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introduced a new concept of weak dependence which is more general than mixing. Such conditions are particularly well suited for deriving estimates for the cumulants of sums of random variables. We employ such cumulant estimates to derive inequalities of Bernstein and Rosenthal type which both improve on previous results. Furthermore, we consider several classes of processes and show that they fulfill appropriate weak dependence conditions. We also sketch applications of our inequalities in probability and statistics.

Introduction

For a long time mixing conditions have been the dominating type of conditions for imposing a restriction on the dependence between time series data. They are considered to be useful since they are fulfilled for many classes of processes and since they allow to derive tools similar to those in the independent case. On the other hand, it turns out that certain classes of processes which are of interest in statistics are not mixing although a successive forgetting of past states takes place. Typical examples are processes driven by discrete observations as they appear, for example, with model-based time series bootstrap methods. In 1999, Doukhan and Louhichi proposed a new concept of restricting dependence which focuses on covariances rather than the total variation distance between joint distributions and the product of corresponding marginals. It has been shown that this concept is more general than mixing and includes, under natural conditions on the process parameters, essentially all classes of processes of interest in statistics; see for example Ango Nze, Bühlmann and [START_REF] Ango Nze | Nonparametric regression estimation under weak dependence beyond mixing and association[END_REF] for an overview. It became readily apparent that the concept of weak dependence allows in many instances similar tools to be used as in the independent or mixing case. For example, versions of a central limit theorem are derived in [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] for sequences of random variables, in Coulon-Prieur and [START_REF] Coulon-Prieur | A triangular CLT for weakly dependent sequences[END_REF] for situations as they appear with nonparametric curve estimators, and in [START_REF] Neumann | Goodness-of-fit tests for Markovian time series models[END_REF] for general triangular schemes. A first exponential inequality was obtained in [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF], a Bennett inequality in [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF], and a Bernstein-type inequality in [START_REF] Kallabis | An exponential inequality under weak dependence[END_REF].

The concept of weak dependence is particularly suitable for deriving upper estimates for the cumulants of sums of random variables. Such cumulant estimates can serve as a starting point for deriving rather precise approximations of distributions as well as rather tight probability inequalities. The main contributions in this paper are inequalities of Bernstein and Rosenthal type for sums of weakly dependent random variables. In the case of mixing, Bernstein-type inequalities can be easily derived from the well-known Bernstein inequality in the independent case by using coupling arguments; see for example [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] and [START_REF] Rio | Théorie asymptotique pour des processus aléatoires faiblement dépendants[END_REF]. In the case of weakly dependent random variables, [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] proved a first exponential inequality via a combinatorial technique. Unfortunately, rather than the rate of t 2 in the exponent as in the independent case, only a rate of √ t was obtained by this approach. Using a new coupling result, [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] proved a Bennett inequality which possibly implies a Bernstein-type inequality with t 2 in the exponent. Using cumulant techniques [START_REF] Kallabis | An exponential inequality under weak dependence[END_REF] derived a Bernstein-type inequality with a leading term of -t 2 /(2 var(X 1 + • • • + X n )) in the exponent, under weak dependence conditions tailor-made for causal processes and with an exponential decay of the coefficients of weak dependence. In this paper, we extend this result to more general conditions of weak dependence, including also noncausal processes and allowing a subexponential decay of the weak dependence coefficients. In Section 4, we discuss several statistical applications of this result. It turns out that certain purposes such as a law of iterated logarithm and a precise asymptotics for nonparametric curve estimators do actually require an exponential inequality with a tight leading term in the exponent.

A second major result is a Rosenthal-type inequality which in particular improves a previous inequality given in [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF]. Using again cumulant techniques we derive such an inequality with an asymptotically dominating term equal to p!/(2 p/2 (p/2)!)(var(X 1 + • • • + X n )) p/2 . Such an inequality allows for example to derive a central limit theorem via the method of moments; see again Section 4.

We present the main results, a Bernstein-type and a Rosenthal-type inequality in the next section. In Section 3, [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] concept of weak dependence is recalled and it is shown that the particular conditions used for our inequalities do actually follow from usual conditions of weak dependence in many instances. Section 4 contains typical applications of our probability inequalities in probability and statistics. A long list of examples of processes satisfying weak dependence conditions is presented in Section 5. Finally, the proofs of the main theorems and of some auxiliary results of general interest are given in Section 6.

A Bernstein-type and a Rosenthal-type inequality for sums of weakly dependent random variables

In this section we will be concerned with probability and moment inequalities for

S n = X 1 + • • • + X n ,
where X 1 , . . . , X n are zero mean random variables which fulfill appropriate weak dependence conditions. Throughout the paper, we denote by σ 2 n the variance of S n .

Our first result is a Bernstein-type inequality which generalizes and improves previous inequalities of [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] and [START_REF] Kallabis | An exponential inequality under weak dependence[END_REF].

Theorem 1 Suppose that X 1 , . . . , X n are real-valued random variables defined on a probability space (Ω, A, P) with zero mean. Let Ψ : N 2 → N be one of the following functions:

(a) Ψ(u, v) = 2v, (b) Ψ(u, v) = u + v, (c) 
Ψ(u, v) = uv, (d) Ψ(u, v) = α(u + v) + (1 -α)uv,
for some α ∈ (0, 1).

We assume that there exist constants K, M, L 1 , L 2 < ∞, µ, ν ≥ 0, and a nonincreasing sequence of real coefficients (ρ(n)) n≥0 such that, for all u-tuples (s 1 , . . . , s u ) and all v-tuples (t 1 , . . . , t

v ) with 1 ≤ s 1 ≤ • • • ≤ s u ≤ t 1 ≤ • • • ≤ t v ≤ n the following inequalities are fulfilled: |cov (X s 1 • • • X su , X t 1 • • • X tv )| ≤ K 2 M u+v-2 Ψ(u, v) ρ(t 1 -s u ), (1) 
where

∞ s=0 (s + 1) k ρ(s) ≤ L 1 L k 2 (k!) µ ∀k ≥ 0, (2) 
and

E|X t | k ≤ (k!) ν M k ∀k ≥ 0. (3)
Then, for all t ≥ 0,

P (S n ≥ t) ≤ exp - t 2 /2 A n + B 1/(µ+ν+2) n t (2µ+2ν+3)/(µ+ν+2) , (4) 
where A n can be chosen as any number greater than or equal to σ 2 n and

B n = 2 (K ∨ M ) L 2 2 4+µ+ν n K 2 L 1 A n ∨ 1 .
Remark 2 (i) Inequality (4) resembles the classical Bernstein inequality for independent random variables. Asymptotically, σ 2 n is usually of order O(n) and A n can be chosen equal to σ 2 n while B n is usually O(1) and hence negligible. In cases where σ 2 n is very small or where knowledge of the value of A n is required for some statistical procedure, it might, however, be better to choose A n larger than σ 2 n . It follows from ( 1) and ( 2) that a rough bound for σ 2 n is given by

σ 2 n ≤ 2 n K 2 Ψ(1, 1) L 1 . (5) 
Hence, taking A n = 2nK 2 Ψ(1, 1)L 1 we obtain from (4) that

P (S n ≥ t) ≤ exp - t 2 C 1 n + C 2 t (2µ+2ν+3)/(µ+ν+2) , (6) 
where

C 1 = 4K 2 Ψ(1, 1)L 1 and C 2 = 2B 1/(µ+ν+2) n with B n = 2(K ∨ M )L 2 ( 2 3+µ+ν Ψ(1, 1) ∨ 1).
Inequality ( 6) is then more of Hoeffding-type.

(ii) Based on a Rosenthal-type inequality, [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] also proved an exponential inequality for S n , however, with √ t instead of t 2 in the exponent.

