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Abstract-This paper describes the parallelization of the 
conjugate gradient algorithm fitted with three types of 
preconditioning in order to compute large finite element complex 
sparse system of equations on a distributed memory parallel 
computer. Parallel performances are analyzed and compared 
using a problem of 60000 degrees of freedom. The 
electromagnetic scattering of a plane wave by a perfect electric 
conducting airplane is finally given as a large example. 

Index terms-Finite element methods, parallel algorithms, 
distributed memory systems, sparse matrices. 

I. INTRODUCTION 

Massively parallel distributed memory computers provide 
the increase in computing performances required to solve 
large problems. Indeed, only parallel computation actually 
enables to modelize real devices because it reduces the 
computation time and mainly arranges enough memory. 

In this paper, we are dealing with the implementation of a 
Finite Element (FE) formulation for high frequency (HF) 
electromagnetic scattering problems [ 11 on a parallel 
distributed memory computer [ 2 ] .  Most of the parallel FE  
codes use domain decomposition techniques to assemble the 
FE matrix [3-51: the solver operates first on the different sub- 
domains and then on the global FE matrix. This method is 
efficient but requires a pre-processing step. Moreover, the 
number of processors which can be used is often limited by 
the decomposition method. For these reasons we have 
preferred to distribute the rows of the FE matrix to the 
processors and to solve the global matrix. The assembling is 
performed by degrees of freedom (dof), so it has very good 
parallel performances [ 6 ] .  On the other hand, the solving is 
CPU-expensive with bad parallel performances [2]. 

The objective of this paper is to describe how the solver 
has been modified in order to obtain better performances on a 
cluster of 10 DEC-ALPHA workstations linked by a FDDI 
ring and fitted with Parallel Virtual Machine software. The 
parallelization and the efficiency of the Conjugate Gradient 
(CG) algorithm strongly depend on the type of 
preconditioning. The Diagonal Preconditioning (DP) is first 
presented. The implementation of the Incomplete Cholesky 
Preconditioning (ICP) is then described and a new technique, 
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named Block Incomplete Cholesky Preconditioning (BICP), 
is proposed. Parallel performances are analyzed on a matrix 
of 60000 dof. This is the largest problem which can be solved 
on only one processor with 64 MB RAM. Finally 
performances are analyzed from the modeling of a realistic 
device. 

11. DIAGONAL PRECONDITIONING 

Small-scale parallelism is used. No message passing is 
required for the preconditioning. However, the convergence 
rate is low. A matrix-vector multiplication is required to 
compute the residual vector at each iteration of the CG [2]. 
Only the lower part of the FE matrix is stored because it is 
symmetric. Each processor works of N/P lines, where N is the 
number of lines of the matrix and P is the number of 
processors. The vector to multiply is duplicated on all the 
processors. This multiplication is performed in parallel: each 
processor computes a partial residual vector (Fig. 1). The 
load balancing is nearly perfect because of the constant 
bandwidth of the matrix (Fig. 2). 

Once the multiplication is performed, each processor 
broadcasts its partial residual vector to all the others. These 
partial results are added to obtain the final residual vector in 
Single Program Multi Data (SPMD) mode. This operation 
requires (P2-P) messages passing per iteration. Another way 

nDuplicated vector 

~ ~ w ~ ~ a l l  x l  + a21 x2 + a31 x3 + a41 x41 
~ " ~ l a 2 I  a21 a22 x l  + a22 x2 + a32 x3 + a42 x41 
a31 a32a33 x, , 
a41 a42 a43 a 

I I l-?ltla31 X I  + a32 x2 + a33 x3 + a43 x41 

\ Residual vector 
Proc. 2 

Proc. 1 executes: Proc.2executes: 

Fig, 1. Parallel multiplication matrix-vector - example of a 4 X 4 matrix 
(N=4) stored on 2 processors (P=2). 
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Fig. 2. Average of state of every processor for the CG with the DP 
(solving on 4 processors - 60000 degrees of freedom). 
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Fig. 3. Speedups of the CG with the DP for both methods of concatenation 

to calculate the residual vector is the Master Slave (MS) 
mode: each partial residual vector is sent to one master 
processor (processor number 1 in Fig. 2). This one computes 
the final residue and broadcasts it to all the others. 

