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Giraitis and Surgailis (2002) introduced ARCH-type bilinear models for their specific long range
dependence properties. We rather consider weak dependence properties of these models. The com-
putation of mixing coefficients for such models does not look as an accessible objective. So, we resort
to the notion of weak dependence introduced by Doukhan and Louhichi (1999), whose use seems
more relevant here. The decay rate of the weak dependence coefficients sequence is established under
different specifications of the model coefficients. This implies various limit theorems and asymptotics
for statistical procedures. We also derive bounds for the joint densities of this model in the case of
regular inputs.
Keywords : Time series, ARCH models, GARCH models, weak dependence, Markov chain.
AMS codes : 60G10, 60F17, 62M10, 91B84.

1 Introduction and motivations

1.1 Infinite ARCH-type bilinear models

A vast literature is devoted to the study of conditionally heteroskedastic
models. One of the best-known model is the GARCH model (Generalized
Autoregressive Conditionally Heteroskedastic) introduced by Engle [17] and
Bollerslev [6]. A usual GARCH(p, q) model can be written

rt = σtξt, σ2
t = α0 +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

αjr
2
t−j

∗ doukhan@ensae.fr

† madre@ensae.fr

‡ rosenbaum@ensae.fr, author for correspondence



2 Paul Doukhan, Hélène Madre and Mathieu Rosenbaum

where α0 ≥ 0, βi ≥ 0, αj ≥ 0, p ≥ 0, q ≥ 0 are the model parameters and
the (ξt)t are independent and identically distributed (iid). If the βi are null,
we have an ARCH(q) model which can be extended in ARCH(∞) model,
see Robinson [26], Giraitis and Robinson [20], Robinson and Zaffaroni [27],
Kokozska and Leipus [23], Kazakevicius and Leipus [22]. These models are
often used in finance because their properties are close to the properties
observed on empirical financial data such as heavy tails, volatility clustering,
white noise behaviour or autocorrelation of the squared series. To reproduce
other properties of the empirical data such as leverage effect, a lot of
extensions of the GARCH model have been introduced as EGARCH or
TGARCH, see Zaköıan [28], El babsiri and Zaköıan [16].

In this paper, we study weak dependence properties of ARCH-type bilinear
models introduced by Giraitis and Surgailis [21]. An ARCH-type bilinear
model can be written

Xt = εt

(
a +

∞∑
j=1

ajXt−j

)
+ b0 +

∞∑
j=1

bjXt−j , (1)

where a, (aj) and (bj) are real coefficients and the (εt)t∈Z are iid centered. We
usually consider b0 = 0. ARCH(∞), GARCH(p, q) and LARCH models are
particular cases of the bilinear models, see Giraitis, Leipus and Surgailis [19],
Giraitis, Kokoszka, Leipus and Teyssière [18]. Quote that Doukhan, Teyssière
and Winant [15] introduced a very general vector valued version of this model.
Giraitis and Surgailis [21] prove that under restrictions, there is a unique
stationary solution for these models. This solution has a chaotic expansion.
The following assumption is necessary to define this solution.

Assumption H. The (εt)t∈Z are iid centered, IE|ε1| < ∞ and the power series
A(z) =

∑∞
j=1 ajz

j and B(z) =
∑∞

j=1 bjz
j exist for |z| ≤ 1.

We define ‖ξ‖Lp = (IE|ξ|p)1/p and ‖h‖p
p = (

∑∞
j=0 |hj |p)1/p, for p ∈ [1,∞),

with usual extension to the supremum norm if p = +∞. We set

G(z) = {1−B(z)}−1 =
∞∑

j=0

gjz
j and H(z) = A(z){1−B(z)}−1 =

∞∑
j=1

hjz
j .

