
HAL Id: hal-00141575
https://hal.science/hal-00141575

Submitted on 20 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preconditioning techniques for the conjugate gradient
solver on a parallel distributed memory computer

Christian Vollaire, Laurent Nicolas

To cite this version:
Christian Vollaire, Laurent Nicolas. Preconditioning techniques for the conjugate gradient solver on
a parallel distributed memory computer. IEEE Transactions on Magnetics, 1998, 34 (5 Part 1),
pp.3347-3350. �hal-00141575�

https://hal.science/hal-00141575
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON MAGNETICS, VOL 34, NO 5, SEPTEMBER 1998

Preconditioning Techniques for the Conjugate Gradient Solver
on a Parallel Distributed Memory Computer

C. Vollaire, L. Nicolas
CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon

BP 163 - 69131 Ecully Cedex - France

Abstract-This paper describes the parallelization of the
conjugate gradient algorithm fitted with three types of
preconditioning in order to compute large finite element complex
sparse system of equations on a distributed memory parallel
computer. Parallel performances are analyzed and compared
using a problem of 60000 degrees of freedom. The
electromagnetic scattering of a plane wave by a perfect electric
conducting airplane is finally given as a large example.

Index terms-Finite element methods, parallel algorithms,
distributed memory systems, sparse matrices.

I. INTRODUCTION

Massively parallel distributed memory computers provide
the increase in computing performances required to solve
large problems. Indeed, only parallel computation actually
enables to modelize real devices because it reduces the
computation time and mainly arranges enough memory.

In this paper, we are dealing with the implementation of a
Finite Element (FE) formulation for high frequency (HF)
electromagnetic scattering problems [11 on a parallel
distributed memory computer [2] . Most of the parallel FE
codes use domain decomposition techniques to assemble the
FE matrix [3-51: the solver operates first on the different sub-
domains and then on the global FE matrix. This method is
efficient but requires a pre-processing step. Moreover, the
number of processors which can be used is often limited by
the decomposition method. For these reasons we have
preferred to distribute the rows of the FE matrix to the
processors and to solve the global matrix. The assembling is
performed by degrees of freedom (dof), so it has very good
parallel performances [6] . On the other hand, the solving is
CPU-expensive with bad parallel performances [2].

The objective of this paper is to describe how the solver
has been modified in order to obtain better performances on a
cluster of 10 DEC-ALPHA workstations linked by a FDDI
ring and fitted with Parallel Virtual Machine software. The
parallelization and the efficiency of the Conjugate Gradient
(CG) algorithm strongly depend on the type of
preconditioning. The Diagonal Preconditioning (DP) is first
presented. The implementation of the Incomplete Cholesky
Preconditioning (ICP) is then described and a new technique,

Manuscript received November 3, 1997.
C. Vollaire, vollair@ trotekxc-1yon.fr; L. Nicolas, laurent@trotek.ec-

lyon.fr, http://cegely.ec-lyon.fr/.

3347

named Block Incomplete Cholesky Preconditioning (BICP),
is proposed. Parallel performances are analyzed on a matrix
of 60000 dof. This is the largest problem which can be solved
on only one processor with 64 MB RAM. Finally
performances are analyzed from the modeling of a realistic
device.

11. DIAGONAL PRECONDITIONING

Small-scale parallelism is used. No message passing is
required for the preconditioning. However, the convergence
rate is low. A matrix-vector multiplication is required to
compute the residual vector at each iteration of the CG [2].
Only the lower part of the FE matrix is stored because it is
symmetric. Each processor works of N/P lines, where N is the
number of lines of the matrix and P is the number of
processors. The vector to multiply is duplicated on all the
processors. This multiplication is performed in parallel: each
processor computes a partial residual vector (Fig. 1). The
load balancing is nearly perfect because of the constant
bandwidth of the matrix (Fig. 2).

