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introduced ARCH-type bilinear models for their specific long range dependence properties. We rather consider weak dependence properties of these models. The computation of mixing coefficients for such models does not look as an accessible objective. So, we resort to the notion of weak dependence introduced by Doukhan and Louhichi (1999), whose use seems more relevant here. The decay rate of the weak dependence coefficients sequence is established under different specifications of the model coefficients. This implies various limit theorems and asymptotics for statistical procedures. We also derive bounds for the joint densities of this model in the case of regular inputs.

Introduction and motivations 1.Infinite ARCH-type bilinear models

A vast literature is devoted to the study of conditionally heteroskedastic models. One of the best-known model is the GARCH model (Generalized Autoregressive Conditionally Heteroskedastic) introduced by Engle [START_REF] Engle | Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation[END_REF] and Bollerslev [START_REF] Bollerslev | Generalized autoregressive conditional heteroscedasticity[END_REF]. A usual GARCH(p, q) model can be written

r t = σ t ξ t , σ 2 t = α 0 + p i=1 β i σ 2 t-i + q j=1 α j r 2 t-j
where α 0 ≥ 0, β i ≥ 0, α j ≥ 0, p ≥ 0, q ≥ 0 are the model parameters and the (ξ t ) t are independent and identically distributed (iid). If the β i are null, we have an ARCH(q) model which can be extended in ARCH(∞) model, see Robinson [START_REF] Robinson | Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression[END_REF], Giraitis and Robinson [START_REF] Giraitis | Whittle estimation of ARCH Models[END_REF], Robinson and Zaffaroni [START_REF] Robinson | Pseudo-maximum likelihood estimation in ARCH(∞) models[END_REF], Kokozska and Leipus [START_REF] Kokozska | Change point estimation in ARCH models[END_REF], Kazakevicius and Leipus [START_REF] Kazakevicius | On stationarity in the ARCH(∞) model[END_REF]. These models are often used in finance because their properties are close to the properties observed on empirical financial data such as heavy tails, volatility clustering, white noise behaviour or autocorrelation of the squared series. To reproduce other properties of the empirical data such as leverage effect, a lot of extensions of the GARCH model have been introduced as EGARCH or T GARCH, see Zakoïan [START_REF] Zakoian | Threshold Heteroskedastic Models[END_REF], El babsiri and Zakoïan [START_REF] El Babsiri | Contemporaneous Asymetry in GARCH Processes[END_REF].

In this paper, we study weak dependence properties of ARCH-type bilinear models introduced by Giraitis and Surgailis [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF]. An ARCH-type bilinear model can be written

X t = ε t a + ∞ j=1 a j X t-j + b 0 + ∞ j=1 b j X t-j , (1) 
where a, (a j ) and (b j ) are real coefficients and the (ε t ) t∈Z are iid centered. We usually consider b 0 = 0. ARCH(∞), GARCH(p, q) and LARCH models are particular cases of the bilinear models, see Giraitis, Leipus and Surgailis [START_REF] Giraitis | Recent advances in ARCH modelling[END_REF], Giraitis, Kokoszka, Leipus and Teyssière [START_REF] Giraitis | Rescaled variance an related tests for long memory in volatility and levels[END_REF]. Quote that Doukhan, Teyssière and Winant [START_REF] Doukhan | An ARCH(∞) vector valued model[END_REF] introduced a very general vector valued version of this model. Giraitis and Surgailis [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF] prove that under restrictions, there is a unique stationary solution for these models. This solution has a chaotic expansion.

The following assumption is necessary to define this solution.

Assumption H. The (ε t ) t∈Z are iid centered, IE|ε 1 | < ∞ and the power series

A(z) = ∞ j=1 a j z j and B(z) = ∞ j=1 b j z j exist for |z| ≤ 1.
We define ξ L p = (IE|ξ| p ) 1/p and h p p = ( ∞ j=0 |h j | p ) 1/p , for p ∈ [1, ∞), with usual extension to the supremum norm if p = +∞. We set

G(z) = {1 -B(z)} -1 = ∞ j=0 g j z j and H(z) = A(z){1 -B(z)} -1 = ∞ j=1 h j z j .
Let (a b) j = j i=0 a i b j-i denote the convolution and a

