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Abstract-This paper deals with parallel computation in 
electrical engineering. Shared memory and distributed memory 
architectures are presented, with their implication in the 
development of parallel numerical algorithms. The necessity of 
optimizing the parallel performances is highlighted. Both Cray 
C98 and Cray T3E are finally compared. 

Index terms-Finite element methods, parallel algorithms, 
shared memory systems, distributed memory systems, 
electromagnetic scattering. 

question is: how easily can they be ported onto different 
parallel architectures? 

The object of this paper is to show the interest of the 
parallel computing for electrical engineering. Shared and 
distributed memory parallel computers are first presented. 
The implications of the parallel architecture on the algorithms 
is then highlighted. A comparison between the Cray C98 and 
the Cray T3E is finally presented as example. 

11. SHARED AND DISTRIBUTED MEMORY PARALLEL COMPUTERS 

I. INTRODUCTION 

Numerical computation is more and more used in 
engineering sciences to develop new devices or to optimize 
operating apparatus. Many of the numerical modeling 
packages make use of the Finite Element (F.E.) method. 
Unfortunately, this method requires the 3D mesh of the 
whole studied domain. This is especially expensive for open 
boundary problems. Furthermore, the size of the 3D mesh 
makes the modeling of large, coupled or complex problems 
difficult or even impossible to perform. 

Only parallel computers provide the increase in computing 
performance required to solve such types of problems today. 
Two reasons may be highlighted: when large memory is 
needed because of a large amount of data, or when speed is 
needed to obtain the solution [l]. In recent years, several 
papers in parallel computational electromagnetics were 
published [2-61, especially since new distributed memory 
architectures appeared. Several parallelizations of existing 
codes were also reported [7] .  However, electrical engineering 
seems to be behind other domains in parallel computation. 
For example, 3D optimization using genetic algorithms for 
Navier-Stokes computations is today currently performed in 
fluid dynamics [8]. 

The cost related to the parallel computation is an important 
point to emphasize. This cost has to be estimated in terms of 
computational developments -how much have numerical 
algorithms to be modified in order to take advantage of 
parallel computation?- and in, terms of use of parallel 
computers. A good match between the algorithms and the 
architecture of the computer has to be found to obtain the 
optimum performances. This is especially true for new 
developed codes. For existing industrial codes, the crucial 
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We are concerned only by Multiple Instruction Multiple 
Data (MIMD) parallel computers: they are multi-purpose and 
the most adapted to the type of problems that we want to 
solve, These computers may be classified under two 
categories, depending on the type of access to the memory 
they provide: shared memory and distributed memory. 

A. Shared Memory Parallel Architectures 

They are composed of multiple processors, the memory is 
shared by all the processors, and the communication is 
performed via a high speed interconnection network. These 
computers may also have vector capabilities, such as the Cray 
YMP or the Cray C98. 

The exchange of data is performed by accessing the same 
memory address. Semaphores are used to prevent the 
problem of simultaneous access to the same data by various 
processors. The programming environment is generally well 
developed on such computers. Automatic vectorization and 
parallelization tools are available. Many profiling tools also 
give information about the performances of the codes 
(parallelism ratio, parallelkequential portion of the code, 
average vector length, ...). 

It seems however that this type of technology has reached 
a ceiling: it becomes difficult to increase the number of 
interconnected processors and the size of the memory. 
Obviously, computers like Cray C94/C98 will be replaced 
before the end of the century. Furthermore, this type of 
computer is expensive, requiring small companies to share 
their costs and thus their use. 

B. Distributed Memory Parallel Architectures 

They are composed of independent subsystems. Each 
processor has its own memory, and the communication is 
achieved using message passing. An additional cost due to 

0018-9464/98$10,00 0 1998 IEEE 

mailto:vollair@trotek.ec-lyon.fr
http://lyon.fr
mailto:nicolas@trotek.ec-lyon.fr
http://cegely.ec-lyon.fr


3420 

the communications is then unavoidable and the 
interconnection network is crucial for the parallel 
performances. Furthermore, the question of synchronization 
between the processors arises. At present, no tool seems 
really efficient to automatically parallelize codes on such 
architectures. 

Cray T3E or Intel Paragon are examples of distributed 
memory parallel computers. Access to such a computer may 
be cheaper than the access to a shared memory one. For 
example, it is possible to obtain good computation 
performances by using a cluster of workstations or a cluster 
of personal computers. 

