moment inequalities. In this section we state in-
equalities of Bernstein and Rosenthal type. In the case of mixing, such
inequalities can be easily derived by the well-known technique of replacing
dependent blocks of random variables (separated an appropriate gap) by in-
dependent ones and then using the classical inequalities from the indepen-
dent case; see for example Doukhan (1994) and Rio (2000). The concept
of weak dependence is particularly suitable for deriving upper estimates for
the cumulants of sums of random variables which give rise to rather sharp
inequalities of Bernstein and Rosenthal type which are analogous to those in
the independent case.

Based on a Rosenthal-type inequality, a first inequality of Bernstein-type
was obtained by Doukhan and Louhichi (1999), however, with \/t instead of
t? in the exponent. Dedecker and Prieur (2004) proved a Bennett inequal-
ity which can possibly be used to derive also a Bernstein inequality. A first
Bernstein inequality with var(Xq, + --- + X,,) in the asymptotically leading
term of the denominator of the exponent has been derived in Kallabis and
Neumann (2006), under a weak dependence condition tailor-made for causal
processes with an exponential decay of the coefficients of weak dependence.

The following result is a generalization which is also applicable to possibly
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non-causal processes with a not necessarily exponential decay of the coeffi-

cients of weak dependence.

Theorem 4.5. (Theorem 1 in Doukhan and Neumann (2005))

Suppose that X1,...,X, are real-valued random variables defined on a
probability space (2, A,P) with EX; = 0 and P(|X;| < M) = 1, for all
i=1,...,n and some M < oco. Let ¥ : N> — N be one of the following

functions:

U(u,v) = 2v,

U(u,v) =u+wv,

U(u,v) = uv,

U(u,v) =alu+v) + (1 - a)uv, for some a € (0,1).

We assume that there exist constants K, L1, Lo < oo, u > 0, and a non-
increasing sequence of real coefficients (p(n))n>0 such that, for all u-tuples
($1,---,84) and all v-tuples (t1,... ,ty) with 1 < 83 < -+ < 5, < 13 <
<< t, <n the following inequality is fulfilled:

|COV (Xsl e 'XSqutl o 'Xtu)| < K? Mutv—? qj(“?”) p(tl - Su)a

(4.10)
where
S (s+1)fp(s) < Ly L5 (k)" VEk>0. (4.11)
s=0
Then

" t2/2
P X, >t) <expl|-— ,
(kz_:l k 2 > S P( A + B}L/(u+2)t(2u+3)/(u+2)> (4.12)

where A, can be chosen as any number greater than or equal to o2 and

24 K2 [
B, =2 (KV M) Ly ((21) v 1).

A first Rosenthal-type inequality for weakly dependent random variables
was derived by Doukhan and Louhichi (1999) via direct expansions of the
moments of even order. Unfortunately, the variance of the sum did not
explicitly show up in their bound. Using cumulant bounds in conjunction
with Leonov and Shiryaev’s formula the following tighter moment inequality
was obtained in Doukhan and Neumann (2005).
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Theorem 4.6. (Theorem 3 in Doukhan and Neumann (2005))

Suppose that X1, ... , X, are real-valued random variables on a probability
space (2, A,P) with zero mean and let p be a positive integer. We assume
that there exist constants K, M < oo, and a non-increasing sequence of real
coefficients (p(n))n>0 such that, for all u-tuples (s1,... ,sy) and all v-tuples
(t1y. yty) with 1 <s3 <+ <, <t < <t,<n andu+v < p,

condition (
5. PROOFS

Proof of Lemma Let, for simplicity of notation, s = 0. Then
cov (9(Xsy, o, X, ), h(Xey, ... . X))

= Elg(Xs,... ., Xs,) EA(Xey,..., X)) | Xopyo oo, X)) — ER( Xy, ..., Xy))]-
Now we obtain by Jensen’s inequality for conditional expectations that
lcov (g(Xsy, .-, Xsp)s h( Xy, ..o, X3,))

< Eflg(Xsys oo X [E(A( Xty oo, Xyy) | Xo) — ER(Xyy, o0, Xyy)]

< E[lg(Xar o Xo)l - [E((Xe,, -, X0) | Xo) = B(W(XY,, .. XE) | X5)

}

IN

l
Liph E [IQ(X31,-~- , X)) - E (Z (X, — X || XO,XG)
j=1

The assertion follows now immediately. O
Proof of Lemma The assertion follows immediately from (

Proof of Lemmia) Let En,l, . ,En,p be the roots of the characteristic poly-

nomial 9\(2) =1- gn,lz — = én,pzp of the bootstrap process. Since 6 Ny
we obtain by Theorem 1.4 in Marden (1949) that
. ~ P .
min{|&n ;.- [Enplt — p=min{|&],... &}
Therefore, we have, for any € > 0, that
P (min{[&n1l, . [€npl} > p/(1+¢/2)) — 1. (5.1)

Thus there exists a stationary solution to equation (

Proof of inequality ( We prove this result by a simple coupling argument.
Let (Xt)tez and (X])icz be two versions of the autoregressive process with
X =z and X, = y. We contruct a coupling simply by feeding both processes

after time ¢ with the same sequence of innovations €441, €49, . .., that is, we
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have Xt+l+1 = m(Xt+l) + Et141 and Xé—i—l-i—l = m(Xé_H) + Eri141 (l > 0)
We obtain by this construction that

(X — Xponl < AKX qn-1) | Xepe-1 — Xip |
< € AKipet) - A A@)| — .
Therefore, we obtain

d(IPXtJrk'Xt:z,PX”’“'Xt:y) < ElXir — Xipul

E(A(Xesho1) - A(Xesn)| Xy = 2) - Al2) - |2 — ).