Let (a?b)j =
∑j

i=0 aibj−i denote the convolution and a
(n)
j = aj1(1 ≤ j ≤ n),

where 1 is the indicator function. Giraitis and Surgailis established in [21] the
following proposition
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Proposition 1.1 (Giraitis, Surgailis) Assume that the (εt) are iid, cente-
red at expectation and such that ‖εt‖2 = 1. If ‖(a(n)−a)?g‖2 and ‖(b(n)−b)?g‖2

tend to zero as n goes to infinity and if ‖h‖2 < 1, ‖g‖2 < ∞, then there exists
a solution of equation (1) which is unique, strictly stationary and given by

Xt = a
∞∑

k=1

∑
sk<···<s1≤t

gt−s1hs1−s2 · · ·hsk−1−sk
εs1 · · · εsk

. (2)

1.2 Weak dependence

To our knowledge, there is no study of the weak dependence properties of
ARCH or GARCH type models with infinite number of coefficients. In fact,
the use of mixing coefficients is very technical and necessitates additional
regularity assumptions, see Doukhan [10]. In the case of finite memory ARCH
models, Mokkadem derives in [24] the absolute regularity properties of such
models. An extension to infinite memory case seems quite doubtful because of
Andrew’s example of a non mixing first order autoregressive process, see [10].
We add that mixing conditions also necessitate some regularity properties
of the innovation process. In order to derive limit theorems for functionals
of such models, we prove in this paper that a causal version of the weak
dependence property introduced by Doukhan and Louhichi in [12] holds.
Indeed, such weak dependence conditions is a simple alternative to mixing. It
also yields all kinds of limit theorems.

Let f : Rd → R, we define

Lip (f) = sup
(x1,...,xd) 6=(y1,...,yd)

|f(x1, . . . , xd)− f(y1, . . . , yd)|
|x1 − y1|+ · · ·+ |xd − yd|

.

We recall the definition of θ−weak dependence introduced by Doukhan and
Louhichi [12] and Dedecker and Doukhan [7] :

Definition 1.2 (Xn)n∈Z is θ−weakly dependent if there is a sequence (θi)i such
that limi θi = 0 and (Xn)n satisfies∣∣Cov

[
f
(
Xi1 , . . . , Xiu

)
, g

(
Xj1 , . . . , Xjv

)]∣∣ ≤ θiv‖f‖∞Lip (g)

for all u, v, i1 ≤ i2 ≤ · · · ≤ iu ≤ iu+i ≤ j1 ≤ j2 ≤ · · · ≤ jv and any measurable
functions f : Ru → R and g : Rv → R such that ‖f‖∞,Lip (g) < ∞.

This condition implies limit theorems such as
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– Donsker invariance principle, see Dedecker and Doukhan [7] :

1√
n

[nt]∑
k=1

Xk
D[0,1]−−−−→
n→∞

σWt,

where Wt is a standard Brownian motion and σ2 =∑∞
k=−∞ Cov(X0, Xk) ≥ 0 is well defined, if for some positive δ,

IE|X0|2+δ < ∞ and
∑
i>0

i1/δθi < ∞.

– Empirical central limit theorem, see Prieur [25] :

1√
n

n∑
k=1

{1(Xk ≤ x)− F (x)} D[R̄]−−−→
n→∞

Z(x),

where {Z(x)}x∈ R is the centered Gaussian process with covariance func-
tion

Γ(x, y) =
∞∑

k=−∞
Cov[1(X0 ≤ x),1(Xk ≤ y)],

if θi = O(i−a) for a > 2 + 2
√

2 and the marginal distribution of X0 is
atomless.

– Other statistical asymptotic features are considered in [1], [2], [7], [9], [12]
and [13]. See also section 3.

Under restrictions on the model coefficients, we derive explicit bounds
for these weak dependence coefficients and thus directly obtain asymptotic
results for this process.

We first establish sufficient conditions for the existence of the chaotic
solution (2) in Lp. Indeed in proposition 1.1, the existence condition in L2 is
based on the coefficients (hj). We prefer conditions on the coefficients (aj) and
(bj). Thus we extend the result of existence of the chaotic expansion to Lp.
After this, we establish bounds for the decay of the weak dependence coeffi-
cients sequence in different cases. We define underH the following assumption :
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Assumption H′. Let h̃ = ‖h‖1‖ε1‖|L1 , h̃ < 1 and ‖g‖1 < ∞.

Remark. Assumption H′ is granted as soon as the coefficients (bj) are non
negative and ‖a‖1‖ε1‖L1 + ‖b‖1 < 1, see section 4.1.

We now define our different specifications :

(a) Markovian case : H, η =
( ∑J

j=1 IE|ajε1 + bj |
)1/J

< 1 with J such that

∀j > J, aj = bj = 0.