(n) j = a j 1(1 ≤ j ≤ n)
, where 1 is the indicator function. Giraitis and Surgailis established in [START_REF] Giraitis | ARCH-type bilinear models with double long memory[END_REF] the following proposition Proposition 1.1 (Giraitis, Surgailis) Assume that the (ε t ) are iid, centered at expectation and such that ε t 2 = 1. If (a (n) -a) g 2 and (b (n) -b) g 2 tend to zero as n goes to infinity and if h 2 < 1, g 2 < ∞, then there exists a solution of equation (1) which is unique, strictly stationary and given by

X t = a ∞ k=1 sk<•••<s1≤t g t-s1 h s1-s2 • • • h sk-1-sk ε s1 • • • ε sk .
(2)

Weak dependence

To our knowledge, there is no study of the weak dependence properties of ARCH or GARCH type models with infinite number of coefficients. In fact, the use of mixing coefficients is very technical and necessitates additional regularity assumptions, see Doukhan [START_REF] Doukhan | Mixing : Properties and Examples[END_REF]. In the case of finite memory ARCH models, Mokkadem derives in [START_REF] Mokkadem | Propriétés de mélange des processus autorégressifs polynomiaux[END_REF] the absolute regularity properties of such models. An extension to infinite memory case seems quite doubtful because of Andrew's example of a non mixing first order autoregressive process, see [START_REF] Doukhan | Mixing : Properties and Examples[END_REF]. We add that mixing conditions also necessitate some regularity properties of the innovation process. In order to derive limit theorems for functionals of such models, we prove in this paper that a causal version of the weak dependence property introduced by Doukhan and Louhichi in [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] holds. Indeed, such weak dependence conditions is a simple alternative to mixing. It also yields all kinds of limit theorems. We recall the definition of θ-weak dependence introduced by Doukhan and Louhichi [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] and Dedecker and Doukhan [START_REF] Dedecker | A new covariance inegality and applications[END_REF] :

Definition 1.2 (X n ) n∈Z is θ-weakly dependent if there is a sequence (θ i ) i such that lim i θ i = 0 and (X n ) n satisfies Cov f X i1 , . . . , X iu , g X j1 , . . . , X jv ≤ θ i v f ∞ Lip (g) for all u, v, i 1 ≤ i 2 ≤ • • • ≤ i u ≤ i u +i ≤ j 1 ≤ j 2 ≤ • • • ≤ j v and any measurable functions f : R u → R and g : R v → R such that f ∞ , Lip (g) < ∞.
This condition implies limit theorems such as -Donsker invariance principle, see Dedecker and Doukhan [START_REF] Dedecker | A new covariance inegality and applications[END_REF] :

1 √ n [nt] k=1 X k D[0,1] ----→ n→∞ σW t ,
where W t is a standard Brownian motion and σ 2 = ∞ k=-∞ Cov(X 0 , X k ) ≥ 0 is well defined, if for some positive δ,

IE|X 0 | 2+δ < ∞ and i>0 i 1/δ θ i < ∞.
-Empirical central limit theorem, see Prieur [START_REF] Prieur | An empirical functional central limit theorem for weakly dependent sequences[END_REF] :

1 √ n n k=1 {1(X k ≤ x) -F (x)} D[ R] ---→ n→∞ Z(x),
where {Z(x)} x∈ R is the centered Gaussian process with covariance function

Γ(x, y) = ∞ k=-∞ Cov[1(X 0 ≤ x), 1(X k ≤ y)], if θ i = O(i -a ) for a > 2 + 2 √
2 and the marginal distribution of X 0 is atomless.

-Other statistical asymptotic features are considered in [START_REF] Ango Nze | Weak dependence, models and applications to econometrics[END_REF], [START_REF] Ango Nze | Weak dependence beyond mixing and asymptotics for non parametric regression[END_REF], [START_REF] Dedecker | A new covariance inegality and applications[END_REF], [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF], [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF] and [START_REF] Doukhan | Functional estimation for weakly dependent stationary time series[END_REF]. See also section 3.

Under restrictions on the model coefficients, we derive explicit bounds for these weak dependence coefficients and thus directly obtain asymptotic results for this process.