(iii) [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] proved a Bennett inequality for weakly dependent random variables. This also implies a Bernstein-type inequality, however, with different constants. In particular, the leading term in the denominator of the exponent differs from σ 2 n . This is a consequence of their method of proof which consists of replacing weakly dependent blocks of random variables by independent ones according to some coupling device (an analogous argument is used in [START_REF] Doukhan | Mixing: Properties and Examples[END_REF] for the case of absolute regularity). Let M denote a sub σ-algebra of A and X ∈ R d be any random variable on the probability space (Ω, A, P). We recall from [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] that

φ(M, X) = sup{ E(g(X)|M) -Eg(X) ∞ , Lip g ≤ 1} Set φk (r) = max l≤k 1 l sup i+r≤j 1 <j 2 <•••<j l φ(σ({X j , j ≤ i}), (X j 1 , . . . , X j l )). The pro- cess (X t ) t∈Z is called φ-dependent if φ(r) = sup k>0 φk (r) tends to 0 as r → ∞.
For an integrable function h and a Lipschitz function k this entails, for

s 1 ≤ • • • ≤ s u ≤ t 1 ≤ • • • ≤ t v , that |Cov(h(X s 1 , . . . , X su ), k(X t 1 , . . . , X tv ))| ≤ vE|h (X s 1 , . . . , X su ) |Lip k φ(t 1 -s u )
Let us consider n φ-weakly dependent observations X 1 , . . . , X n . We assume here only that E|X t | 2 ≤ 1 and

P(|X t | ≤ √ n) = 1 for all 1 ≤ t ≤ n. If φ(r) ≤ exp(-ar b )
for any a > 0, b ∈ (0, 1), then the assumptions of Theorem 1 hold with µ = 1/b and it is easy to check that there exists a constant C such that the parameter B n is smaller than C √ n. The notion of φ-weak dependence is adapted to expanding dynamical systems; see [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF] for more details.

(iv) A Bernstein-type inequality with σ 2 n as a possible leading term in the denominator of the exponent has been derived in [START_REF] Kallabis | An exponential inequality under weak dependence[END_REF] under a weak dependence condition which is tailor-made for causal processes with an exponential decay of the coefficients of weak dependence. The result above is more general and is also applicable to interesting classes of processes where [START_REF] Kallabis | An exponential inequality under weak dependence[END_REF] inequality does not apply; see Section 5 for a thorough discussion of examples.

(v) Condition (1) in conjunction with (2) may be interpreted as a weak dependence condition in the sense that the covariances on the left-hand side tend to zero as the time gap between the two blocks of observations increases. Note that the supremum of expression (1) for all u-tuples (s 1 , . . . , s u ) and all v-tuples (t 1 , . . . , t [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] initial paper. Conditions (1) and (2) are typically fulfilled for truncated versions of random variables from many time series models; see also Proposition 8 below. The constant K in (1) is included to possibly take advantage of a sparsity of data as it appears, for example, in nonparametric curve estimation.

v ) with 1 ≤ s 1 ≤ • • • ≤ s u ≤ t 1 ≤ • • • ≤ t v < ∞ such that t 1 -s u = r is denoted by C u+v (r) in
(vi) For unbounded random variables, the coefficients C p (r) may still be bounded by an explicit function of the index p under a weak dependence assumption; see Lemma 10 below. For example, assume that E exp(A|X t | a ) ≤ L holds for some constants A, a > 0, L < ∞. Since the inequality u p ≤ p!e u (p ∈ N, u ≥ 0) implies that

u m = (Aa) -m/a (Aau a ) m/a ≤ (Aa) -m/a (m!) 1/a e Au a ∀m ∈ N we obtain that E|X t | m ≤ L(m!) 1/a (Aa) -m/a
holds for all m ∈ N. Lemma 10 below provides then appropriate estimates for C p (r). These bounds may also be used to derive an exponential inequality of Bernstein-type; see for example Theorem 4.24 on page 102 in [START_REF] Saulis | Limit Theorems for Large Deviations, Mathematics and Its Applications[END_REF] for such a result in the case of α-mixing random variables.

A first Rosenthal-type inequality for weakly dependent random variables was derived by [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] via direct expansions of the moments of even order. Unfortunately, the variance of the sum did not explicitly show up in their bound. Instead, a rough bound for this expression based on upper estimates was used. Using cumulant bounds in conjunction with Leonov and Shiryaev's formula we are able to obtain a tighter moment inequality which resembles the Rosenthal inequality in the independent case (see [START_REF] Rosenthal | On the subspaces of L p (p > 2) spanned by sequences of independent random variables[END_REF] and [START_REF] Johnson | Best constants in moment inequalities for linear combinations of independent and exchangeable random variables[END_REF] in the independent case, and Theorem 2.12 in [START_REF] Hall | Martingale Limit Theory and Its Applications[END_REF] in the case of martingales).

Theorem 3 Suppose that X 1 , . . . , X n are real-valued random variables on a probability space (Ω, A, P) with zero mean and let p be a positive integer. We assume that there exist constants K, M < ∞, and a nonincreasing sequence of real coefficients (ρ(n)) n≥0 such that, for all u-tuples (s 1 , . . . , s u ) and all v-

tuples (t 1 , . . . , t v ) with 1 ≤ s 1 ≤ • • • ≤ s u ≤ t 1 ≤ • • • ≤ t v ≤ n and u + v ≤ p, condition ( 
1) is fulfilled. Furthermore, we assume that

E|X i | p-2 ≤ M p-2 .
Then, with Z ∼ N (0, 1),

|ES p n -σ p n EZ p | ≤ B p,n 1≤u<p/2 A u,p K 2u (M ∨ K) p-2u n u , where B p,n = (p!) 2 2 p max 2≤k≤p {ρ p/k k,n }, ρ k,n = n-1 s=0 (s + 1) k-2 ρ(s) and A u,p = 1 u! k 1 +•••+ku=p, k i ≥2 ∀i p! k 1 ! • • • k u ! .
Remark 4 (i) For even p, the above result implies that

ES p n ≤ (p -1)(p -3) • • • 1 σ p n + B p,n 1≤u<p/2 A u,p K 2u (M ∨ K) p-2u n u ,
which resembles the classical Rosenthal inequality from the independent case. If sup n B p,n < ∞ and σ 2 n n, then the first term on the right-hand side is asymptotically dominating, as n → ∞. This term is equal to the p-th moment of a Gaussian random variable with mean 0 and variance σ 2 n .

(ii) [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] also obtained a Rosenthal-type inequality, however, essentially with n ∞ k=-∞ |EX 0 X k | instead of var(S n ) in the first term.

Remark 5 The inequality from Theorem 3 is well suited for proving a central limit theorem via the method of moments. Assume first that the random variables X t are uniformly bounded, centred and satisfy condition (1) with lim s→∞ ρ(s)/s p = 0, for all p > 0. Then

lim n→∞ σ 2 n n = σ 2 = ∞ k=-∞ EX 0 X k
is a convergent series, and thus the method of moments implies the central limit theorem,

1 √ n S n d -→ n→∞ σZ.
The next section introduces the suitable frame of weak dependence in order to apply those results.

Weak Dependence

A large class of examples for the assumptions in Theorem 1 to hold is provided by [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] with weakly dependent processes. Consider a stationary process (X t ) t∈Z with values in R d . Then any real-valued, Lipschitz and bounded function Y t = f (X t ) will be proved to satisfy the assumptions in the previous theorems if it is weakly dependent. We first recall this notion. Consider a process with values in R d endowed with some norm • . Let h : (R d ) u → R be an arbitrary function. We set

Lip h = sup | h(x 1 , . . . , x u ) -h(y 1 , . . . , y u ) | x 1 -y 1 + • • • + x u -y u : (x 1 , . . . , x u ) = (y 1 , . . . , y u ) .
Moreover, Λ denotes the set of functions h : R u → R, for some u ∈ N, such that Lip h < ∞, and Λ (1) = {h ∈ Λ : h ∞ ≤ 1}. For each u ≥ 1, we identify the sets R d u and R du .

Definition 6 [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] The sequence (X t ) t∈Z is called (Λ (1) , ψ, )-weakly dependent if there exists a function ψ : R 2 + × N 2 → R + and a sequence = ( r ) r∈N decreasing to zero at infinity such that, for any

g 1 , g 2 ∈ Λ (1) with g 1 : R du → R, g 2 : R dv → R (u, v ∈ N) and for any u-tuple (s 1 , . . . , s u ) and any v-tuple (t 1 , . . . , t v ) with s 1 ≤ • • • ≤ s u ≤ s u + r ≤ t 1 ≤ • • • ≤ t v , the following inequality is fulfilled: cov g 1 (X s 1 , . . . , X su ), g 2 (X t 1 , . . . , X tv ) ≤ ψ(Lip g 1 , Lip g 2 , u, v) r .
Important examples of processes correspond to the following choices of the function ψ: [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] and [START_REF] Dedecker | A new covariance inequality and applications[END_REF]) and we shall always denote r = θ r .