(b) Geometric decay : H, H′ and

∃α ∈]0, 1[, β > 1 :
∑

j

βj |bj | ≤ 1 and |aj | ≤ αj .

Remark. Our definition of the geometric case gets for particular case a
more classical definition where we suppose there exists 0 < ζ < 1, and
0 < λ < 1−ζ

ζ such that, for all j ≥ 1 we have, 0 ≤ bj ≤ λζj .

(c) Riemannian decay : H, H′, ‖b‖1 < 1 and

∃β > 1, α > 1 :
∑

j

jβ|bj | = B < ∞, and
∑

j

jα|aj | = A < ∞.

In the following, we shall systematically refer to the previous conditions (a),
(b) and (c).

Applications of our results are given in section 3. We also prove in section
3 that if all the coefficients are non negative, then each vector (X1, . . . , Xn)
admits a density conditional on the past of the process if this is the case for
the innovations. We also show that we can uniformly control the density of
any couple (X1, Xi). Such results are very useful for functional estimation as
stressed in [2], [13] and [3]. Section 4 contains the proofs.

2 Properties of bilinear models

2.1 Existence of the solution in Lp(Ω, A, IP)

Theorem 2.1 If the (εt) are iid and belong to Lp(Ω, A, IP),

(i) a sufficient condition of existence in Lp(Ω, A, IP) of expansion (2) is
‖g1‖ < ∞ and ‖h‖1‖ε1‖Lp < 1.
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(ii) The preceding condition is implied by the non negativity of the coefficients
(bj) and the inequality ‖a‖1‖ε‖Lp + ‖b‖1 < 1.

Remark. The result extends to dependent innovations (εt). Existence in
L1(Ω, A, IP) of the chaotic expansion (2) holds if supt ‖εt‖L∞ ≤ M , ‖g1‖ < ∞
and M‖h‖1 < 1. A condition on the coefficients (aj) and (bj) is the following :
if the (bj) are non negative, supt ‖εt‖L∞ ≤ M and ‖a‖1M + ‖b‖1 < 1 then the
expression (2) exists in L1(Ω, A, IP).

2.2 Weak dependence coefficients

From now on, we assume that the solution exists in L1(Ω, A, IP), is statio-
nary and is given by equation (2).

Theorem 2.2 (Bounds on θ)
(a) In the Markovian case,

θr = O(ηr) as r →∞.

(b) Under geometric decay, for any β1 such that 1 < β1 < β,

θr = O
(
e−c

√
r
)

as r →∞,

where c = (log h̃ log m)1/2 with m = α
− log β1

log(α/β1) .
(c) Under Riemannian decay,

θr = O
{( r

log r

)−d}
as r →∞,

where d = min
(

(β−1) log ρ
(1−β) log 2+log ρ , α

)
with ρ = 1

1+
1−‖b‖1

B

.

3 Applications

Theorem 2.2 leads to various applications in the bilinear context. We first
precise below conditions to get Donsker invariance principle and empirical cen-
tral limit theorem. A last subsection devoted to conditional densities is more
specific to our models. The results of this section are particularly relevant for
functional estimation. Notice also that theorem 2.2 enables to obtain exponen-
tial inequalities, see [14]. Results for stochastic algorithms, Whittle estimator,
and copula can be respectively found in [5], [4] and [11]. For a general review
of these properties, see [8].
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3.1 Donsker invariance principle

Let Pδ be the following condition : for some δ > 0, IE|X0|2+δ < ∞. Using
the results of Dedecker and Doukhan [7] together with theorem 2.2, we easily
obtained the Donsker invariance principle (see section 1.2) under the following
assumptions

(a) in the Markovian case : Pδ and η < 1,

(b) under geometric decay : Pδ,

(c) under Riemannian decay : Pδ and d > 1 + 1/δ with d defined in theorem
2.2.

Note in particular that in the important case of LARCH models (bj = 0),
in the Markovian case, the second condition is reduced to IE|ε1|

∑J
j=1 |aj | < 1

and under Riemannian decay to α > 1 + 1/δ.