We first establish sufficient conditions for the existence of the chaotic solution (2) in L p . Indeed in proposition 1.1, the existence condition in L 2 is based on the coefficients (h j ). We prefer conditions on the coefficients (a j ) and (b j ). Thus we extend the result of existence of the chaotic expansion to L p . After this, we establish bounds for the decay of the weak dependence coefficients sequence in different cases. We define under H the following assumption :

Assumption H . Let h = h 1 ε 1 | L 1 , h < 1 and g 1 < ∞.
Remark. Assumption H is granted as soon as the coefficients (b j ) are non negative and

a 1 ε 1 L 1 + b 1 < 1, see section 4.1.
We now define our different specifications :

(a) Markovian case : H, η = J j=1 IE|a j ε 1 + b j | 1/J < 1 with J such that ∀j > J, a j = b j = 0. (b) Geometric decay : H, H and ∃α ∈]0, 1[, β > 1 : j β j |b j | ≤ 1 and |a j | ≤ α j .
Remark. Our definition of the geometric case gets for particular case a more classical definition where we suppose there exists 0 < ζ < 1, and

0 < λ < 1-ζ ζ such that, for all j ≥ 1 we have, 0 ≤ b j ≤ λζ j . (c) Riemannian decay : H, H , b 1 < 1 and ∃β > 1, α > 1 : j j β |b j | = B < ∞, and j j α |a j | = A < ∞.
In the following, we shall systematically refer to the previous conditions (a), (b) and (c).

Applications of our results are given in section 3. We also prove in section 3 that if all the coefficients are non negative, then each vector (X 1 , . . . , X n ) admits a density conditional on the past of the process if this is the case for the innovations. We also show that we can uniformly control the density of any couple (X 1 , X i ). Such results are very useful for functional estimation as stressed in [START_REF] Ango Nze | Weak dependence beyond mixing and asymptotics for non parametric regression[END_REF], [START_REF] Doukhan | Functional estimation for weakly dependent stationary time series[END_REF] and [START_REF] Bardet | A Lindeberg central limit theorem for dependent processes and its statistical applications[END_REF]. Section 4 contains the proofs.

2 Properties of bilinear models

2.1 Existence of the solution in L p (Ω, A, IP) Theorem 2.1 If the (ε t ) are iid and belong to L p (Ω, A, IP), (i) a sufficient condition of existence in L p (Ω, A, IP) of expansion (2) is g 1 < ∞ and h 1 ε 1 L p < 1.
(ii) The preceding condition is implied by the non negativity of the coefficients (b j ) and the inequality a

1 ε L p + b 1 < 1.
Remark. The result extends to dependent innovations (ε t ). Existence in

L 1 (Ω, A, IP) of the chaotic expansion (2) holds if sup t ε t L ∞ ≤ M , g 1 < ∞ and M h 1 < 1.
A condition on the coefficients (a j ) and (b j ) is the following : if the (b j ) are non negative, sup t ε t L ∞ ≤ M and a 1 M + b 1 < 1 then the expression (2) exists in L 1 (Ω, A, IP).

Weak dependence coefficients

From now on, we assume that the solution exists in L 1 (Ω, A, IP), is stationary and is given by equation ( 2). .

3 Applications Theorem 2.2 leads to various applications in the bilinear context. We first precise below conditions to get Donsker invariance principle and empirical central limit theorem. A last subsection devoted to conditional densities is more specific to our models. The results of this section are particularly relevant for functional estimation. Notice also that theorem 2.2 enables to obtain exponential inequalities, see [START_REF] Doukhan | A Bernstein type inequality for times series[END_REF]. Results for stochastic algorithms, Whittle estimator, and copula can be respectively found in [START_REF] Brandière | Dependent noise for stochastic algorithms[END_REF], [START_REF] Bardet | A uniform central limit theorem for the periodogram and its applications to Whittle parametric estimation for weakly dependent time series[END_REF] and [START_REF] Doukhan | Copula of a stationary vector valued weakly dependent process[END_REF]. For a general review of these properties, see [START_REF] Dedecker | Weak dependence : models, theory and applications[END_REF].