(a) If ψ(Lip g 1 , Lip g 2 , u, v) = vLip g 2 , then the sequence is called θ-dependent (see
(b) If ψ(Lip g 1 , Lip g 2 , u, v) = uLip g 1 + vLip g 2 , then the sequence is called η- dependent and we shall always denote r = η r . (c) If ψ(Lip g 1 , Lip g 2 , u, v) = uvLip g 1 Lip g 2 , then the sequence is called κ- dependent and we shall always denote r = κ r . (d) If ψ(Lip g 1 , Lip g 2 , u, v) = uLip g 1 + vLip g 2 + uvLip g 1 Lip g 2 , then the se-
quence is called λ-dependent and we shall always denote r = λ r , as in [START_REF] Doukhan | A central limit theorem under non causal weak dependence conditions and sharp moment assumptions[END_REF]. This case includes the two previous ones.

Remark 7 (i) Assume that (X t ) t∈Z is an R d -valued and stationary process which is (Λ (1) , ψ, )-weakly dependent. Then, for any Lipschitz-continuous 1) , ψ, )-weakly dependent.

function F : R d → R with F ∞ = M < ∞ and Lip F ≤ 1, the process Y t = F (X t ) is real valued, stationary, and Y t ∞ ≤ M . Moreover, it is also (Λ (
(ii) In the more general case when Lip F possibly exceeds 1 (e.g., if the function F depends on the sample size in a statistical context), then weak dependence still holds where only ψ(a, b, u, v) has to be replaced by ψ Y (a, b, u, v) = ψ(aLip F, bLip F, u, v). For the special cases of η, κ and λ weak dependence conditions, one may re-formulate this as (Y t ) t∈Z is still an η, κ or λ-weakly dependent sequence but now we have to respectively consider the coefficients

η Y r = Lip F η r , κ Y r = Lip 2 F κ r , λ Y r = max Lip F, Lip 2 F λ r .
Now we relate the condition in Definition 6 to condition (1) which was also considered in [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF]. Suppose that (X t ) t∈Z is a stationary sequence of real-valued random variables with X t ∞ ≤ M which satisfies the condition in Definition 6. To see the connection to condition (1), we consider functions g 1 and g 2 with

g 1 (x 1 , . . . , x u ) = u i=1 f (x i /M ) and g 2 (x 1 , . . . , x v ) = v i=1 f (x i /M ), where f (u) = u ∨ (-1) ∧ 1. (These functions satisfy Lip g i ≤ 1/M and g i ∞ ≤ 1.)
The covariance in Definition 6 can be expressed as in inequality (1), up to a factor M u+v since g

1 (X s 1 , . . . , X su ) = X s 1 • • • X su /M u and g 2 (X t 1 , . . . , X tv ) = X t 1 • • • X tv /M v . Proposition 8 Assume that X t ∞ ≤ M and that the real-valued sequence (X t ) t∈Z is (Λ (1) , ψ, )-weakly dependent. Then |cov (X s 1 • • • X su , X t 1 • • • X tv )| ≤ M u+v ψ(M -1 , M -1 , u, v) t 1 -su . (7) 
Moreover, if r = exp(-ar), for some a > 0, then we may choose in inequality (2) µ = 1 and

L 1 = L 2 = 1/(1 -e -a
).

If r = exp(-ar b ), for some a > 0, b ∈ (0, 1), then we may choose µ = 1/b and L 1 , L 2 appropriately as only depending on a and b.

Remark 9 (i) According to Proposition 8, (Λ (1) , ψ, )-dependence implies condition (1) to be fulfilled with

(a) Ψ(u, v) = 2v, K 2 = M and ρ(r) = θ r /2, under θ-dependence, (b) Ψ(u, v) = u + v, K 2 = M and ρ(r) = η r , under η-dependence, (c) Ψ(u, v) = uv, K = 1 and ρ(r) = κ r , under κ-dependence, (d) Ψ(u, v) = (u+v+uv)/2, K 2 = M ∨1 and ρ(r) = 2λ r , under λ-dependence.
(ii) If a vector-valued process (X t ) t∈Z is an η, κ or λ-weakly dependent sequence and

F : R d → R is a Lipschitz function with F ∞ = M < ∞, then the process Y t = F (X t ) is real-valued and the relation (1) holds with (a) Ψ(u, v) = 2v, K 2 = M Lip F and ρ(r) = θ r /2, under θ-dependence, (b) Ψ(u, v) = u + v, K 2 = M Lip F and ρ(r) = η r , under η-dependence, (c) Ψ(u, v) = uv, K = Lip F and ρ(r) = κ r , under κ-dependence, (d) Ψ(u, v) = (u + v + uv)/2, K 2 = (M ∨ 1)(Lip 2 F ∨ Lip F ) and ρ(r) = 2λ r , under λ-dependence.
Inequality (7) together with the specifications of Ψ(u, v) given in Remark 9 allow to use the Bernstein-type inequality in Theorem 1 for sums of functions of weakly dependent sequences. Finally, we intend to determine sharp bounds for the coefficients C p (r) in the case of not necessarily bounded random variables.

Lemma 10 Assume that the real-valued sequence (X t ) t∈Z is η, κ or λ-weakly dependent and that E|X t | m ≤ M m , for all m > p. Then, according to the type of the weak dependence condition:

C p (r) ≤ 2 p+3 p 2 M p-1 m-1 m η 1-p-1 m-1 r , (8) 
≤ 2 p+3 p 4 M p-2 m-2 m κ 1-p-2 m-2 r , (9) 
≤ 2 p+3 p 4 M p-1 m-1 m λ 1-p-1 m-1 r . ( 10 
)
Remark 11 This lemma is the essential tool to provide a version of Theorem 3 which yields both a Rosenthal-type moment inequality and a rate of convergence for moments in the central limit theorem. We also note that this result does not involve the assumption that the involved random variables are a.s. bounded. In fact, even the use of Theorem 1 does not really require such a boundedness; see Remark 2-(vi) above.

Applications

In this section we present various applications of the previous results in probability and statistics. A first subsection addresses the basic case of the bounded LIL, while the others, specific to statistics, are concerned with empirical processes and nonparametric curve estimation.

Bounded LIL

Suppose that (X t ) t∈Z is a stationary process satisfying the assumptions of Theorem 1 and that

σ 2 = lim n→∞ σ 2 n /n > 0. Then lim sup n→∞ 1 σ √ 2n log log n |S n | ≤ 1 a.s. ( 11 
)
To prove (11), we select a subsequence (n k ) k∈Z as n k = [a k ], for any a > 1.

We obtain from Theorem 1 that, for n k ≤ n < n k+1 and any fixed c,

P |S n | √ 2nσ 2 > c log log n k ≤ 2 exp -c 2 log log n k σ 2 n σ 2 n (1 + o(1)) = 2 exp -c 2 log log n k (1 + o(1)) = O k -c 2 (1+o(1)) .
This implies by the maximal inequality given in Theorem 2.2 in Móricz, Serfling and Stout (1982) that

P max n k ≤n<n k+1 |S n | √ 2nσ 2 > c log log n k ≤ C k -c , (12) 
where c < c 2 can be chosen arbitrarily close to c 2 and C is an appropriate finite constant; see the remark following the proof of Theorem 2.2 in [START_REF] Móricz | Moment and probability bounds with quasi-superadditive structure for the maximum partial sum[END_REF]. Since lim k→∞ max n k ≤n<n k+1 log log n log log n k = 1 we conclude from ( 12) by the Borel-Cantelli lemma that lim sup

n→∞ 1 σ √ 2n log log n |S n | ≤ c a.s.,
for any c > 1, which in turn implies (11).