The MS method minimizes the number of communications 
((P-1) X 2 messages / iterations) but introduces a 
simultaneous idle time when the slaves are waiting for the 
entire residual vector. Furthermore, the messages broadcasted 
'by the master are larger (equal to the total number of lines of 
the matrix) than SPMD mode (equal to the number of lines 
stored on the considered processor). Therefore the SPMD 
mode is more efficient. On the other hand, because the 
convergence rate is low, the cost of communications is 
penalizing for both methods. 

111. INCOMPLETE CHOLESKY PRECONDITIONING 

Compared to the DP, the building of the incomplete 
Cholesky matrix and forward-backward substitutions are also 
required. The FE matrix A is factorized in two matrices: A = 
L X L'. The incomplete Cholesky matrix L is built by column 
[7] .  This algorithm is implicitly parallel because the Lij terms 
can be computed independently once the diagonal term Ljj 
has been computed. The knowledge of both lines i and j is 
required to compute the ij term. If both lines are not stored on 
the same processor, a message passing is necessary (Fig. 7). 
The memory space needed to achieve the ICP is three times 
larger than DP because L and L' have the same structure with 

FE matrix stored on 3 processors 

Proc. 3 I a41 a42 a43 a44 1 

Fig. 4. Building of L and L' in 5 parallel steps 

A. L' is built to achieve a quick access by columns to the 
terms. Fig. 4 illustrates this strategy on a 4 X 4 matrix stored 
on 3 processors. 

The knowledge of the storage by columns of L' allows to 
reduce the CPU time needed for the back substitution. This 
algorithm is implicitly sequential: the first processor 
computes first his part of y and broadcasts it to all the others 
in SPMD mode. The second processor can then begin his 
computation and so on. This step is very penalizing in term of 
parallel performances, because it is performed at each 
iteration (Fig. 5) .  

From Table I it appears clearly that the ICP allows to 
reduce the number of iterations to solve the system of 
equations. However, because of the large amount of message 
passing required, it cannot be applied to large problems. 

1 2 3 4  
Processor number 

Fig 5 .  Average of state of every processor for the 
(solving on 4 processors - 60000 degrees of freedom). 

4?-------- 

CG with the ICP 

0 f"""* I.*-, """""--+-*e -c--x-""+"""-.-r--.-i.-"-----. 
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Fig 6 Speedup for the CG with the ICP. 
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TABLE I 
CPU TIME PER PROCESSOR AND NUMBER OF ITERATIONS FOR THE DP, 

THE ICP AND THE BICP - 60000 DEGREES OF FREEDOM 

- 
Number of 1 4 8 
processors 

DP 615 204 367 204 316 204 
time (s) iterations time (s) iterations time (s) iterations 

ICP 3193 59 901 59 1773 59 
BICP 3193 59 353 61 234 79 
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Fig.8. Average of state of every processor for the CG with the BICP 
(solving on 4 processors - 60000 degrees of freedom) 

N. BLOCK INCOMPLETE CHOLESKY PRECONDITIONING 

To avoid messages passing during the building of the 
incomplete Cholesky matrix, this one is assembled per block: 
only the terms stored on one processor are used to build the 
corresponding Cholesky submatrix. There is no passage of 
terms between the processors contrary to the classical ICP. 
Furthermore, on the contrary of the method proposed in [SI, it 
does not require that every processor owns all rows and 
columns. So some parts of the matrix are not built at all (Fig. 
7), and the terms effectively assembled are approximated 
because of the back dependency. With one processor, this 
method corresponds to the usual ICP. 

As seen by the number of iterations (Table I), this scheme 
leads to a weakening of the preconditioning compared to the 
ICP. Furthermore, the number of iterations increases with the 
number of processors. The memory space is three times larger 
than the DP because of the matrices L and L'. On the other 
hand, the preconditioning matrix is built without message 
passing. This leads to a better utilization of the processors 
(Fig. 8). The preconditioning matrix is then constituted by 
independent submatrices (Fig. 7). Each processor can 
compute independently his part of the result vector, so this 
step is entirely parallel. The concatenation of these partial 
results is performed by messages passing in SPMD mode. 

The number of operations required to compute both 
preconditioning matrix and result vector depends on the 

Proc. 

Proc. 

Proc. 

1 
1 

1 
2 

3 

j m Required to compute the term (ij) 
Current computation 

Not computed 
Exactly computed 

El TO be computed E3 ApprOXlllldtlYGly oomputrd 

Computed 

Fig.7. Cholesky matrix constructed per columns (right); block incomplete 
Choleskv matrix (left) - example with 3 processors. 

number of processors available. When this number increases, 
the building of the matrix L and the forward-backward 
substitutions are more efficient in CPU time because 
preconditioning submatrices become smaller. Then the 
number of operations per processor decreases. Actually, the 
weakening of the preconditioning is widely compensated by 
the decrease of the number of computations. On the other 
hand, the number of dof per processor has to be sufficiently 
large: if too low, the overhead becomes predominant (see the 
breakpoint at the 4 processors level in Fig. 9). 