3.2 Empirical central limit theorem

Let P ′ be the following condition : the marginal distribtion of X0 is atomless.
The results of Prieur together with theorem 2.2 enable us to get the empirical
central limit theorem (see section 1.2) under the following assumptions

(i) in the Markovian case : P ′ and η < 1,

(ii) under geometric decay : P ′,

(iii) under Riemannian decay : d > 2 + 2
√

2 with d defined in theorem 2.2.

Note also that for LARCH models, in the Markovian case the second condition
is reduced to IE|ε1|

∑J
j=1 |aj | < 1 and under Riemannian decay to α > 2+2

√
2.

3.3 Conditional densities

We give here a useful result for the density of (X1, . . . , Xn).

Theorem 3.1 (Density of n-th marginals) We define

At = a +
∞∑
j=t

ajXt−j , Bt =
∞∑
j=t

bjXt−j and Ci = Ai +
i−1∑
k=1

akxi−k,

with C1 = A1. Assume all variables and coefficients are non negative. If the
εt are independent with marginal density fεt

, then (X1, . . . , Xn) has a den-
sity L(x1, . . . , xn) conditionally to the past of the process. Forgetting the defi-
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nition set, we have

L(x1, . . . , xn) =
n∏

i=1

1
|Ci|

fεi

(
xi − b1xi−1 − b2xi−2 − · · · − bi−1x1 −Bi

Ci

)
.

Corollary 3.2 (Control of the density) Under the same assumptions as in
theorem 3.1, if a is different from zero and if the densities of the (εt) are all
bounded by M , then, for all (x1, . . . , xn),

L(x1, . . . , xn) ≤
(

M

a

)n

.

Corollary 3.3 (Density of a couple) Under the same assumptions as in
theorem 3.1, and if the (εt) are iid with density f , then the density pi of the
couple (X1, Xi), satisfies ‖pi‖∞ ≤ ‖f‖2

∞/A1 for all i ∈ ZZ.

Those lemmas are useful respectively for subsampling and functional esti-
mation, see [2], [13] and [3]. For example, a standard kernel estimate of the
density is classically proved to have variance ∼ f(x)

∫
K2(s)ds/nhn (with

kernel function K, density f and bandwidth hn) with corollary 3.3 and an
additional dependence assumption θr = O(r−a) for a > 3.

4 Proofs

We give in this section the proofs of theorem 2.1, theorem 2.2 and theorem
3.1. In the following, c denotes a constant that may vary from line to line.

4.1 Proof of theorem 2.1

We begin the proof by a useful lemma

Lemma 4.1 Assume that the coefficients (bj) are non negative and ‖b‖1 < 1,
then the coefficients (gj) are non negative and ‖g‖1 = (1− ‖b‖1)−1.

Proof of lemma 4.1. Since the (bj) are non negative and ‖b‖1 < 1, a classical
result shows that the development in power series

∑+∞
j=0 gjz

j of the function
G(z) = {1− B(z)}−1 has a radius bigger than 1. Moreover, after direct com-
putations, we get the non negativity of the (gj). Hence, as G is increasing on
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[0, 1], we have for all positive integer n and for all z ∈ [0, 1]

n∑
j=0

gjz
j ≤ G(z) ≤ G(1).

Consequently,
+∞∑
j=0

gj ≤ G(1). We conclude by a continuity argument.

We now prove theorem 2.1. We use the normal convergence in Lp of the
series defined by (2), indeed

∞∑
k=1

∑
sk<···<s1≤t

∥∥gt−s1hs1−s2 · · ·hsk−1−sk
εs1 · · · εsk

∥∥
Lp

≤
∞∑

k=1

∑
sk<···<s1≤t

|gt−s1hs1−s2 · · ·hsk−1−sk
| ‖εs1 · · · εsk

‖Lp

≤ ‖g‖1

∑
k

‖h‖k−1
1 ‖ε‖k

Lp .

Hence ‖h‖1‖ε1‖Lp < 1 implies ‖Xt‖Lp < ∞.

Since H(z) = A(z)G(z), we derive ‖h‖1 ≤ ‖a‖1‖g‖1. Non negativity of the
(bj) implies gi ≥ 0. Thus

sup
|z|<1

|G(z)| = sup
|z|<1

∣∣∣ ∞∑
i=0

giz
i
∣∣∣ = sup

|z|<1,z>0

∞∑
i=0

giz
i =

∞∑
i=0

gi = ‖g‖1.