Donsker invariance principle

Let P δ be the following condition : for some δ > 0, IE|X 0 | 2+δ < ∞. Using the results of Dedecker and Doukhan [START_REF] Dedecker | A new covariance inegality and applications[END_REF] together with theorem 2.2, we easily obtained the Donsker invariance principle (see section 1.2) under the following assumptions (a) in the Markovian case : P δ and η < 1, (b) under geometric decay : P δ , (c) under Riemannian decay : P δ and d > 1 + 1/δ with d defined in theorem 2.2.

Note in particular that in the important case of LARCH models (b j = 0), in the Markovian case, the second condition is reduced to IE|ε 1 | J j=1 |a j | < 1 and under Riemannian decay to α > 1 + 1/δ.

Empirical central limit theorem

Let P be the following condition : the marginal distribtion of X 0 is atomless. The results of Prieur together with theorem 2.2 enable us to get the empirical central limit theorem (see section 1.2) under the following assumptions (i) in the Markovian case : P and η < 1, (ii) under geometric decay : P , (iii) under Riemannian decay :

d > 2 + 2 √ 2 with d defined in theorem 2.2.
Note also that for LARCH models, in the Markovian case the second condition is reduced to IE|ε 1 | J j=1 |a j | < 1 and under Riemannian decay to α > 2+2 √ 2.

Conditional densities

We give here a useful result for the density of (X 1 , . . . , X n ).

Theorem 3.1 (Density of n-th marginals) We define

A t = a + ∞ j=t a j X t-j , B t = ∞ j=t b j X t-j and C i = A i + i-1 k=1 a k x i-k , with C 1 = A 1 .
Assume all variables and coefficients are non negative. If the ε t are independent with marginal density f εt , then (X 1 , . . . , X n ) has a density L(x 1 , . . . , x n ) conditionally to the past of the process. Forgetting the defi-nition set, we have

L(x 1 , . . . , x n ) = n i=1 1 |C i | f εi x i -b 1 x i-1 -b 2 x i-2 -• • • -b i-1 x 1 -B i C i .
Corollary 3.2 (Control of the density) Under the same assumptions as in theorem 3.1, if a is different from zero and if the densities of the (ε t ) are all bounded by M , then, for all (x 1 , . . . , x n ),

L(x 1 , . . . , x n ) ≤ M a n .
Corollary 3.3 (Density of a couple) Under the same assumptions as in theorem 3.1, and if the (ε t ) are iid with density f , then the density

p i of the couple (X 1 , X i ), satisfies p i ∞ ≤ f 2 ∞ /A 1 for all i ∈ Z Z.
Those lemmas are useful respectively for subsampling and functional estimation, see [START_REF] Ango Nze | Weak dependence beyond mixing and asymptotics for non parametric regression[END_REF], [START_REF] Doukhan | Functional estimation for weakly dependent stationary time series[END_REF] and [START_REF] Bardet | A Lindeberg central limit theorem for dependent processes and its statistical applications[END_REF]. For example, a standard kernel estimate of the density is classically proved to have variance ∼ f (x) K 2 (s)ds/nh n (with kernel function K, density f and bandwidth h n ) with corollary 3.3 and an additional dependence assumption θ r = O(r -a ) for a > 3.

Proofs

We give in this section the proofs of theorem 2.1, theorem 2.2 and theorem 3.1. In the following, c denotes a constant that may vary from line to line.

Proof of theorem 2.1

We begin the proof by a useful lemma Lemma 4.1 Assume that the coefficients (b j ) are non negative and b 1 < 1, then the coefficients (g j ) are non negative and

g 1 = (1 -b 1 ) -1 .
Proof of lemma 4.1. Since the (b j ) are non negative and b 1 < 1, a classical result shows that the development in power series +∞ j=0 g j z j of the function G(z) = {1 -B(z)} -1 has a radius bigger than 1. Moreover, after direct computations, we get the non negativity of the (g j ). Hence, as G is increasing on [0, 1], we have for all positive integer n and for all z ∈ [0, 1]

n j=0 g j z j ≤ G(z) ≤ G(1).
Consequently, +∞ j=0 g j ≤ G(1). We conclude by a continuity argument.