Kernel type density estimation in the supremum norm

Let (X t ) t∈Z be a stationary η or λ-weakly dependent R d -valued process. We denote K : R d → R a Lipschitz function, compactly supported with

R d K(x) dx = 1. Then, if h n → 0, f n (x) = 1 nh d n n t=1 K X t -x h n
is an estimator of the marginal density f of X 0 , provided this function exists. This section is devoted to derive asymptotic properties of

D n = sup x∈R d | f n (x) -f (x)|.
In the independent case, [START_REF] Giné | A law of the iterated logarithm for kernel density estimators in the presence of censoring[END_REF] proved the following tight asymptotic bound for the supremum deviation of f n from its expectation:

sup x∈R d | f n (x) -E f n (x)| = O log n/(nh d n ) (a.s.) (13) 
We first analyze the bias. A Hölder class of β-regular probability densities is given by

F ∞ (β, L) = f : f is a density, f (b) (x + y) -f (b) (x) ≤ L|y| β-β , ∀x, y, ∀b = (b 1 , . . . , b d ) with b 1 + • • • + b d = β } ,
where β denotes the greatest integer strictly less than β (β > 0) and

f (b) = ∂ β f /∂ b 1 x 1 • • • ∂ b d x d is a partial derivative.
Assume that the density f belongs to F ∞ (β, L) and that K is a kernel of order β , i.e., P (x)K(x) dx = P (0) for each polynomial of degree less than or equal to β . Then it follows from Taylor's formula that, for each

x ∈ R d , |E f n (x) -f (x)| ≤ L R d u β |K(u)| du • h β n β ! .
Furthermore, it is easy to prove that if the joint densities f k of (X 0 , X k ) are bounded, uniformly with respect to k > 0, if in addition nh d n → ∞ and η r = O(r -a ) for some a > 3 or if λ r = O(r -a ) for a > 4 are fulfilled, then (see [START_REF] Doukhan | Functional estimation for weakly dependent stationary time series[END_REF])

var( f n (x)) ∼ f (x) K 2 (u)du/(nh d ).
This section has a double purpose, we first precise a uniform and almost sure convergence rate under weak dependence assumptions in a first subsection, while the second subsection provides precise constants in this asymptotics in the univariate case (d = 1). For this, we describe the necessary modifications of the arguments in [START_REF] Butucea | Exact asymptotics for estimating the marginal density of discretely observed diffusion processes[END_REF], who stated such a result under an absolute regularity assumption (β-mixing).

Multivariate case, rate of convergence

Using the remark following Proposition 8 we obtain by Theorem 1 that the result (13) still holds if h n ≥ Cn -c for a constant C > 0 and for some c = c(d). We set

X n,t = 1 nh d n K X t -x h n -EK X t -x h n . Then f n (x)-E f n (x) = X n,1 +• • •+X n,n . We write X n,t = F n (X t ), for a function F n which satisfies F n ∞ ≤ 2 K ∞ /(nh d n ) and Lip F n ≤ Lip K/(nh d+1 n ).
As mentioned above, mild conditions on the weak dependence coefficients imply that σ

2 n = var(X 1,n + • • • + X n,n ) satisfies nh d n σ 2 n → n→∞ f (x) K 2 (u)
du. Now the Bernstein-type inequality from Theorem 1 writes here,

• in the case of η-dependent sequences with M = F n ∞ ∼ 1/(nh d n ), K 2 ∼ 1/(n 2 h 2d+1 ) and B n ∼ 1/(nh 2d+2 n ). Now, with t = C log n/(nh d n ), Theo- rem 1 implies | f n (x) -E f n (x)| = O log n/nh d n , (a.s.) for each x of R d if h n ≥ n -c
, for a c < 1/(3d + 4). Note that an optimal uniform window width h n ∼ (log n/n) 1/(2β+d) yields the tight uniform a.s. rate in the case of

β > d + 2. • in the case of λ-dependence, with M = F n ∞ ∼ 1/(nh d n ), K ∼ 1/(nh d+1 n ) and B n ∼ 1/(nh 2d+3 n ). Now, again with t = C log n/(nh d n )
, Theorem 1 implies the same as before if h n ≥ n -c , for a c < 1/(3d + 6). The choice of h n ∼ (log n/n) 1/(2β+d) yields the tight uniform a.s. rate if β > d + 3. Now we assume that the kernel K is compactly supported, i.e., K(x) = 0 if x ≥ C, for some C < ∞. Note that the exponential inequality used here allows to extend the above convergence rates to hold uniformly with respect to x ≤ n A /C, for an arbitrary norm on R d and any A > 0. To this end, we consider f n (x) -E f n (x) first on a sequence of increasingly fine grids X n for the set {x : x ≤ n/C} with a cardinality of order n γ , for some γ < ∞. It follows from our Bernstein-type inequality that

P max x∈Xn | f n (x) -E f n (x)| > C λ log n/(nh d n ) = O(n -λ )
holds for arbitrary λ < ∞ and some finite C λ . Moreover, it follows from the Lipschitz continuity of the kernel function K that

| f n (x) -f n (y)| ≤ Ch -d n x -y ,
for some C < ∞. Hence, with X n sufficiently dense, we can conclude that

P sup {x: x ≤n A /C} | f n (x) -E f n (x)| > C λ log n/(nh d n ) = O(n -λ ),
which implies by the Borel-Cantelli Lemma that sup {x:

x ≤n A /C} | f n (x) -E f n (x)| = O log n/(nh d n ) (a.s.)
In order to prove that convergence holds uniformly over R d , and then deduce (13), assume that E X 0 a < ∞ for some a > 0. Then, if A is large enough, sup x ≥n A /C f (x) → n→∞ 0 as fast as needed; indeed, the existence of a moment together with an Hölder assumption entail some Riemannian decay of f . The same occurs a.s. for f n . We have that

∞ n=1 P max 1≤t≤n X t > n A -Ch n ≤ ∞ n=1 1 ∧ E( X 1 a + • • • + X n a ) (n A -Ch n ) a < ∞,
for A sufficiently large. This implies by the Borel-Cantelli Lemma that sup x ≥n A | f n (x)| → n→∞ 0 a.s. as fast as needed if A is large enough.

Note that for lower order regularities our result does not apply but the Bernstein inequality from [START_REF] Ragache | Convergence rates for density estimates of weakly dependent time series[END_REF], following [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF], is still working and the a.s. convergence rate is now obtained only with the log n term replaced by log 2+2/µ n under our previous assumptions.

Univariate case, exact asymptotics

In [START_REF] Butucea | Exact asymptotics for estimating the marginal density of discretely observed diffusion processes[END_REF], it was shown that asymptotically exact minimax results can be obtained by appropriately tuned kernel density estimators in the case that the real-valued observations (d = 1) X 1 , . . . , X n are mixing, all joint densities p X 0 ,X k are uniformly (in k) bounded, the error is measured in the supremum norm and the density is assumed to belong to some Hölder class. Armed with the new Bernstein-type inequality, we can easily generalize these results to the case of weakly dependent observations.

Based on observations X 1 , . . . , X n , we consider the previous kernel estimator f n , where

h n = C(log n/n) 1/(2β+1) for f ∈ F ∞ (β, L).
Here the expectations are taken relatively to the parameter L which is the distribution of the process (X t ) t∈Z , where the marginal distributions of L has the density f and the process is associated with a certain decay rate of the dependence coefficients.

The supremum risk of f n can be decomposed in a bias and a stochastic term as

E f n -f ∞ ≤ E f n -f ∞ + E f n -E f n ∞ . Now it follows, for all f ∈ F ∞ (β, L), that E f n -f ∞ ≤ sup x 1 h n K u -x h n (f (u) -f (x)) du ≤ sup x K(u)(f (x + h n u) -f (x)) du ≤ L h β n B(β), (14) 
where B(β) = sup g∈F∞(β,L) | K(u)(g(u) -g( 0)) du|.

To analyze the stochastic term, we choose an arbitrary > 0 and some appropriate < ∞. Then, with

σ n = A(β, L)/(nh n ) K 2 2 log(1/h n ), A(β, L) = max{g(0) : g ∈ F ∞ (β, L)}, E f n -E f n ∞ ≤ (1 + ) σ n + (1 + ) σ n P f n -E f n ∞ > (1 + )σ n + h -1 n K ∞ P f n -E f n ∞ > (1 + )σ n = T 1 + T 2 + T 3 , (15) 
say. The term T 1 can be made arbitrarily close to the desired σ n . Since var( 1)) we can show, using chaining techniques in conjunction with the Bernstein-type inequality from Theorem 1, that

f n (x)) ≤ A(β, L)/(nh n ) K 2 2 (1 + o(
P f n -E f n ∞ > (1 + )σ n = o(1) (16) 
and

P f n -E f n ∞ > (1 + )σ n = O(n -λ ), (17) 
for arbitrary λ < ∞, provided is sufficiently large. Actually, [START_REF] Butucea | Exact asymptotics for estimating the marginal density of discretely observed diffusion processes[END_REF] used a Bernstein-type inequality for mixing random variables in the course of deriving results analogous to ( 16) and ( 17), in particular to derive their equations (5.43), (5.45) and (5.52). It can be seen that we can apply our Bernstein-type inequality in the same way which finally leads to ( 16) and ( 17); for details see the proof of Theorem 4.2 in [START_REF] Butucea | Exact asymptotics for estimating the marginal density of discretely observed diffusion processes[END_REF].