Hence, ‖h‖1 ≤ ‖a‖1 sup|z|<1 |1−B(z)|−1 ≤ ‖a‖1

(
inf |z|<1 |1−B(z)|

)−1.

Now
∑

j bj < 1 implies ‖h‖1 ≤ ‖a‖1(1 −
∑

j bj)−1 ≤ ‖a‖1

1−‖b‖1
. Finally, if

‖a‖1‖ε1‖Lp + ‖b‖1 < 1, then ‖ε‖Lp‖h‖1 < 1.

4.2 Proof of theorem 2.2

Markovian case (a). We use the general Markov chain theory. Write
Xn = M(Xn−1, . . . , Xn−J , εn). Then Yn = (Xn, . . . , Xn−J+1) is a Mar-
kov chain with Yn = F (Yn−1, εn) where x = (x1, . . . , xJ) and F (x, ε) =
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(M(x, ε), x1, . . . , xJ−1). Thus

IE|M(x, ε1)−M(y, ε1)| ≤ IE
∣∣ J∑

j=1

(ajε1 + bj)(yj − xj)
∣∣

≤ max
j
|yj − xj | IE

( J∑
j=1

|ajε1 + bj |
)
.

We define ‖x‖ = max
1≤j≤J

ηj−1|xj |. We have

‖F (x, ε1)− F (y, ε1)‖ ≤ max
{
|M(x, ε1)−M(y, ε1)| , max

1≤i<J
ηi|xi − yi|

}
IE‖F (x, ε1)− F (y, ε1)‖ ≤ max

{
ηJ max

1≤i≤J
(|xi − yi|) , max

1≤i<J
(ηi|xi − yi|)

}
.

Finally,

IE‖F (x, ε1)− F (y, ε1)‖ ≤ η‖x− y‖. (3)

We then use the following lemma which is a vectorial extension of a result
of Doukhan and Louhichi [12].

Lemma 4.2 Assume Yn = (Xn, . . . , Xn−J+1) is a Markov chain with Yn =
F (Yn−1, εn) and the (εn) are iid with IE|ε1| < +∞. Then, if equation (3)
holds, θr = O(ηr) as r →∞.

Proof of lemma 4.2. For f : IRu → IR with ‖f‖∞ ≤ 1, g : IRv → IR,
Lip g < ∞, i1 ≤ · · · ≤ iu ≤ iu + r ≤ n1 ≤ · · · ≤ nv and iu − i1 > J , we set
Xi = (Xi1 , . . . , Xiu

) and Xn = (Xn1 , . . . , Xnv
). We have

Cov[f(Xi), g(Xn)] =
∫

f(xi1 , . . . , xiu
){IEg(Xyu

n )− IEg(Xn)}dPXi1 ,Xi1+1...,Xiu
,

where yu = (xiu
, xiu−1, . . . , xiu−J+1) and Xyu

n denotes the vector Xn knowing
that Yiu

= yu. Now, it is clear that

|IEg(Xyu

n )− IEg(Xn)| ≤
∫

µ(dỹu)IE|g(Xyu

n )− g(X ỹu

n )|

≤ Lip (g)
v∑

z=1

∫
µ(dỹu)IE|Xyu

nz
−X ỹu

nz
|.
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From inequality (3) and using that η < 1 , we get

IE‖Y yu

nz
− Y ỹu

nz
‖ ≤ ηnz−iu‖yu − ỹu‖ ≤ ηr‖yu − ỹu‖

and consequently

IE|Xyu

nz
−X ỹu

nz
| ≤ ηr‖yu − ỹu‖.

Finally, we get

∫
dPXi1 ,Xi1+1...,Xiu

µ(dỹu)IE|Xyu

nz
−X ỹu

nz
|

≤ ηr

∫
dPXi1 ,Xi1+1...,Xiu

µ(dỹu)‖yu − ỹu‖

≤ ηr

∫
dPXi1 ,Xi1+1...,Xiu

µ(dỹu)
∑

i

|yu
i − ỹu

i | ≤ cηr.