We now prove theorem 2.1. We use the normal convergence in L p of the series defined by (2), indeed

∞ k=1 sk<•••<s1≤t g t-s1 h s1-s2 • • • h sk-1-sk ε s1 • • • ε sk L p ≤ ∞ k=1 sk<•••<s1≤t |g t-s1 h s1-s2 • • • h sk-1-sk | ε s1 • • • ε sk L p ≤ g 1 k h k-1 1 ε k L p . Hence h 1 ε 1 L p < 1 implies X t L p < ∞. Since H(z) = A(z)G(z), we derive h 1 ≤ a 1 g 1 . Non negativity of the (b j ) implies g i ≥ 0. Thus sup |z|<1 |G(z)| = sup |z|<1 ∞ i=0 g i z i = sup |z|<1,z>0 ∞ i=0 g i z i = ∞ i=0 g i = g 1 . Hence, h 1 ≤ a 1 sup |z|<1 |1 -B(z)| -1 ≤ a 1 inf |z|<1 |1 -B(z)| -1 . Now j b j < 1 implies h 1 ≤ a 1 (1 -j b j ) -1 ≤ a 1 1-b 1 . Finally, if a 1 ε 1 L p + b 1 < 1, then ε L p h 1 < 1. 4.2 Proof of theorem 2.2
Markovian case (a). We use the general Markov chain theory. Write

X n = M (X n-1 , . . . , X n-J , ε n ). Then Y n = (X n , . . . , X n-J+1 ) is a Mar- kov chain with Y n = F (Y n-1 , ε n ) where x = (x 1 , . . . , x J ) and F (x, ε) = (M (x, ε), x 1 , . . . , x J-1 ). Thus IE|M (x, ε 1 ) -M (y, ε 1 )| ≤ IE J j=1 (a j ε 1 + b j )(y j -x j ) ≤ max j |y j -x j | IE J j=1 |a j ε 1 + b j | .
We define x = max 1≤j≤J η j-1 |x j |. We have

F (x, ε 1 ) -F (y, ε 1 ) ≤ max |M (x, ε 1 ) -M (y, ε 1 )| , max 1≤i<J η i |x i -y i | IE F (x, ε 1 ) -F (y, ε 1 ) ≤ max η J max 1≤i≤J (|x i -y i |) , max 1≤i<J (η i |x i -y i |) . Finally, IE F (x, ε 1 ) -F (y, ε 1 ) ≤ η x -y . ( 3 
)
We then use the following lemma which is a vectorial extension of a result of Doukhan and Louhichi [START_REF] Doukhan | A new weak dependence condition and applications to moment inequalities[END_REF].

Lemma 4.2 Assume Y n = (X n , . . . , X n-J+1 ) is a Markov chain with Y n = F (Y n-1 , ε n ) and the (ε n ) are iid with IE|ε 1 | < +∞. Then, if equation (3) holds, θ r = O(η r ) as r → ∞. Proof of lemma 4.2. For f : IR u → IR with f ∞ ≤ 1, g : IR v → IR, Lip g < ∞, i 1 ≤ • • • ≤ i u ≤ i u + r ≤ n 1 ≤ • • • ≤ n v and i u -i 1 > J, we set X i = (X i1 , .
. . , X iu ) and X n = (X n1 , . . . , X nv ). We have

Cov[f (X i ), g(X n )] = f (x i1 , . . . , x iu ){IEg(X y u n ) -IEg(X n )}dP Xi 1 ,Xi 1 +1...,Xiu ,
where y u = (x iu , x iu-1 , . . . , x iu-J+1 ) and X yu n denotes the vector

X n knowing that Y iu = y u . Now, it is clear that |IEg(X y u n ) -IEg(X n )| ≤ µ(dỹ u )IE|g(X y u n ) -g(X ỹu n )| ≤ Lip (g) v z=1 µ(dỹ u )IE|X y u nz -X ỹu nz |.
From inequality (3) and using that η < 1 , we get

IE Y y u nz -Y ỹu nz ≤ η nz-iu y u -ỹu ≤ η r y u -ỹu and consequently IE|X y u nz -X ỹu nz | ≤ η r y u -ỹu .
Finally, we get

dP Xi 1 ,Xi 1 +1...,Xiu µ(dỹ u )IE|X y u nz -X ỹu nz | ≤ η r dP Xi 1 ,Xi 1 +1...,Xiu µ(dỹ u ) y u -ỹu ≤ η r dP Xi 1 ,Xi 1 +1...,Xiu µ(dỹ u ) i |y u i -ỹu i | ≤ cη r .
An explicit bound on θ r follows. In the cases (b) and (c), we shall need lemmas describing the behavior of the coefficients (g j ) and (h j ) involved by expansion [START_REF] Ango Nze | Weak dependence beyond mixing and asymptotics for non parametric regression[END_REF]. We derive this behavior from the decay rates of the initial parameters (a j ) and (b j ). The study of the coefficients (g j ) et (h j ) aims at controlling the tails of the coefficients series. We begin by some useful lemmas.