From ( 14) to ( 17) we can conclude that lim sup

n→∞ sup f ∈F∞(β,L) (n/ log n) β/(2β+1) E f n -f ∞ ≤ n log n β/(2β+1)    A(β, L) nh n K 2 2 log(1/h n ) + L h β n B(β)    . (18) 
Choosing now the kernel function K and the constant C in the definition of h n in an optimum manner we can show that the right-hand side of (18) matches the known asymptotic minimax bound in the case of independent data (see [START_REF] Korostelev | The asymptotic minimax constant for sup-norm loss in nonparametric density estimation[END_REF]) which is also the minimax bound under mixing (see again [START_REF] Butucea | Exact asymptotics for estimating the marginal density of discretely observed diffusion processes[END_REF]) and, hence, also the asymptotic risk bound in the more general framework of weak dependence.

Further applications

Exponential inequalities are quite useful when a large number of random sums has to be simultaneously bounded. Further possible applications in statistics include nonparametric estimation in Barron's classes (see [START_REF] Kallabis | An exponential inequality under weak dependence[END_REF]), adaptive estimation as in [START_REF] Gannaz | Adaptive density estimation with dependent observations[END_REF].

Possible adaptation of the generic chaining arguments in [START_REF] Talagrand | The Generic Chaining[END_REF] are very attractive but use of classes of Lipschitz functions makes it difficult to use directly. We think that such applications deserve a detailed study which is, however, well beyond the scope of this paper.

Examples

Following [START_REF] Doukhan | A new weak dependence condition and application to moment inequalities[END_REF] and [START_REF] Doukhan | A central limit theorem under non causal weak dependence conditions and sharp moment assumptions[END_REF] we describe here some models which satisfy the previous weak dependence conditions.

• Gaussian and associated processes are κ-dependent with

κ r = max t≥r | cov(X 0 , X t )|,
if they are stationary. Note that such covariances are nonnegative under association. • Bernoulli shifts. Let H : R Z → R be a measurable function. If the sequence (ξ t ) t∈Z is independent and identically distributed on the real line, a Bernoulli shift with innovation process (ξ t ) t∈Z is defined as

X t = H ((ξ t-i ) i∈Z ) , t ∈ Z.
This sequence is stationary. The simplest case of an infinitely dependent Bernoulli shift is a moving average process

X t = ∞ i=-∞ a i ξ t-i . ( 19 
)
Bernoulli shifts are η-weakly dependent with η r ≤ 2δ [r/2] , where

δ s ≥ max 0≤t≤s E X 0 -X (t) 0 , X (t) 0 = H (ξ (t) i ) i∈Z , with ξ (t) i = ξ i if |i| < t and ξ (t) i = 0 if |i| ≥ t.
• Chaotic Volterra models. A Volterra process is a stationary process defined through a convergent Volterra expansion

X t = v 0 + ∞ k=1 V k;t , where V k;t = i 1 <...<i k a k;i 1 ,...,i k ξ t-i 1 • • • ξ t-i k .
Here v 0 is a constant and (a k;i 1 ,...,i k ) (i 1 ,...,i k )∈Z k are real numbers for each k ≥ 1. Let p ≥ 1. Then this expression converges in L p , provided that E|ξ 0 | p < ∞ and the weights satisfy

∞ k=1 i 1 <•••<i k |a k;i 1 ,...,i k | p < ∞.
Those processes are η-dependent since δ s from above is now the tail of the previous series. The forthcoming examples contain some particular models of this type.

• LARCH(∞) models. A vast literature is devoted to the study of conditionally heteroskedastic models; see [START_REF] Giraitis | Recent advances in ARCH modelling[END_REF]. It was shown in [START_REF] Doukhan | Vector valued LARCH infinity processes[END_REF] that a simple equation in terms of a vector-valued process allows a unified treatment of those models. Let (ξ t ) t∈Z be an iid sequence of random d × m matrices, (a j ) j∈N be a sequence of m × d matrices, and a be a vector in R m . A vector valued LARCH(∞) model is a solution of the recurrence equation

X t = ξ t   a + ∞ j=1 a j X t-j   . ( 20 
)
Below we provide sufficient conditions for the following chaotic expansion

X t = ξ t   a + ∞ k=1 j 1 ,...,j k ≥1 a j 1 ξ t-j 1 a j 2 ξ t-j 1 -j 2 • • • a j k ξ t-j 1 -•••-j k a   . ( 21 
)
Such vector-valued LARCH(∞) models include a large variety of models, for example

• Bilinear models, X t = ζ t α + ∞ j=1 α j X t-j + β + ∞ j=1 β j X t-j
, where the variables are real-valued and ζ t is the innovation. Expansion (21) coincides then with the chaotic expansion in [START_REF] Giraitis | Recent advances in ARCH modelling[END_REF].

• GARCH(p, q) models,      r t = σ t ε t σ 2 t = p j=1 β j σ 2 t-j + γ 0 + q j=1 γ j r 2 t-j
where β i ≥ 0, γ => 0 and γ j ≥ 0 (j ≥ 1), and the variables ε t are centred at expectation; see [START_REF] Giraitis | Recent advances in ARCH modelling[END_REF].

• ARCH(∞) processes, given by

     r t = σ t ε t σ 2 t = β 0 + ∞ j=1 β j σ 2 t-j
Now we turn to the general case given by equation ( 20). Assume that λ = j≥1 a j E ξ 0 < 1. Then a stationary solution of equation ( 20) in L 1 is given as ( 21). With A(x) = j≥x a j , this solution is θ-weakly dependent with

θ r = E ξ 0 E ξ 0 r-1 k=1 kλ k-1 A r k + λ r 1 -λ a .
There exist some constants K > 0 and b, C > 0 such that

θ r ≤      K (log(r)) b∨1 r b , under Riemannian decay, A(x) ≤ Cx -b , K(q ∨ λ) √ r ,
under geometric decay, A(x) ≤ Cq x , q < 1.

• Non causal LARCH(∞) models (now a j is defined for j = 0) allow the same results of existence (only replace summation for j > 0 by summation for j = 0) and dependence is now of the η type with

η r = E ξ 0   E ξ 0 0≤2k<r kλ k-1 A r 2k + λ r/2 1 -λ   a , A(x) = |j|≥x a j .
• Stable Markov processes are even θ-weakly dependent.

We consider a stationary sequences satisfying a recurrence equation

X t = F (X t-1 , . . . , X t-d , ξ t ),
where the sequence (ξ t ) t∈Z is iid. In this case, Y t = (X t , . . . , X t-d+1 ) is a Markov chain such that

Y t = M (Y t-1 , ξ t ) with M (x 1 , . . . , x d , ξ) = (F (x 1 , . . . , x d , ξ), x 1 , . . . , x d-1 ). Then E F (x, ξ) -F (y, ξ) ≤ a x -y if a = ( d i=1 a i ) 1/d < 1, where a i ≥ 0 are such that E|M (x, ξ 0 )-M (y, ξ 0 )| ≤ d i=1 a i |x i -y i |, and (x 1 , . . . , x d ) = max 1≤i≤d a i-1 |x i | denotes a norm on R d .
In this setting, it is simple to derive that θ-dependence holds with θ r = O(a r ) for: Examples of such Markov processes are nonlinear AR(1) processes (case B ≡ 1), stochastic volatility models (case A ≡ 0), or classic ARCH(1) models (case A(u) = αu, B(u) = √ β + γu 2 with α, β, γ ≥ 0, but here we also need Eξ 0 = 0 and Eξ 2 0 < ∞). • Branching type models. Set ξ t = (ξ (1) t , . . . , ξ (D) t ) , d = 1, and D ≥ 2. Let now A 1 , . . . , A D be Lipschitz functions R → R, and:

• Functional AR models, X t = r(X t-1 , . . . , X t-d ) + ξ t , if E|ξ 0 | < ∞ and |r(u 1 , . . . , u d ) -r(v 1 , . . . , v d )| ≤ d i=1 a i |u i -v i |, for some a 1 , . . . , a d ≥ 0 with a = ( d i=1 a i ) 1/d < 1. • ARCH-type processes. With d = 1, let M (u, z) = A(u) + B(u)z,
M u, z (1) , . . . , z (D) = D j=1 A j (u)z (j) , (u, z (1) , . . . , z (D) ) ∈ R D+1 .
For such kernels, we also require a = D j=1 Lip (A j )E|ξ

(j) 0 | < 1.
• Compound processes may be λ-dependent. Instead of independence, assume that the sequence (ξ t ) t∈Z is stationary and η-dependent with coefficients (ρ ξ,r ) r≥0 . Then, for example, linear processes ( 22) are then η-weak dependent with η r = η ξ,r/2 + δ r/2 and δ r/2 according to the definition after equation ( 22). Such hereditary properties of weak dependence are unknown under mixing. We present here the results from [START_REF] Doukhan | A central limit theorem under non causal weak dependence conditions and sharp moment assumptions[END_REF] who sharpen analogue results from [START_REF] Borovkova | Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation[END_REF].