An explicit bound on θr follows. In the cases (b) and (c), we shall need
lemmas describing the behavior of the coefficients (gj) and (hj) involved by
expansion (2). We derive this behavior from the decay rates of the initial
parameters (aj) and (bj). The study of the coefficients (gj) et (hj) aims at
controlling the tails of the coefficients series. We begin by some useful lemmas.

Lemma 4.3 Let γJ = maxj>J |gj |. Then |gk| ≤ γJ‖b‖1 + ‖g‖1
∑k

j=k−J |bj |,
∀k ∈ N, ∀J ∈ {1, . . . , k − 1}.

Proof of lemma 4.3. By definition of G, G(z){1− B(z)} =
∑∞

k=0 αkz
k = 1.

Put b0 = −1, then 1 − B(z) = −
∑∞

j=0 bjz
j thus αk =

∑k
j=0 gjbk−j . By

identification : αk = δ0k. Thus we get recursive equations on the coefficients
gj : α0 = −g0b0 ⇒ g0 = 1. Then, for k ≥ 1, gk =

∑k−1
j=0 gjbk−j . For all

J ∈ {1, . . . , k − 1},

gk =
k−J−1∑

j=1

gk−jbj +
k∑

j=k−J

gk−jbj

≤ γJ

k−J−1∑
j=1

|bj |+
k∑

j=k−J

|gk−j ||bj |

≤ γJ‖b‖1 + ‖g‖1

k∑
j=k−J

|bj |.
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We give now an explicit bound for the coefficients in the geometric case.

Lemma 4.4 (Control of γk under geometric decay)
– Geometric case (b) : ∀ 1 < β1 < β, γk = O(β−k

1 ) as k →∞.

Proof of lemma 4.4. The series
∑∞

j=1 bjr
j has a radius bigger than β. Thus,

the development in power series of {1 − B(z)}−1 has a radius of at least β.
Consequently, for all 0 ≤ r < β the sequence (gjr

j)j is bounded and so, there
exists Mr > 0 such that gj ≤ Mrr

−j for all j.

We now turn to the tails of the series generated by (gj) and (hj).

Lemma 4.5 (Control of qK thanks to rK) Let

rK =
∞∑

k=K+1

|gk| and qK =
∞∑

k=K+1

|hk|.

For all J < K,

qK ≤ ‖g‖1

∑
l≥K+1−J

|al|+ 2 rJ ‖a‖1.

Proof of lemma 4.5. We have

qK ≤
∞∑

k=K+1

k∑
j=0

|ak−jgj |

≤
∞∑

j=0

|gj |
∞∑

k=max(K+1,j+1)

|ak−j |

≤
K∑

j=0

|gj |
∞∑

k=K+1

|ak−j |+
∞∑

j=K+1

|gj |
∞∑

k=j+1

|ak−j |.

We now control each term,

∞∑
j=K+1

|gj |
∞∑

k=j+1

|ak−j | ≤ rK‖a‖1



Weakly dependent infinite bilinear models 13

and for all J < K,

K∑
j=0

|gj |
∞∑

k=K+1

|ak−j | =
J∑

j=0

|gj |
∞∑

k=K+1

|ak−j |+
K∑

j=J+1

|gj |
∞∑

k=K+1

|ak−j |

≤ ‖g‖1

∑
l≥K+1−J

|al|+ rJ‖a‖1.

Lemma 4.6 (Controls of rK and qK)

– Geometric case (b) : rK = O(β−K
1 ) and qK = O

(
α
−K log β1
log(α/β1)

)
as K →∞.

– Riemannian case (c) : rK = O
(
K

(1−β) log ρ

(1−β) log 2+log ρ

)
and

qK = O
(
K

max( (1−β) log ρ

(1−β) log 2+log ρ
,−α)) as K →∞, with ρ = 1

1+
1−‖b‖1

B

< 1.

Proof of lemma 4.6, (b). As |gj | ≤ cβ−j
1 , we easily get

rK = O(β−K
1 ) and qK ≤ c(e(K−J) log α + e−J log β1).

We take J = b K log α
log(α/β1)

cand we obtain qK = O
(
α
−K log β1
log(α/β1)

)
as K →∞.