Lemma 4.3 Let γ J = max j>J |g j |. Then |g k | ≤ γ J b 1 + g 1 k j=k-J |b j |, ∀k ∈ N, ∀J ∈ {1, . . . , k -1}. Proof of lemma 4.3. By definition of G, G(z){1 -B(z)} = ∞ k=0 α k z k = 1. Put b 0 = -1, then 1 -B(z) = -∞ j=0 b j z j thus α k = k j=0 g j b k-j
. By identification : α k = δ 0k . Thus we get recursive equations on the coefficients

g j : α 0 = -g 0 b 0 ⇒ g 0 = 1. Then, for k ≥ 1, g k = k-1 j=0 g j b k-j . For all J ∈ {1, . . . , k -1}, g k = k-J-1 j=1 g k-j b j + k j=k-J g k-j b j ≤ γ J k-J-1 j=1 |b j | + k j=k-J |g k-j ||b j | ≤ γ J b 1 + g 1 k j=k-J |b j |.
We give now an explicit bound for the coefficients in the geometric case. 

∀ 1 < β 1 < β, γ k = O(β -k 1 ) as k → ∞.
Proof of lemma 4.4. The series ∞ j=1 b j r j has a radius bigger than β. Thus, the development in power series of {1 -B(z)} -1 has a radius of at least β. Consequently, for all 0 ≤ r < β the sequence (g j r j ) j is bounded and so, there exists M r > 0 such that g j ≤ M r r -j for all j.

We now turn to the tails of the series generated by (g j ) and (h j ).

Lemma 4.5 (Control of q K thanks to r K ) Let r K = ∞ k=K+1 |g k | and q K = ∞ k=K+1 |h k |. For all J < K, q K ≤ g 1 l≥K+1-J |a l | + 2 r J a 1 .
Proof of lemma 4.5. We have

q K ≤ ∞ k=K+1 k j=0 |a k-j g j | ≤ ∞ j=0 |g j | ∞ k=max(K+1,j+1) |a k-j | ≤ K j=0 |g j | ∞ k=K+1 |a k-j | + ∞ j=K+1 |g j | ∞ k=j+1 |a k-j |.
We now control each term,

∞ j=K+1 |g j | ∞ k=j+1 |a k-j | ≤ r K a 1
and for all J < K,

K j=0 |g j | ∞ k=K+1 |a k-j | = J j=0 |g j | ∞ k=K+1 |a k-j | + K j=J+1 |g j | ∞ k=K+1 |a k-j | ≤ g 1 l≥K+1-J |a l | + r J a 1 .
Lemma 4.6 (Controls of r K and q K ) -Geometric case (b) :

r K = O(β -K 1 ) and q K = O α -K log β 1 log(α/β 1 )
as K → ∞.

-Riemannian case (c) :

r K = O K (1-β) log ρ (1-β) log 2+log ρ and q K = O K max( (1-β) log ρ (1-β) log 2+log ρ ,-α) as K → ∞, with ρ = 1 1+ 1-b 1 B < 1.
Proof of lemma 4.6, (b). As |g j | ≤ cβ -j 1 , we easily get

r K = O(β -K 1 )
and q K ≤ c(e (K-J) log α + e -J log β1 ).

We take J = K log α log(α/β1) and we obtain

q K = O α -K log β 1 log(α/β 1 )
as K → ∞.