Once the multiplication is performed, each processor
broadcasts its partial residual vector to all the others. These
partial results are added to obtain the final residual vector in
Single Program Multi Data (SPMD) mode. This operation
requires (P2-P) messages passing per iteration. Another way

nDuplicated vector

~ ~ w ~ ~ a l l x l + a21 x2 + a31 x3 + a41 x41
~ " ~ l a 2 I a21 a22 x l + a22 x2 + a32 x3 + a42 x41
a31 a32a33 x, ,
a41 a42 a43 a

I I l-?ltla31 X I + a32 x2 + a33 x3 + a43 x41

\ Residual vector
Proc. 2

Proc. 1 executes: Proc.2executes:

Fig, 1. Parallel multiplication matrix-vector - example of a 4 X 4 matrix
(N=4) stored on 2 processors (P=2).

0018-9464/98$10.00 0 1998 IEEE

http://lyon.fr
http://cegely.ec-lyon.fr

3348

SPMD M I S
100 100

n
c: 80 80
2

e, Overhead
60 2 60

8 40 40

Idle
U

0 Busy : 20 20
0 e o 0

1 2 3 4 1 2 3 4
Processor number

Fig. 2. Average of state of every processor for the CG with the DP
(solving on 4 processors - 60000 degrees of freedom).

0 1 2 3 4 5 6 7 8

Number of processors

Fig. 3. Speedups of the CG with the DP for both methods of concatenation

to calculate the residual vector is the Master Slave (MS)
mode: each partial residual vector is sent to one master
processor (processor number 1 in Fig. 2). This one computes
the final residue and broadcasts it to all the others.

The MS method minimizes the number of communications
((P-1) X 2 messages / iterations) but introduces a
simultaneous idle time when the slaves are waiting for the
entire residual vector. Furthermore, the messages broadcasted
'by the master are larger (equal to the total number of lines of
the matrix) than SPMD mode (equal to the number of lines
stored on the considered processor). Therefore the SPMD
mode is more efficient. On the other hand, because the
convergence rate is low, the cost of communications is
penalizing for both methods.

111. INCOMPLETE CHOLESKY PRECONDITIONING

Compared to the DP, the building of the incomplete
Cholesky matrix and forward-backward substitutions are also
required. The FE matrix A is factorized in two matrices: A =
L X L'. The incomplete Cholesky matrix L is built by column
[7] . This algorithm is implicitly parallel because the Lij terms
can be computed independently once the diagonal term Ljj
has been computed. The knowledge of both lines i and j is
required to compute the ij term. If both lines are not stored on
the same processor, a message passing is necessary (Fig. 7).
The memory space needed to achieve the ICP is three times
larger than DP because L and L' have the same structure with

FE matrix stored on 3 processors

Proc. 3 I a41 a42 a43 a44 1

Fig. 4. Building of L and L' in 5 parallel steps

A. L' is built to achieve a quick access by columns to the
terms. Fig. 4 illustrates this strategy on a 4 X 4 matrix stored
on 3 processors.

The knowledge of the storage by columns of L' allows to
reduce the CPU time needed for the back substitution. This
algorithm is implicitly sequential: the first processor
computes first his part of y and broadcasts it to all the others
in SPMD mode. The second processor can then begin his
computation and so on. This step is very penalizing in term of
parallel performances, because it is performed at each
iteration (Fig. 5) .

From Table I it appears clearly that the ICP allows to
reduce the number of iterations to solve the system of
equations. However, because of the large amount of message
passing required, it cannot be applied to large problems.

1 2 3 4
Processor number

Fig 5 . Average of state of every processor for the
(solving on 4 processors - 60000 degrees of freedom).

4?--------

CG with the ICP

0 f"""* I.*-, """""--+-*e -c--x-""+"""-.-r--.-i.-"-----.

0 1 2 3 4 5 6 7 8
Number of processors

Fig 6 Speedup for the CG with the ICP.