The parallel performances can be expressed in terms of 
super-linear speedup (Fig. 9): when more than 1 processor are 
used, the total CPU time for the solving becomes smaller than 
that of 1 processor. Two other problems (different 
geometries) in the 60000 dof range show the repeatability of 
these results (Fig. 9). Rigorously the speedup should be 
defined as the CPU ratio between the best sequential 
algorithm and the considered parallel algorithm. For this 
example, the DP is the best sequential algorithm, leading to a 
speedup on 8 processors equal to: 615+234=2.6 (Table I). 
However, with complex geometries, the DP does not 
converge at all and this definition of speedup cannot be used. 

v. COMPARISON BETWEEN THE METHODS ON LARGE PROBLEMS 

The electromagnetic scattering of a plane wave by a 
perfect electric conducting airplane is presented as a large 
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Fig. 9. Speedup for the CG with the BICP. Problems #2 and #3 are also 
in the 60000 dof range. 
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problem. The FE formulation is coupled to an Engquist- 
Majda absorbing boundary condition. It is written in terms of 
the vector field (E or H). The numerical discretization is 
performed with nodal elements, leading to 3 complex 
unknowns (6 dof) per node. The entire formulation is 
discussed in detail in [ 11. The Cuthill-McKee renumbering 
algorithm reduces the band of the matrix. For such problems, 
the mesh size is related to the frequency of the incident plane 
wave (10 nodes per wavelength have to be used). 

Only DP and BICP are compared (Table 111 and Table IV). 
Due to the large amount of message passing required, it was 
not possible to use ICP for such problems. Due to the number 
of dof, it was also not possible to compute the larger problem 
on 4 processors. For both examples, whatever the number of 
processors, the BICP is the most efficient. It allows to reduce 
the number of iterations by generating an good 
preconditioning. Furthermore, it does not introduce a very 
penalizing overhead such as the ICP method. 

VI. CONCLUSIONS 

We have presented in this gaper several preconditioning 
methods for the Conjugate Gradient to solve large sparse 
matrices on a distributed memory computer fitted with a 
FDDI ring. Because the convergence rate is low, the cost of 
communications is penalizing when using the diagonal 
preconditioning. Small-scale parallelism is not adequate to 
distributed memory computer with this type of network. The 
incomplete Cholesky preconditioning allows to reduce the 
number of iterations but cannot be used on large problems 
because of the large amount of messages passing required. 
The new preconditioning method, named block incomplete 

TABLE I1 
DESCRIPTIONS OF LARGE PROBLEMS 

Frequency (GHz) Number of Number of Degrees of 
tetrahedra nodes freedom 

0.1 201556 33431 200586 
0 3  308922 51183 307048 

TABLE 111 
CPU TIME PER PROCESSOR AND NUMBER OF ITERATIONS FOR THE DP, 

AND THE BICP (200586 DEGREES OF FREEDOM) 

Number of processors 4 
time (s) iterations 

DP 2533 1 5009 
BICP 19434 323 1 

TABLE IV 
CPU TIME PER PROCESSOR AND NUMBER OF ITERATIONS FOR THE DP 

AND THE BICP (307048 DEGREES OF FREEDOM) 

Number of processors 8 

DP 80280 7476 
BICP 58950 4902 

time (s) iterations 

Fig. 10 Perfect electnc conducting airplane illuminated by a plane wave 
(0 3 GHz) - magnitude of the magnetic field. 

Cholesky, appears to be a good compromise in term of 
generated preconditioning and CPU time. 

Furthermore, such a developed code is immediately 
implementable on a CRAY T3E. This parallel distributed 
memory computer is a MIMD type too. Moreover, this 
machine is equipped with very high performances network 
and message passing library (SHMEM). This should allow 
the solver to have better performances. On this type of 
massively parallel architecture, no significant speed up can be 
obtained for a large number of processors because the number 
of dof per processor becomes too small when the number of 
processors increases. 

Note that the algorithms presented in this paper are not 
specific to a HF electromagnetic formulation. They could be 
applied to any physical problem discretized with a FE 
method, with complex or non complex terms dispatched 
amount the memories of a distributed memory computer. 
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