We now focus on specific examples of two sided linear sequences

X t = i∈Z b i Y t-i (22) 
with dependent inputs (Y t ) t∈Z .

Let us now denote by (Y t ) t∈Z a weakly dependent innovation process. The coefficient λ is proved to be very useful to study Bernoulli shifts with such stationnary innovations as in Lemma 12 below. Let H : R (Z) → R be a measurable function on the space of finitely supported real valued sequences we shall define X t = H(Y t-i , i ∈ Z). Such models are proved to exhibit either λ or η-weak dependence properties. We set here x = sup i∈Z |x i |.

In order to study weak dependence properties of (X t ) t∈Z , we assume that

H : R (Z) → R is such that for each s ∈ Z, if x, y ∈ R (Z) satisfy x i = y i for each index i = s, |H(x) -H(y)| ≤ b s |x s -y s |, (23) 
The following lemma proves both the existence and the weak dependence properties of such models. Lemma 12 [START_REF] Doukhan | A central limit theorem under non causal weak dependence conditions and sharp moment assumptions[END_REF]) Let (Y t ) t∈Z be a strictly stationary process with a finite moment of order m > 2 and let H satisfy the condition (23) for l = 0 and some nonnegative sequence

(b s ) s∈Z such that j b j < ∞. Then, • the process X n = H(Y n-j , j ∈ Z) := lim I→∞ H(Y n-j 1 {|j|≤I} , j ∈ Z) is a
strongly stationary process with finite moments of order m.

• if the input process (Y t ) t∈Z is λ-weakly dependent (the weak dependence coefficients are denoted λ Y,r ), then (X t ) t∈Z is λ-weakly dependent with

λ k ≤ inf 2r≤k   2 |i|≥r b i Y 0 1 + (2r + 1) 2 L 2 λ Y,k-2r   .
• if the input process (Y t ) t∈Z is η-weakly dependent (the weak dependence coefficients are denoted η Y,r ) then (X t ) t∈Z is η-weakly dependent and

η k ≤ inf 2r≤k   2 |i|≥r b i Y 0 1 + (2r + 1)Lη Y,k-2r   .
Beyond linear functions one may think to non causal ARCH(∞) inputs (with bounded inputs) and [START_REF] Doukhan | A central limit theorem under non causal weak dependence conditions and sharp moment assumptions[END_REF] 

Proofs of the main theorems

First, note that it is not possible to adapt the classic method of proving the Bernstein inequality in the independent case since it makes heavy use of the independence; see Bennett (1962, pp. 33-45). One possible approach to proving an exponential inequality involves replacing blocks of weakly dependent random variables by independent ones and then applying an available inequality from the independent case. This was recently done by [START_REF] Dedecker | Coupling for τ -dependent sequences and applications[END_REF] who derived a Bennett inequality which then possibly implies a Bernstein-type inequality, however, with constants in the exponent different to ours. In particular, the leading term (asymptotically, as n → ∞) in the denominator of the exponent will then differ from var(S n ) which is possible in our case. We also note here that an abstract presentation of cumulant techniques involving Umbral Calculus is presented in [START_REF] Rota | On the combinatorics of cumulants[END_REF].

Our proof of the Theorem is based on a result of [START_REF] Bentkus | On exponential estimates of the distribution of random variables[END_REF] which we quote here for reader's convenience. Let ξ be an arbitrary realvalued random variable with Eξ = 0 and finite moments of all orders. The k-th cumulant of ξ is defined as

Γ k (ξ) = 1 i k d k dt k log Ee itξ t=0 .
If there exist γ ≥ 1 , σ 2 > 0 and B ≥ 0 such that

|Γ k (ξ)| ≤ k! 2 γ σ 2 B k-2
for all k = 2, 3, . . . , then, for all t ≥ 0 ,

P (ξ ≥ t) ≤ exp - t 2 /2 σ 2 + B 1/γ t (2γ-1)/γ . ( 24 
)
Note that the quotation of this result in Lemma 2.4 in the monograph by Saulis and Statulevicius (1991, p. 19) contains a typo; it was correctly stated and proved in the initial paper, Bentkus and Rudzkis (1980, Lemma 2.1).

Before we proceed with the calculations, we recall some notions needed in the course of the proof. It follows from the definition of the cumulants that

Γ k (S n ) = 1≤t 1 ,...,t k ≤n Γ(X t 1 , . . . , X t k ), (25) 
where

Γ(X t 1 , . . . , X t k ) = 1 i k ∂ k ∂u t 1 . . . ∂u t k log Ee i(u 1 X 1 +•••+unXn) u 1 =•••=un=0
are mixed cumulants. For any random variable Y with finite expectation, we define ulevicius (1970, Lemma 3) has shown that, for 1 ≤ t 1 ≤ • • • ≤ t k ≤ n, the mixed cumulants can be expressed in terms of centred moments as

Y = Y -EY . For 1 ≤ t 1 ≤ • • • ≤ t k ≤ n, define so-called centred moments as E(X t 1 , . . . , X t k ) = E X t 1 X t 2 • • • X t k-1 X t k (E(X t 1 ) = EX t 1 ). Stat-
Γ(X t 1 , . . . , X t k ) = k ν=1 (-1) ν-1 ν p=1 Ip=I N ν (I 1 , . . . , I ν ) ν p=1 EX Ip , (26) 
where ν p=1 Ip=I denotes the summation over all unordered partitions in disjoint subsets I 1 , . . . , I ν of the set I = {1, . . . , k}; see also equation (1.63) in [START_REF] Saulis | Limit Theorems for Large Deviations, Mathematics and Its Applications[END_REF], as a more easily available reference. Given such a partition, EX Ip stands for E(X t

i (p) 1 , . . . , X t i (p) kp ) if I p = {i (p) 1 , . . . , i (p) kp } with i (p) 1 < • • • < i (p)
kp . We arrange the subsets in the partitions such that i

(1) 1 < • • • < i (ν)
1 . N ν (I 1 , . . . , I ν ) are certain nonnegative integers defined as follows. Let, for i ∈ I, n i (I 1 , . . . , I ν ) = #{p : i see equations (4.36) and (4.37) in Saulis and Statulevicius (1991, p. 80). According to this, it follows that N ν (I 1 , . . . , I ν ) = 0 if and only if {I 1 , . . . , I ν } is connected, that is, n i (p) 1 (I 1 , . . . , I ν ) > 0 for all p = 2, . . . , ν. Furthermore, we have that

k ν=1 ν p=1 Ip=I N ν (I 1 , . . . , I ν ) = (k -1)! ; ( 27 
)
see Saulis and Statulevicius (1991, equation (4.43)).

As a first step to deriving estimates for the cumulants of

S n = X 1 + • • • + X n ,
we derive estimates for the centred moments.

Lemma 13 Suppose that X 1 , . . . , X n are zero mean random variables satisfying condition (1) from Theorem 1, for u + v ≤ k. Furthermore, assume that

E|X i | k-2 ≤ ((k -2)!) ν M k-2 . Then, for i ∈ {1, . . . , k -1} , E(X t 1 , . . . , X t k ) ≤ 2 k ((k -2)!) ν K 2 M k-2 ρ(t i+1 -t i ).
PROOF. For the four cases (a) to (d), most parts of this proof are the same. Accordingly, we distinguish between them only when we apply condition (1), and at the end of this proof when certain upper estimates are summed up.