3349

TABLE I
CPU TIME PER PROCESSOR AND NUMBER OF ITERATIONS FOR THE DP,

THE ICP AND THE BICP - 60000 DEGREES OF FREEDOM

-
Number of 1 4 8
processors

DP 615 204 367 204 316 204
time (s) iterations time (s) iterations time (s) iterations

ICP 3193 59 901 59 1773 59
BICP 3193 59 353 61 234 79

g 100
.a
E 80
'2 60

2 40

Idle

Overhead

U Busy 4 20
b

9 0
1 2 3 4

Processor number

Fig.8. Average of state of every processor for the CG with the BICP
(solving on 4 processors - 60000 degrees of freedom)

N. BLOCK INCOMPLETE CHOLESKY PRECONDITIONING

To avoid messages passing during the building of the
incomplete Cholesky matrix, this one is assembled per block:
only the terms stored on one processor are used to build the
corresponding Cholesky submatrix. There is no passage of
terms between the processors contrary to the classical ICP.
Furthermore, on the contrary of the method proposed in [SI, it
does not require that every processor owns all rows and
columns. So some parts of the matrix are not built at all (Fig.
7), and the terms effectively assembled are approximated
because of the back dependency. With one processor, this
method corresponds to the usual ICP.

As seen by the number of iterations (Table I), this scheme
leads to a weakening of the preconditioning compared to the
ICP. Furthermore, the number of iterations increases with the
number of processors. The memory space is three times larger
than the DP because of the matrices L and L'. On the other
hand, the preconditioning matrix is built without message
passing. This leads to a better utilization of the processors
(Fig. 8). The preconditioning matrix is then constituted by
independent submatrices (Fig. 7). Each processor can
compute independently his part of the result vector, so this
step is entirely parallel. The concatenation of these partial
results is performed by messages passing in SPMD mode.

The number of operations required to compute both
preconditioning matrix and result vector depends on the

Proc.

Proc.

Proc.

1
1

1
2

3

j m Required to compute the term (ij)
Current computation

Not computed
Exactly computed

El TO be computed E3 ApprOXlllldtlYGly oomputrd

Computed

Fig.7. Cholesky matrix constructed per columns (right); block incomplete
Choleskv matrix (left) - example with 3 processors.

number of processors available. When this number increases,
the building of the matrix L and the forward-backward
substitutions are more efficient in CPU time because
preconditioning submatrices become smaller. Then the
number of operations per processor decreases. Actually, the
weakening of the preconditioning is widely compensated by
the decrease of the number of computations. On the other
hand, the number of dof per processor has to be sufficiently
large: if too low, the overhead becomes predominant (see the
breakpoint at the 4 processors level in Fig. 9).

The parallel performances can be expressed in terms of
super-linear speedup (Fig. 9): when more than 1 processor are
used, the total CPU time for the solving becomes smaller than
that of 1 processor. Two other problems (different
geometries) in the 60000 dof range show the repeatability of
these results (Fig. 9). Rigorously the speedup should be
defined as the CPU ratio between the best sequential
algorithm and the considered parallel algorithm. For this
example, the DP is the best sequential algorithm, leading to a
speedup on 8 processors equal to: 615+234=2.6 (Table I).
However, with complex geometries, the DP does not
converge at all and this definition of speedup cannot be used.

v. COMPARISON BETWEEN THE METHODS ON LARGE PROBLEMS

The electromagnetic scattering of a plane wave by a
perfect electric conducting airplane is presented as a large

17
15
13

9 I 1
3 9
3 7

5
3
1

1 2 3 4 5 6 7 8

Number of processors

Fig. 9. Speedup for the CG with the BICP. Problems #2 and #3 are also
in the 60000 dof range.

3350

problem. The FE formulation is coupled to an Engquist-
Majda absorbing boundary condition. It is written in terms of
the vector field (E or H). The numerical discretization is
performed with nodal elements, leading to 3 complex
unknowns (6 dof) per node. The entire formulation is
discussed in detail in [11. The Cuthill-McKee renumbering
algorithm reduces the band of the matrix. For such problems,
the mesh size is related to the frequency of the incident plane
wave (10 nodes per wavelength have to be used).

Only DP and BICP are compared (Table 111 and Table IV).
Due to the large amount of message passing required, it was
not possible to use ICP for such problems. Due to the number
of dof, it was also not possible to compute the larger problem
on 4 processors. For both examples, whatever the number of
processors, the BICP is the most efficient. It allows to reduce
the number of iterations by generating an good
preconditioning. Furthermore, it does not introduce a very
penalizing overhead such as the ICP method.