Proof of lemma 4.6, (c). We have

r K ≤ ∞ k=K+1 k-1 j=0 |g j b k-j | ≤ ∞ j=0 |g j | ∞ k=max(K+1,j+1) |b k-j | ≤ K j=0 |g j | ∞ k=K+1 |b k-j | + ∞ j=K+1 |g j | ∞ k=j+1 |b k-j | ≤ K j=0 |g j | ∞ k=K+1-j |b k | + r K b 1 . Thus, r K (1 -b 1 ) ≤ K j=0 |g j | ∞ k=K+1-j |b k |. Moreover, ∞ k=K+1-j |b k | ≤ ∞ k=K+1-j |b k |k β (K + 1 -j) -β ≤ B(K -j) -β .
Then, for all J < K,

r K 1 -b 1 B ≤ K j=0 |g j |(K -j) -β .
Consequently,

r K 1 -b 1 B ≤ J j=0 |g K-j |j -β + K j=J+1 |g K-j |j -β ≤ r K-J -r K + g 1 K j=J+1 j -β ≤ r K-J -r K + g 1 K 1-β -J 1-β 1 -β .
In particular, we get

r 2K 1 + 1 -b 1 B ≤ r K + g 1 1 -β K 1-β (2 1-β -1).
Thus we derive for all j the inequality r 2 j+1 ≤ ρ r 2 j + γ 2 j(1-β) , with 0 < ρ < 1 and γ > 0. By induction,

0 ≤ r 2 j+1 ≤ j k=0 γρ k 2 (1-β)(j-k) + ρ j g 1 .
We now control the first term. We have

j k=0 γρ k 2 (j-k)β = j k=0 γρ j-k 2 k(1-β) = J k=0 γρ j-k 2 k(1-β) + j k=J+1 γρ j-k 2 k(1-β) ≤ γ 1 -2 1-β (ρ j-J + 2 J(1-β) ).
We balance both terms putting J = j log ρ (1-β) log 2+log ρ and we get

r 2 j = O 2 j (1-β) log ρ (1-β) log 2+log ρ as j → ∞.
Let K such that 2 j < K ≤ 2 j+1 , we have 0 ≤ r K ≤ r 2 j . Finally,

r K = O K (1-β) log ρ (1-β) log 2+log ρ , as K → ∞.
Using that for all J < K,

l≥K+1-J |a l | ≤ A(K -J) -α , taking J = K/2 , we get q K = O K (1-β) log ρ (1-β) log 2+log ρ + K -α as K → ∞, which concludes.
Lemma 4.7 (Bounding θ) For all r, L, J > 0 such that LJ < r, θ r ≤ c( hL + r J + q J ).

Proof of lemma 4.7. The chaotic expansion (2) writes

X t = a ∞ l=1 ∞ j1=0 ∞ j2=1 • • • ∞ jl=1 g j1 h j2 • • • h jl ε t-j1 • • • ε t-(j1+•••+jl) . (4) 
Consider the vectors X i = (X i1 , . . . , X iu ), and X j = (X j1 , . . . , X jv ) where j 1 -i u ≥ r. Take f : R u → R, g : R v → R two functions such that Lip (g) < ∞ and f ∞ ≤ 1. We define X * j = (X * j1 , . . . , X * jv ), where X * t denotes the sums for which l stops at L and j 1 , . . . , j l stop at J in the expansion (4). Note that X * j and X i are independent if L and J satisfy LJ < r, thus

|Cov[f (X i ), g(X j )]| ≤ |Cov[f (X i ), g(X j ) -g(X * j )]| + |Cov[f (X i ), g(X * j )]|.
The second term vanishes by independence. For simplicity, we forget the constant value a. We have

|Cov[f (X i ), g(X j ) -g(X * j )]| ≤ 2 f ∞ E|g(X j ) -g(X * j )| ≤ 2 Lip (g) f ∞ v k=1 E|X jk -X * jk | ≤ 2vLip (g) f ∞ E|X 0 -X * 0 |,
by the stationarity of (X t , X * t ). Thus, we may set

θ r = E|X 0 -X * 0,r,J,L |,
where

X * 0,r,J,L = L l=1 J j1=0 • • • J jl=0 g j1 h j2 • • • h jl ε -j1 • • • ε -(j1+•••+jl) , if JL < r.
Thus, we finally obtain

θ r ≤ ∞ l=L+1 g 1 hl-1 ε L 1 + ∞ l=1 r J hl-1 ε L 1 + ∞ l=1 q J g 1 (l -1) hl-2 ε 2 L 1 ≤ c( hL + r J + q J ).
End of the proof of the theorem 2.2. The end of the proof is dedicated to explicit this bound in terms of (a j ) and (b j ) decay rates.