For

t 1 ≤ • • • ≤ t k , k ∈ N , we define the short-hand notation Y k = X t k and, for 1 ≤ j < k, Y j = X t j X t j+1 • • • X t k-1 X t k .
Elementary calculations show, for 1 ≤ j ≤ i < k , that

Y j = X t j Y j+1 -X t j E[Y j+1 ] = • • • = X t j • • • X t i Y i+1 - i l=j X t j • • • X t l E[Y l+1 ] = X t j • • • X t i Y i+1 - i-1 l=j X t j • • • X t l E[Y l+1 ]. (28) 
Since EX t k = 0, in the special case of i = k -1 this becomes

Y j = X t j • • • X t k - k-1 l=j X t j • • • X t l E[Y l+1 ]. ( 29 
)
Without making use of the weak dependence assumption, we conclude recursively, for 3 ≤ j < k , that

E|Y j | ≤ 2 k-j ((k -2)!) ν M k-j+1 . (30) 
Hence, we obtain again in conjunction with (29) that

C j,i := cov X t j • • • X t i , Y i+1 ≤ cov X t j • • • X t i , X t i+1 • • • X t k + k-1 l=i+1 cov X t j • • • X t i , X t i+1 • • • X t l E[Y l+1 ] ≤ K 2 M k-j-1 Ψ(i -j + 1, k -i) ρ(t i+1 -t i ) + k-1 l=i+1 K 2 M l-j-1 Ψ(i -j + 1, l -i) ρ(t i+1 -t i ) 2 k-l-1 ((k -2)!) ν M k-l ≤ K 2 ((k -2)!) ν M k-j-1 Ψ(i -j + 1, k -i) + k-1 l=i+1 Ψ(i -j + 1, l -i)2 k-l-1 ρ(t i+1 -t i ). ( 31 
)
Before we turn to estimating |E(X t 1 , . . . , X t k )|, we estimate the term in curly braces on the right-hand side of (31) in the four cases (a) to (d).

(a) If Ψ(u, v) = 2v, then

   Ψ(i -j + 1, k -i) + k-1 l=i+1 Ψ(i -j + 1, l -i) 2 k-l-1    = 2(k -i) + 2 k-1 l=i+1 (l -i) 2 k-l-1 ≤ 2 k-i-1 ∞ l =1 l 2 1-l = 2 k-i-1 d dp 1 1 -p p=1/2 = 2 k-i+1 =: λ (a) j,i . ( 32 
) (b) If Ψ(u, v) = u + v, then    Ψ(i -j + 1, k -i) + k-1 l=i+1 Ψ(i -j + 1, l -i) 2 k-l-1    = (k -j + 1) + k-1 l=i+1 (l -j + 1) 2 k-l-1 = (k -j + 1) ∞ l=1 2 -l + k-1 l=i+1 (l -j + 1)2 k-l-1 ≤ ∞ l =k-j+1 l 2 -l +(k-j) + k-j l =i-j+2 l 2 -l +(k-j) = 2 k-j-1 ∞ l =i-j+2 l 2 1-l = (i -j + 3) 2 k-i-1 =: λ (b) j,i . (33) 
(Here the last equation follows from

∞ l =i-j+2 l 2 1-l = d dp   ∞ l =i-j+2 p l   p=1/2 = d dp p i-j+2 1 -p p= 1 2 = (i -j + 3)2 j-i .) (c) If Ψ(u, v) = uv, then we obtain by (32)    Ψ(i -j + 1, k -i) + k-1 l=i+1 Ψ(i -j + 1, l -i) 2 k-l-1    = (i -j + 1)   (k -i) + k-1 l=i+1 (l -i) 2 k-l-1   ≤ (i -j + 1) 2 k-i =: λ (c) j,i . ( 34 
) (d) If Ψ(u, v) = α(u + v) + (1 -α)uv
, then we obtain immediately by ( 33) and (34) that

   Ψ(i -j + 1, k -i) + k-1 l=i+1 Ψ(i -j + 1, l -i) 2 k-l-1    ≤ αλ (b) j,i + (1 -α)λ (c) j,i =: λ (d) j,i . (35) 
Now we obtain from (28) that

|E[Y j ]| ≤ C j,i + i-1 l=j |E[X t j • • • X t l ]| • |E[Y l+1 ]|.
Therefore, we obtain recursively that

E(X t 1 , . . . , X t k ) = |E[Y 1 ]| ≤ C 1,i + i-1 l=1 M l |E[Y l+1 ]| ≤ • • • ≤ C 1,i + 1≤l 1 ≤i-1 M l 1 C l 1 +1,i + 1≤l 1 <l 2 ≤i-1 M l 2 C l 2 +1,i + • • • + 1≤l 1 <•••<l i-1 ≤i-1 M i-1 C i,i . (36) 
At this point we have to distinguish again between the four cases (a) to (d).

From ( 36), ( 31) and ( 32) to ( 35) we obtain the common upper estimate

E(X t 1 , . . . , X t k ) ≤ K 2 ((k -2)!) ν M k-2 ρ(t i+1 -t i ) ×    λ (δ) 1,i + 1≤l 1 ≤i-1 λ (δ) l 1 +1,i + 1≤l 1 <l 2 ≤i-1 λ (δ) l 2 +1,i + • • • + 1≤l 1 <•••<l i-1 ≤i-1 λ (δ) l i-1 +1,i    , (37) 
where δ = a, b, c, d refers to the four different cases. Now it remains to estimate the term in curly braces on the right-hand side of (37).

(a) If Ψ(u, v) = 2v, then

{. . .} = 2 k-i+1 i-1 l=0 i -1 l = 2 k . ( 38 
) (c) If Ψ(u, v) = uv, then we obtain {. . .} =    λ (c) 1,i + 1≤l 1 ≤i-1 λ (c) l 1 +1,i + 1≤l 1 <l 2 ≤i-1 λ (c) l 2 +1,i + • • • + 1≤l 1 <•••<l i-1 ≤i-1 λ (c) l i-1 +1,i    = 2 k-i   i + 1≤l 1 ≤i-1 (i -l 1 ) + 1≤l 1 <l 2 ≤i-1 (i -l 2 ) + • • • + 1≤l 1 <•••<l i-1 ≤i-1 (i -l i-1 )   . Since 1≤l 1 <•••<lm≤i-1 (i -l m ) = i i -1 m - i-1 l=m l l -1 m -1 = (m + 1) i m + 1 -m i m + 1 = i m + 1 we get {. . .} = 2 k-i i + i-1 m=1 i m + 1 = 2 k-i i m=1 i m < 2 k . ( 39 
) (b) If Ψ(u, v) = u + v, then we obtain analogously to (39) that {. . .} = 2 k-i-1   (i + 2) + 1≤l 1 ≤i-1 (i -l 1 + 2) + 1≤l 1 <l 2 ≤i-1 (i -l 2 + 2) + • • • + 1≤l 1 <•••<l i-1 ≤i-1 (i -l i-1 + 2)   < 2 k-i-1 i m=1 i m + 2 i-1 m=0 i -1 m < 2 k . ( 40 
) (d) If Ψ(u, v) = α(u + v) + (1 -α)uv, then we easily obtain from λ (d) j,i = αλ (b) j,i + (1 -α)λ (c) j,i , (40) and (39) that {. . .} < 2 k . ( 41 
)
The assertion of the lemma follows now from ( 37) and ( 38) to (41). 2

Equations ( 25), ( 26) and the result of Lemma 13 can now be used to derive estimates for the cumulants of S n .

Lemma 14 Suppose that the assertions of Lemma 13 are fulfilled. Then, for k ≥ 2 ,

|Γ k (S n )| ≤ n (k!) 2+ν 2 k K 2 (K ∨ M ) k-2 n-1 s=0 (s + 1) k-2 ρ(s).
PROOF. We deviate from the proof of similar results in Saulis and Statulevicius (1991) since we are not able to follow all of their arguments. In particular, we cannot verify their equation (4.55) on page 94 which is crucial for their approach.