IN

Using the Markov property we see that

E(A(Xth—1) - A(Xyq1)| Xy = 2)
= EEAXr-1) | Xerh—2) - E(A(Xp41) | Xo = 2)]

)

which yields the assertion. U

REFERENCES

ANDREWS, D. (1984). Non strong mixing autoregressive processes. J. Appl. Probab. 21,
930-934.

BARDET, J. M., DOUKHAN, P., LANG G. AND RAGACHE, N. (2006). A Lindeberg central
limit theorem for dependent processes and its statistical applications. Manuscript.

BICKEL, P. J. AND BUHLMANN, P. (1999). A new mixing notion and functional central
limit theorems for a sieve bootstrap in time series. Bernoulli 5, 413-446.

BICKEL, P. J. AND FREEDMAN, D. A. (1981). Some asymptotic theory for the bootstrap.
Ann. Statist. 9, 1196-1217.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. New-York: Wiley.

BIRKHOFF, G. D. (1931). Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17,
656-660.

BROCKWELL, P. J. AND Davis, R. A. (1991). Time Series: Theory and Methods, 2nd
edition. New York: Springer.

BULINSKI, A. AND SHASHKIN, A. (2005). Strong invariance principle for dependent random
fields, Preprint.

DEDECKER, J. AND DOUKHAN, P. (2003). A new covariance inequality and applications.
Stoch. Proc. Appl. 106, 1, 63-80.

COULON-PRIEUR, C. AND DOUKHAN, P. (2000). A triangular central limit theorem under
a new weak dependence condition. Statist. Probab. Lett. 47, 61-68.

DEDECKER, J. AND PRIEUR, C. (2004). Coupling for 7-dependent sequences and applica-
tions. J. Theor. Probab. 17, 861-885.



19

DEDECKER, J. AND R10, E. (2000). On the functional central limit theorem for stationary
processes. Annales de l'institut Henri Poincaré série B 36, 1-34.

DoOBRUSHIN, R. L. (1970). Describing a system of random variables by conditional dis-
tributions. Teor. Veroyatn. Primen. 15, 469-497 (in Russian). [English translation:
Theory Probab. Appl. 15, 458-486.]

DOUKHAN, P. (1994). Mizing: Properties and Examples. Lecture Notes in Statistics 85,
Springer Verlag.

DOUKHAN, P. (2002). Limit theorems for stationary sequences. in Long Range Depen-
dence, theory and Applications, editors P. Doukhan, G. Oppenheim and M. Taqqu,
Birkhé&user.

DOUKHAN, P. AND LOUHICHI, S. (1999). A new weak dependence condition and applica-
tion to moment inequalities. Stoch. Proc. Appl. 84, 313-342.

DoukHAN, P., MADRE, H. AND ROSENBAUM, M. (2005). ARCH type bilinear weakly
dependent models. Manuscript.

DOUKHAN, P., MASSART, P. AND Ri10, E. (1995). Invariance principle for the empirical
measure of a weakly dependent process. Ann. .H.P. 31-2, 393—-427.

DOUKHAN, P. AND NEUMANN, M. H. (2005). Probability and moment inequalities for
sums of weakly dependent random variables, with applications. Manuscript.

DOUKHAN, P., TEYSSIERE, G. AND WINANT, M. H. (2005). Vector valued ARCH infinity
processes, in Statistics for times series, Lecture Notes in Statistics, Bertail, Doukhan,
& Soulier editors, to appear.

DOUKHAN, P. AND WINTENBERGER, O. (2006). An invariance principle for new weakly
dependent stationary models using sharp moment assumptions. Manuscript.

GIRAITIS, L. AND SURGAILIS, D. (2002). ARCH-type bilinear models with double long
memory, Stoch. Proc. Appl. 100, 275-300.

GORODETSKII, V. V. (1977). On the strong mixing property for linear sequences. Teor.
Veroyatn. Primen. 22 421-423, (in Russian). [English translation: Theory Probab.
Appl. 22, 411-413.]

KALLABIS, R. S. AND NEUMANN, M. H. (2006). An exponential inequality under weak
dependence. Bernoulli 12, 333—-350.

Marrows, C. L. (1972). A note on asymptotic joint normality. Ann. Math. Statist. 43,
508-515.

MARDEN, M. (1949). The Geometry of the Zeros of a Polynomial in a Complex Variable.
Mathematical Surveys Number III, Amer. Math. Soc., New York.

NEUMANN, M. H. AND PAPARODITIS, E. (2005). Goodness-of-fit tests for Markovian time
series models. Technical Report No. 16/2005, Department of Mathematics and Sta-
tistics, University of Cyprus.

PirT, L. (1982). Positively correlated normal variables are associated. Ann. Probab. 10,
496-499.

Ri0, E. (1995). About the Lindeberg method for strongly mixing sequences. ESAIM,
Probab. Statist. 1, 35-61.



20

R10, E. (2000). Théorie asymptotique pour des processus aléatoires faiblement dépendants.
SMAI, Mathématiques et Applications 31, Springer.

ROSENBLATT, M. (1980). Linear processes and bispectra. J. Appl. Probab. 17, 265-270.

SHAO, Q. M. (1995). Maximal inequalities for partial sums of p-mixing sequences. Annals
of Probability 23, 948-965.

SHAO, Q. M. AND Yu, H. (1996). Weak convergence for weighted empirical processes of
dependent sequences. Annals of Probability 24, 2052—2078.

Stout, W. (1974). Almost sure convergence. Academic Press, New York.