C. Present Trend 

Distributed memory parallel computers then become 
unavoidable. Presently, they are the only known way 
allowing the efficient use of a large number of processors 
together with a large physical memory. New hybrid parallel 
architectures are arising: they combine shared and distributed 
memory and they are equipped with powerful vector 
processors, such as the FUJITSU VPP300. This allows a 
better quality price-performance ratio and the operating costs 
are reduced. 

111. PARALLEL ALGORITHMS 

Some important points have to be taken into account. First, 
software tools provided with the computer, for the analysis of 
the parallel performance or for the automatic 
parallelizatiodvectorization, have a great impact on the way 
that parallelism is realized. Secondly, numerical algorithms 
have to be lightly or deeply modified in order to take 
advantage of parallel processing. Thirdly, the presence or the 
lack of portability is a choice to make: it seems clear that, the 
more a code is optimized for a given computer, the more it 
will be non-portable on other machines. 

Parallel algorithms have to be adapted to suit the 
architecture of the computer in order to obtain the best 
parallel performance. Whatever the type of architecture, a 
good load balancing and a minimization of the overhead 
introduced by the parallelism are required. 

A. Shared Memory Parallel Computers 

On shared meinory computers, parallelism IS introduced by 
splitting the loops. The main work to parallelize the code 
concerns the study of the scope of the variables and the tiling 
[9]. This can be performed automatically or manually. 

As example, automatic vectorization and parallelization 
tools are available on the Cray C98. This is called 
autotasking. But it is necessary to add compiler directives 
manually and to find the scope of each variable to increase 
parallel performance to an acceptable level (Fig. 1). This 
technique is called microtasking. Vector performances have 
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Fig. 1. Cray C98-speedups before and after manual optimization 

also to be taken into account. The main problem on such 
architectures consists in finding a good compromise between 
vectorization and parallelization. 

B. Distributed Memory Parallel Computer 

On distributed memory computers, several programming 
models are possible (SPMD, MPMD, MS), depending on the 
nature of the application [lo]. The main points to respect are 
partitioning the data and the computations, and minimizing 
the communications. The domain decomposition may be a 
natural way to achieve parallelism [2, 7, 111. But it requires 
an additional expensive preprocessing step to slice the mesh. 
Moreover it is not adapted to massively parallel computers, 
because the number of partitions possibly generated is often 
limited. 

The main optimization on such architectures consists in 
minimizing the overhead due to the communications. An 
example is in the use of the message passing library. By 
switching from PVM to SHMEM', speedups have been 
deeply increased on a Cray T3E (Fig. 2). On the other hand, 
this optimization has been made to the detriment of 
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Fig. 2 Cray T3E-speedups with PVM or with SHMEM for message passing 

' SHMEM IS a library developed by Cray The memory space IS 

physically dlstnbuted but virtually shared The date have then to be allocated 
at the same address in the memory on every processor 
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portability. Note that the PVM performances seem to drop as TABLE I 
COMPARISON BETWEEN ALGORITHMS ON C98 AND T3E the number of processors increases from 16 to 32. This is due 

to the overhead introduced by the parallelism: the number of 
degrees of freedom of the test problem used for these 
computations is not large enough to obtain good assembling per element per degree of freedom 
performances on a high number of processors. preconditioning incomplete Cholesky block incomplete Cholesky 

Cra C98 Cray T3E 
sparse regular matrix representation sp:se redundant 

solving conjugate gradient conjugate gradient 

On the Cray C98 [13], a redundant sparse row-wise 
representation is used to store the matrix. The access to the 

Iv EXAMPLE COMPARISON BETWEEN THE C98 AND THE CRAY T3E. 

Both computers are up-to-date. The Cray C98 is a parallel 
shared memory computer with vector processors while the 
Cray T3E is a massively parallel distributed memory 
computer with scalar processors. For the same application of 
electromagnetic scattering, algorithms, performances and 
CPU times are strongly dependent on the architecture. They 
are compared in the next sections. 

A. The Electromagnetic Scattering Code 

The wave3d program is used to model unbounded 
frequency domain problems such as microwave or 
electromagnetic scattering [ 121. The Finite Element 
formulation is directly written in terms of the vector field. 
Because nodal-based finite elements are used, a penalty term 
is added to the formulation in order to avoid spurious 
reflections. The open boundary is modeled using a 3D second 
order vector Engquist-Majda absorbing boundary condition 
(A.B.C.). The Galerkin form of the global formulation for 
scattering problems is the following: 

non-zero terms of a column are adjacent in memory, allowing 
good vector performances. On the other hand, this type of 
storage requires twice as much memory space as a regular 
sparse storage [9]. The assembling of the FE matrix is 
performed by elementary contributions. For large problems, 
the incomplete Cholesky preconditioning method is more 
efficient, due to the reduction of the number of iterations. 