From (25) we obtain that

|Γ k (S n )| ≤ k! 1≤t 1 ≤•••≤t k ≤n |Γ(X t 1 , . . . , X t k )| . (42) 
According to (26) and Lemma 13, we have, for 1

≤ t 1 ≤ • • • ≤ t k ≤ n , that |Γ(X t 1 , . . . , X t k )| ≤ k ν=1 ν p=1 Ip=I N ν (I 1 , . . . , I ν ) ν p=1 E(X Ip ) ≤ k ν=1 ν p=1 Ip=I N ν (I 1 , . . . , I ν ) ν p=1 2 kp ((k p -2)!) ν K 2 M kp-2 min 1<j≤kp ρ(t i (p) j -t i (p) j-1
).

Note that we have, for any connected partition,

max 1≤p≤ν max 1<j≤kp {t i (p) j -t i (p) j-1 } ≥ max 1<i≤k {t i -t i-1 }.
Since N ν (I 1 , . . . , I ν ) = 0 if {I 1 , . . . , I ν } is not connected we therefore obtain, in conjunction with (27), that

|Γ(X t 1 , . . . , X t k )| ≤ k ν=1 ν p=1 Ip=I N ν (I 1 , . . . , I ν ) 2 k ((k -2)!) ν K 2 (K ∨ M ) k-2 min 1<i≤k ρ(t i -t i-1 ) ≤ (k -1)! 2 k ((k -2)!) ν K 2 (K ∨ M ) k-2 min 1<i≤k ρ(t i -t i-1 ).
This implies that (s + 1) k-2 ρ(s), this with ( 42) and ( 43), yields the assertion of the lemma. 2

1≤t 1 ≤•••≤t k ≤n |Γ(X t 1 , . . . , X t k )| ≤ n (k -1)! 2 k ((k -2)!) ν K 2 (K ∨ M ) k-
Proof of Theorem 1 From Lemma 14 we obtain, for k ≥ 3 , that

|Γ k (S n )| ≤ n (k!) 2+µ+ν 2 k K 2 L 1 ((K ∨ M )L 2 ) k-2 ≤ k! 2 2+µ+ν 2 4+µ+ν n K 2 L 1 (2 (K ∨ M ) L 2 ) k-2 ,
which implies that

|Γ k (S n )| ≤ k! 2 2+µ+ν A n B k-2
n holds for all k ≥ 2. The assertion of the Theorem follows now from (24). 2

Proof of Theorem 3 Recall that we have Γ 1 (S n ) = 0 and Γ 2 (S n ) = σ 2 n . Therefore, Leonov and Shiryaev's formula (see [START_REF] Saulis | Limit Theorems for Large Deviations, Mathematics and Its Applications[END_REF], formula (1.53) on page 11) writes as

ES p n = [p/2] u=1 1 u! k 1 +•••+ku=p p! k 1 ! • • • k u ! Γ k 1 (S n ) • • • Γ ku (S n ). ( 44 
)
Note that Γ 1 (S n ) = 0 implies that the inner sums can be reduced to indices such that k i ≥ 2 for all i. If p is an even number, then the summand with u = p/2 on the right-hand side of ( 44) is equal to p! 2 p/2 (p/2)! (Γ 2 (S n )) p/2 = EZ p σ p n .

According to Lemma 14, we have, for 2 ≤ k ≤ p, that

|Γ k (S n )| ≤ n (k!) 2 2 k ρ k,n K 2 L 1 ((M ∨ K)L 2 ) k-2 . Γ k + 1 b ≤ √ 2π exp 1 12( k+1 b -1) k + 1 b -1 k+1 b -1 2 exp - k + 1 b -1 ≤ exp 1 - 1 12( k+1 b -1) 1 b k+1 b -1 2 √ 2π (k + 1) k+3/2 e -(k+1) 1/b ≤ C k ((k + 1)!) 1/b ≤ C k (k!) 1/b ,
for some appropriate C, C < ∞. Putting these bounds together we obtain the assertion. 2

Proof of Lemma 10 Set g T (x) = x ∨ T ∧ (-T ) and X i = g T (X i ) -Eg T (X i ), for some T > 0. Then

cov X s 1 • • • X su , X s u+1 • • • X sp ≤ p j=0 |A j |,
where A 0 = cov X s 1 • • • X su , X s u+1 • • • X sp , and for 1 ≤ j ≤ u,

A j = cov X s 1 • • • X s j-1 (X s j -X s j )X s j+1 • • • X su , X s u+1 • • • X sp , and if u < j ≤ p, A j = cov X s 1 • • • X su , X s u+1 • • • X s j-1 (X s j -X s j )X s j+1 • • • X sp .
First we bound |A j |, for 1 ≤ j ≤ p. We obtain by Hölder's inequality, with p-1 m + 1 m = 1, that

|A j | ≤ 2 i<j X s i m X s j -X s j m i>j X s i m .
From Jensen's inequality we get X s i m ≤ 2 g T (X s i ) m ≤ 2 X s i m ≤ 2M 1/m m . Furthermore, we have E|X s j -g T (X s j )| m ≤ E[|X s j | m I(|X s j | > T )] ≤ T m -m M m and |Eg T (X s j )| = |E(X s j -g T (X s j ))| ≤ X s j -g T (X s j ) m . This implies X s j -X s j m ≤ X s j -g T (X s j ) m +|Eg T (X s j )| ≤ 2T 1-m/m M 1/m m . Therefore, we obtain that

|A j | = 2 p-j+1 M p-1 m m X s i -X s i m ≤ 2 p-j+2 M p-1 m + 1 m m T 1-m m = 2 p-j+2 M m T p-m , which implies p j=1 |A j | ≤ 2 p+2 M m T p-m . ( 46 
)
Now we bound |A 0 |. Coming back to the definition of weak dependence, we write it as cov(h(X s 1 , . . . X su ), k(X s u+1 , . . . X sp )) where h(x 1 , . . . , x u ) = u i=1 (g T (x i ) -Eg T (X s i )), and k(x u+1 , . . . , x p ) = p i=u+1 (g T (x i ) -Eg T (X s i )). Hence h ∞ ≤ 2 u T u , k ∞ ≤ 2 p-u T p-u , Lip h ≤ u2 u-1 T u-1 and Lip k ≤ (p -u)2 p-u-1 T p-u-1 and, according to the the weak dependence in use, we get

| cov(X s 1 • • • X su , X s u+1 • • • X sp )| ≤ (u 2 (2T ) u-1 (2T ) p-u + (p -u) 2 (2T ) p-u-1 (2T ) u )η r ≤ p 2 2 p-1 T p-1 η r , | cov(X s 1 • • • X su , X s u+1 • • • X sp )| ≤ (u(p -u)) 2 (2T ) p-2 κ r ≤ p 4 4 2 p-2 T p-2 κ r = p 4 2 p-4 T p-2 κ r or | cov(X s 1 • • • X su , X s u+1 • • • X sp )| ≤ p 2 p 2 8 ∨ 1 2 p-1 T p-2 (T ∨ 1)λ r .
To conclude, we equilibrate the bounds for the term |A 0 | with that of the other terms |A j |.

• Under η-dependence, set T = Mm 

  for suitable Lipschitz functions A, B. The corresponding iterative model satisfies the previous relation with a = Lip (A) + E|ξ 0 | Lip (B) < 1.

  , . . . , I ν );

••

  Under κ-dependence, set T = Mm κr 1 m-2 . Then we obtain C p (r) ≤ 2 p+3 p 4 M Under λ-dependence, set T = Mm ηr 1 m-1 . Then we obtain C p (r) ≤ 2 p+3 p 4 M

  consider more general examples for which H does not satisfy eqn. (23) as polynomial Volterra models We now precise some examples of such Bernoulli shifts with dependent innovations:

	6 Proofs

  Since #{(s 2 , . . . , s k ) : 0 ≤ s i ≤ s, max{s 2 , . . . , s k } = s} ≤ (k -1)(s + 1) k-2 we obtain that

				∞	
			2	s 2 ,...,s k =0	min 2≤i≤k	ρ(s i ).	(43)
	∞				
	s 2 ,...,s k =0	min 2≤i≤k	ρ(s i ) ≤ (k -1)		

∞ s=0

Applying Hölder's inequality to the Gamma function Γ we see that (k!) p/k ≤ p!. Hence, we obtain that

The assertion follows now from ( 44) and ( 45). 2

Proofs of some auxiliary results

Proof of Proposition 8 Inequality ( 7) is obvious.

The last term on the right-hand side can be further estimated by

Furthermore, it follows from Stirling's formula that