Proof of lemma 4.6, (c). We have

rK ≤
∞∑

k=K+1

k−1∑
j=0

|gjbk−j |

≤
∞∑

j=0

|gj |
∞∑

k=max(K+1,j+1)

|bk−j |

≤
K∑

j=0

|gj |
∞∑

k=K+1

|bk−j |+
∞∑

j=K+1

|gj |
∞∑

k=j+1

|bk−j |

≤
K∑

j=0

|gj |
∞∑

k=K+1−j

|bk|+ rK‖b‖1.
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Thus, rK(1− ‖b‖1) ≤
K∑

j=0

|gj |
∞∑

k=K+1−j

|bk|. Moreover,

∞∑
k=K+1−j

|bk| ≤
∞∑

k=K+1−j

|bk|kβ(K + 1− j)−β ≤ B(K − j)−β.

Then, for all J < K,

rK
1− ‖b‖1

B
≤

K∑
j=0

|gj |(K − j)−β.

Consequently,

rK
1− ‖b‖1

B
≤

J∑
j=0

|gK−j |j−β +
K∑

j=J+1

|gK−j |j−β

≤ rK−J − rK + ‖g‖1

K∑
j=J+1

j−β

≤ rK−J − rK + ‖g‖1
K1−β − J1−β

1− β
.

In particular, we get

r2K

(
1 +

1− ‖b‖1

B

)
≤ rK +

‖g‖1

1− β
K1−β(21−β − 1).

Thus we derive for all j the inequality

r2j+1 ≤ ρ r2j + γ 2j(1−β),

with 0 < ρ < 1 and γ > 0. By induction,

0 ≤ r2j+1 ≤
j∑

k=0

γρk 2(1−β)(j−k) + ρj ‖g‖1.
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We now control the first term. We have

j∑
k=0

γρk 2(j−k)β =
j∑

k=0

γρj−k2k(1−β)

=
J∑

k=0

γρj−k2k(1−β) +
j∑

k=J+1

γρj−k2k(1−β)

≤ γ

1− 21−β
(ρj−J + 2J(1−β)).

We balance both terms putting J = b j log ρ
(1−β) log 2+log ρc and we get

r2j = O
(
2j (1−β) log ρ

(1−β) log 2+log ρ

)
as j →∞.

Let K such that 2j < K ≤ 2j+1, we have 0 ≤ rK ≤ r2j . Finally,

rK = O
(
K

(1−β) log ρ

(1−β) log 2+log ρ

)
, as K →∞.

Using that for all J < K, ∑
l≥K+1−J

|al| ≤ A(K − J)−α,

taking J = bK/2c, we get qK = O
(
K

(1−β) log ρ

(1−β) log 2+log ρ + K−α
)

as K → ∞, which
concludes.

Lemma 4.7 (Bounding θ) For all r, L, J > 0 such that LJ < r,

θr ≤ c(h̃L + rJ + qJ).

Proof of lemma 4.7. The chaotic expansion (2) writes

Xt = a
∞∑
l=1

∞∑
j1=0

∞∑
j2=1

· · ·
∞∑

jl=1

gj1hj2 · · ·hjl
εt−j1 · · · εt−(j1+···+jl). (4)

Consider the vectors Xi = (Xi1 , . . . , Xiu
), and Xj = (Xj1 , . . . , Xjv

) where
j1− iu ≥ r. Take f : Ru → R, g : Rv → R two functions such that Lip (g) < ∞
and ‖f‖∞ ≤ 1. We define X∗

j = (X∗
j1

, . . . , X∗
jv

), where X∗
t denotes the sums

for which l stops at L and j1, . . . , jl stop at J in the expansion (4). Note that
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X∗
j and Xi are independent if L and J satisfy LJ < r, thus

|Cov[f(Xi), g(Xj)]| ≤ |Cov[f(Xi), g(Xj)− g(X∗
j )]|+ |Cov[f(Xi), g(X∗

j )]|.

The second term vanishes by independence. For simplicity, we forget the
constant value a. We have

|Cov[f(Xi), g(Xj)− g(X∗
j )]| ≤ 2‖f‖∞E|g(Xj)− g(X∗

j )|

≤ 2 Lip (g)‖f‖∞
v∑

k=1

E|Xjk
−X∗

jk
|

≤ 2vLip (g)‖f‖∞E|X0 −X∗
0 |,

by the stationarity of (Xt, X
∗
t ). Thus, we may set

θr = E|X0 −X∗
0,r,J,L|,

where

X∗
0,r,J,L =

L∑
l=1

J∑
j1=0

· · ·
J∑

jl=0

gj1hj2 · · ·hjl
ε−j1 · · · ε−(j1+···+jl), if JL < r.