VI. CONCLUSIONS

We have presented in this gaper several preconditioning
methods for the Conjugate Gradient to solve large sparse
matrices on a distributed memory computer fitted with a
FDDI ring. Because the convergence rate is low, the cost of
communications is penalizing when using the diagonal
preconditioning. Small-scale parallelism is not adequate to
distributed memory computer with this type of network. The
incomplete Cholesky preconditioning allows to reduce the
number of iterations but cannot be used on large problems
because of the large amount of messages passing required.
The new preconditioning method, named block incomplete

TABLE I1
DESCRIPTIONS OF LARGE PROBLEMS

Frequency (GHz) Number of Number of Degrees of
tetrahedra nodes freedom

0.1 201556 33431 200586
0 3 308922 51183 307048

TABLE 111
CPU TIME PER PROCESSOR AND NUMBER OF ITERATIONS FOR THE DP,

AND THE BICP (200586 DEGREES OF FREEDOM)

Number of processors 4
time (s) iterations

DP 2533 1 5009
BICP 19434 323 1

TABLE IV
CPU TIME PER PROCESSOR AND NUMBER OF ITERATIONS FOR THE DP

AND THE BICP (307048 DEGREES OF FREEDOM)

Number of processors 8

DP 80280 7476
BICP 58950 4902

time (s) iterations

Fig. 10 Perfect electnc conducting airplane illuminated by a plane wave
(0 3 GHz) - magnitude of the magnetic field.

Cholesky, appears to be a good compromise in term of
generated preconditioning and CPU time.

Furthermore, such a developed code is immediately
implementable on a CRAY T3E. This parallel distributed
memory computer is a MIMD type too. Moreover, this
machine is equipped with very high performances network
and message passing library (SHMEM). This should allow
the solver to have better performances. On this type of
massively parallel architecture, no significant speed up can be
obtained for a large number of processors because the number
of dof per processor becomes too small when the number of
processors increases.

Note that the algorithms presented in this paper are not
specific to a HF electromagnetic formulation. They could be
applied to any physical problem discretized with a FE
method, with complex or non complex terms dispatched
amount the memories of a distributed memory computer.

REFERENCES

[l] L. Nicolas, K. A. Connor, S . J. Salon, B. G. Ruth, and L. F. Libelo,
"Three dimensional FE analysis of high power microwave devices,"
IEEE Trans. Mug., vol. 29, no 2, pp. 1642-1645, March 1993.

[2] C. Vollaire, L. Nicolas, and A. Nicolas, "Finite elements coupled with
absorbing boundary conditions on parallel distributed memory
computer," IEEE Trans. on Mag, vol. 33, no 2, pp. 1448-1451, March
1997.

[3] Y. Saad, "Krylov subspace method on supercomputers," SIAM J. Sci.
Stal. Cumput., vol. 10, no 6, pp. 1200-1232, November 1989.

[4] K. Iwano, V. Cungoski, K. Keneda, H. Yamashita, "A parallel
processing method in FE analysis using domain division," IEEE Trans.
on Mag., vol. 30, no 5, pp, 3598-3601, September 1994.

[5] R. Lee, V. Chupongstimm, "A portioning technique for Finite Element
solution of electromagnetic scattering from electrically large dielectric
GylindGrS," f€EE Trans. on AnI. and Prup., vol. 42, no 5 , pp. 737-741,
May 1994.

[6] D. Zois, "Parallel processing techniques for FE analysis: stiffnesses,
loads and stresses evaluation," Cump. & St., vol. 34, no 32, pp. 353-374,
1990.

[7] H. Magnin and J.L. Coulomb, "A parallel and vectorial implementation
of basic linear algebra subroutines in iterative solving of large sparse
linear systems of equations," IEEE Trans. on Mug., vol. 25, no 4, pp.

[SI M. L. Barton, "Three-dimensional magnetic field computation on a
distributed memory parallel processor," IEEE Trans. on Mag., vol. 26,
no 2, pp. 834-836, March 1990.

2895-2897, July 1989.