-Geometric case (b) :

θ r = O( hL + β -J 1 + m J ) = O( hL + m J ) such that JL < r, as J, L → ∞. Consequently, θ r = O e - √ L log( h)J log(m) e - q L log( h) J log(m) + e -q J log(m) L log( h) = O e - √ L log( h)J log(m) = O e - √ r log( h) log(m) as r → ∞.
-Riemannian case (c) : Take L = C log J . We get θ r = O(J m (α,β,ρ) ). Consider now the largest possible integer J = J r such that J C log J < r. Since J r ∼ r C log r , we finally obtain θ r = O r log r m (α,β,ρ) , as r → ∞. We work conditional on the past of {X s , s ≤ 0}. We set

M =       1 -a 1 ε n -b 1 -a 2 ε n -b 2 . . . -a n-1 ε n -b n-1 0 1 -a 1 ε n-1 -b 1 . . . -a n-2 ε n-1 -b n-2 . . . . . . . . . . . . . . . 0 0 0 1 -a 1 ε 2 -b 1 0 0 0 0 1       , then, M     X n X n-1 . . . X 1     =     A n ε n + B n A n-1 ε n-1 + B n-1 . . . A 1 ε 1 + B 1     ,
which can be written

             ε 1 = X1-B1 A1 ε 2 = X2-b1X1-B2 a1X1+A2 . . ε n = Xn-b1Xn-1-b2Xn-2-•••-bn-1X1-Bn a1Xn-1+a2Xn-2+•••+an-1X1+An
, and we may set (ε 1 , . . . , ε n ) = φ(X 1 , . . . , X n ). Now IEg(X 1 , X 2 , . . . , X n ) = g{φ -1 (u 1 , . . . , u n )}f ε1 (u 1 )

• • • f εn (u n )du 1 • • • du n .
We put (u 1 , . . . , u n ) = φ(x 1 , . . . , x n ). The Jacobian is diagonal, hence we compute

∂u 1 ∂x 1 = C -1 1 , ∂u 2 ∂x 2 = C -1 2 , . . . , ∂u n ∂x n = C -1 n .
Proof of corollary 3.3. We prove the result for the density of the couple (X 1 , X 4 ), we can prove the general result the same way. We have p(x 1 , x 4 ) = L(x 1 , . . . , x 4 )dx 2 dx 3

≤ f 2 |C 1 | 1 |C 2 C 3 | f x 2 -b 1 x 1 -B 2 C 2 f x 3 -b 1 x 2 -b 2 x 1 -B 3 C 3 dx 2 dx 3 .
Hence we put :

u = C -1 2 (x 2 -b 1 x 1 -B 2 ) and v = C -1 3 (x 3 -b 1 x 2 -b 2 x 1 -B 3
). Direct computations give that the Jacobian matrix is diagonal and that its absolute value writes

|C 2 C 3 |, thus p(x 1 , x 4 ) ≤ f 2 A1 f (u)f (v)dudv ≤ f 2 A1 .

  Let f : R d → R, we define Lip (f ) = sup (x1,...,xd) =(y1,...,yd) |f (x 1 , . . . , x d ) -f (y 1 , . . . , y d )| |x 1 -y 1 | + • • • + |x d -y d | .

Theorem 2 . 2 (

 22 Bounds on θ) (a) In the Markovian case, θ r = O(η r ) as r → ∞. (b) Under geometric decay, for any β 1 such that 1 < β 1 < β, θ r = O e -c √ r as r → ∞, where c = (log h log m) 1/2 with m = α log β 1 log(α/β 1 ) . (c) Under Riemannian decay, θ r = O r log r -d as r → ∞, where d = min (β-1) log ρ (1-β) log 2+log ρ , α with ρ = 1 1+ 1-b 1 B

Lemma 4 . 4 (

 44 Control of γ k under geometric decay) -Geometric case (b) :

θ

  r = O hL + J max (1-β) log ρ (1-β) log 2+log ρ ,-α ,where J, L, r → ∞ in such a way that JL < r. We definem (α,β,ρ) = max (1 -β) log ρ (1 -β) log 2 + log ρ , -α and C = m (α,β,ρ) log h .

4. 3

 3 Proof of theorem 3.1