On the other hand, the assembling is performed by degree 
of freedom on the Cray T3E [14]. It allows an optimal 
speedup for this step to be obtained because no message 
passing is required between the processors. A block 
incomplete Cholesky preconditioning together with the 
conjugate gradient is used to solve the matrix system [15, 
161. Compared to a diagonal preconditioning, this method 
reduces the number of iterations by generating a good 
preconditioning. Compared to the usual incomplete Cholesky 
preconditioning, no message passing is required and the 
overhead introduced by the parallelism is negligible when the 
number of degrees of freedom is large. The speed up is then 
considerably better that the optimal linear gain [ 151. 

-Iv [i (VN x V x H) + k&N H dv + (VN)(V . H)dv + C. Comparison Between Parallel Pe@ormances 

( l )  Parallel performances are first analyzed on a 60000 
S degrees of freedom matrix (Fig. 3). This is the largest 

1 Jv 

jsN T(H)ds-JNnV.Hds= 

with the A.B.C.: T(H) = jkHt+-Vt2Ht, j 
2k 

and H i  : incident field 

problem which can be solved on- only one processor of-the 
Cray T3E. This is essential to obtain the actual speedup. On 
the other hand, this size of problem is insufficiently large to 
obtain good performances on a large number of processors, 
because of the cost due to the overhead during the conjugate 
gradient iterations. This explains the breakpoint in the 
speedup at the 4 processor level (Fig. 4). The breakpoint is of 
course strongly dependent on the size of the problem size. 
Note that the parallel performances on the Cray T3E are 

This formulation leads to 3 complex unknowns per node. 
A good accuracy in the results is obtained with 10 nodes per 
wavelength and a distance between the device and the outer 
boundary equal to 1 wavelength. This high number of 
degrees of freedom justifies the use of parallel computers. 

Boundary conditions on conductors and on -symmetry 
planes are introduced by globally modifying the FE matrix. 
This one is approximately symmetrized by addition with its 
transposed. Because it is sparse, the matrix system is solved 
using the conjugate gradient algorithm. 

B. Comparison Between Parallel Algorithm 

Table I summarizes the algorithms used on both 
computers. These algorithms have been shown to give the 
best performances on each computer. 

Fig. 3. 60000 degrees of freedom problem - scattering by a perfect electnc 
conducting cylinder. 
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Fig 4 Speedups for a 60000 degrees of freedom problem 

expressed in terms of superlinear speedup: the speedup is 
greater than the number of processors used. Indeed the block 
incomplete Cholesky preconditioning leads to a weakening of 
the convergence rate. But the number of preconditioning 
operations decreases when the number of processors 
increases, allowing better performances. 

The difference between the CPU times on both C98 and 
T3E (Table 11) is due to the different monoprocessor 
performances (average performances: 50 Mflops for the T3E 
and 375 Mflops for the C98). On the other hand the CPU 
time used on the C98 increases more slowly than on the T3E 
when the number of degrees of freedom increases. First, is in 
the increasing of the vector performances on the C98. 
Second, the overhead becomes more penalizing on the T3E 
because the size and the number of messages increase. 

CONCLUSION 

We have presented in this paper our experience in parallel 
computational electromagnetics. The implementation of a 
code on a Cray C98 is easy and the algorithms do not need to 
be rewritten. However, a thought intervention of the 
programmer is necessary to add manually compiler 
directives. Vector performances have also to be watched: a 
good compromise between vectorization and parallelization 
has to be found. On the other hand, the implementation on a 
Cray T3E is more difficult. Domain decomposition 
techniques may be used for existing codes, keeping the 
overall modifications made to the codes to a minimum But 

TABLE I1 
COMPARISON OFTHE TOTAL SOLVING TIMES ON C98 AND T3E COMPUTAnONS ARE 

PERFORMED ON 8 PROCEsSORS WITH ALGORITHMS PRESENTED IN TABLE I 

Cray C98 Cray T3E 
degrees of freedom CPU hme iterations CPU time iterations 

6) (S) 
45000 476 415 4643 426 
120000 6650 10701 327531 13439 
210000 15101 16586 751237 21829 

this strategy is not really adapted to massively parallel 
computation. Better performances may be obtained by 
rewriting completely the code. 

Like in many other disciplines, computational 
electromagnetics requires a computing power considerably 
higher than that offered by today's conventional 
supercomputers. Massively parallel computing is destined to 
play a great role in the next scientific developments. The use 
of such computers requires deep modifications of the 
sequential algorithms, so future developments will have to 
take this fact into account. 
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