Thus, we finally obtain

θr ≤
∞∑

l=L+1

‖g‖1h̃
l−1‖ε‖L1 +

∞∑
l=1

rJ h̃l−1‖ε‖L1 +
∞∑
l=1

qJ‖g‖1(l − 1)h̃l−2‖ε‖2
L1

≤ c(h̃L + rJ + qJ).

End of the proof of the theorem 2.2. The end of the proof is dedicated to
explicit this bound in terms of (aj) and (bj) decay rates.

– Geometric case (b) : θr = O(h̃L + β−J
1 + mJ) = O(h̃L + mJ) such that

JL < r, as J, L →∞. Consequently,

θr = O
{(

e−
√

L log(h̃)J log(m)
)(

e
−
q

L log(h̃)
J log(m) + e

−
q

J log(m)
L log(h̃)

)}
= O

(
e−
√

L log(h̃)J log(m)
)

= O
(
e−
√

r log(h̃) log(m)
)

as r →∞.
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– Riemannian case (c) :

θr = O
{
h̃L + J

max
(

(1−β) log ρ

(1−β) log 2+log ρ
,−α

)}
,

where J, L, r →∞ in such a way that JL < r. We define

m′
(α,β,ρ) = max

( (1− β) log ρ

(1− β) log 2 + log ρ
,−α

)
and C =

m′
(α,β,ρ)

log h̃
.

Take L = bC log Jc. We get θr = O(Jm′
(α,β,ρ)). Consider now the largest

possible integer J = Jr such that JbC log Jc < r. Since Jr ∼ r
C log r , we

finally obtain

θr = O
{( r

log r

)m′
(α,β,ρ)

}
, as r →∞.

4.3 Proof of theorem 3.1

We work conditional on the past of {Xs, s ≤ 0}. We set

M =


1 −a1εn − b1 −a2εn − b2 . . . −an−1εn − bn−1

0 1 −a1εn−1 − b1 . . . −an−2εn−1 − bn−2

. . . . . . . . . . . . . . .
0 0 0 1 −a1ε2 − b1

0 0 0 0 1

 ,

then,

M


Xn

Xn−1

. . .
X1

 =


Anεn + Bn

An−1εn−1 + Bn−1

. . .
A1ε1 + B1

 ,

which can be written

ε1 = X1−B1
A1

ε2 = X2−b1X1−B2
a1X1+A2

.

.

εn = Xn−b1Xn−1−b2Xn−2−···−bn−1X1−Bn

a1Xn−1+a2Xn−2+···+an−1X1+An

,
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and we may set (ε1, . . . , εn) = φ(X1, . . . , Xn). Now

IEg(X1, X2, . . . , Xn) =
∫

g{φ−1(u1, . . . , un)}fε1(u1) · · · fεn
(un)du1 · · · dun.

We put (u1, . . . , un) = φ(x1, . . . , xn). The Jacobian is diagonal, hence we
compute

∂u1

∂x1
= C−1

1 ,
∂u2

∂x2
= C−1

2 , . . . ,
∂un

∂xn
= C−1

n .

Proof of corollary 3.3. We prove the result for the density of the couple
(X1, X4), we can prove the general result the same way. We have

p(x1, x4) =
∫

L(x1, . . . , x4)dx2dx3

≤ ‖f‖2

|C1|

∫
1

|C2C3|
f
(x2 − b1x1 −B2

C2

)
f
(x3 − b1x2 − b2x1 −B3

C3

)
dx2dx3.

Hence we put : u = C−1
2 (x2− b1x1−B2) and v = C−1

3 (x3− b1x2− b2x1−B3).
Direct computations give that the Jacobian matrix is diagonal and that its
absolute value writes |C2C3|, thus p(x1, x4) ≤ ‖f‖2

A1

∫
f(u)f(v)dudv ≤ ‖f‖2

A1
.
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