
IEEE TRANSACTIONS ON MAGNETICS, VOL 34, NO 5, SEPTEMBER 1998 3343

Implementation of a Finite Element and Absorbing Boundary Conditions
Package on a Parallel Shared Memory Computer

C. Vollaire, L. Nicolas
CEGELY - UPRESA CNRS 5005 - Ecole Centrale de Lyon

BP 163 - 69 13 1 Ecully Cedex - France

Abstract-A nodal-based finite element formulation coupled
with absorbing boundary conditions has been developed to solve
open boundary microwave problems. Only parallel computation
enables to modelize large devices. We show in this paper how the
code has been implemented on a parallel shared memory
computer. Each step of the code is analyzed. Two types of
storage for the matrix and two preconditioning methods for the
conjugate gradient algorithm are particularly compared.

Index terms-Finite element methods, parallel algorithms,
shared memory systems, electromagnetic scattering.

I. INTRODUCTION

We are dealing with the modeling of unbounded frequency
domain microwave problems. The Finite Element (FE)
formulation is directly written in terms of E or H vector field.
3D Enquist-Majda absorbing boundary conditions (ABC) are
introduced to simulate open boundary domains [11. This leads
to 3 complex unknowns per node (6 degrees of freedom). To
obtain a good accuracy, 10 nodes per wavelength are
necessary, and a minimal distance equal to 1 wavelength
needs to be ensured between the microwave device and the
outer boundary. These requirements lead that only simple
problems (10000 nodes) can be modelized on scalar
workstations. Only parallel computation actually enables to
modelize real large devices because it reduces computation
time and mainly arranges enough memory.

The purpose of this paper is to show how to implement
such a code on a CRAY C98 in order to obtain good parallel
and vector performances. Speedup and vector performances
are presented for the different steps of the program. All the
performances are analyzed on a 60000 degrees of freedom
test problem because the analysis of the parallel performances
involves a monoprocessor computing. The example of an
airplane illuminated by a plane wave is finally presented.

11. FE FORMULATION AND SEQUENTIAL CODE

The weak Galerkin form of the entire formulation in term of
total field H is given by (l) , where Hi is the incident field.

Manuscript received November 3 , 1997.
C. Vollaire, vollair@trotek.ec-1yon.fr; L. Nicolas, laurent@trotek.ec-

This work was supported in part by the Institut du Developpement et des
lyon.fr, http:Ncegely.ec-lyon.fr/.

Ressources en Informatique Scientifique (CNRS).

IWnV Hds- JWgABC(H)ds= IW[gABc(H,) - n x V xH,]ds (1)

sex, sex, Spec
+spec

with g A B C (H) = J k o H , - L V t H , the ABC.
2ko

Main steps of the sequential code are:
1-Create the data structure of the global matrix: because

the global matrix is sparse, a compressed storage is used with
only the non-zero terms.

2-Assemble the global matrix: each elementary matrix
related to a volume FE is computed. Results are then
distributed in the global matrix.

3-Introduce ABC on the external boundaries, Boundary
Conditions (BC) on conductors and on the symmetry planes.

&Symmetrize the matrix: because of the ABC, the FE
matrix is non symmetric. It is approximately symmetrized by
addition with its transposed.

5-Solve the system of equations: because the matrix
system is sparse, the solving is performed using the Conjugate
Gradient (CG) method.

111. AUTOMATIC PARALLELISM

The algorithms operating on monoprocessor calculator do
not need to be entirely revised in order to work on a CRAY
C98, which is a parallel shared memory computer. The code
remains the same and runs quite immediately. Our code was
first developed in a well structured way with many subroutine
calls or error handling. Unfortunately, these points prevent
the compiler from getting a good parallelization level. The
compiler itself got only 17% of parallelization. Only simple
loops such as initializations had been processed. Neither the
matrix assembling nor the solver had gained parallelism.
They only gained some vectorization. To obtain better results
it is necessary to add manually compiler directives and to find
the scope of the variables, as presented in the next sections.

IV. MATRIX REPRESENTATION

It has been shown previously lhat the matrix rcpresentation
has a great influence on vectorial performances [3-41. Two
kinds of matrix representation have then been compared.

0018-9464/98$10.00 0 1998 IEEE

http://lyon.fr
http:Ncegely.ec-lyon.fr

3344

A. Sparse row-wise matrix representation (storage #l):
because the matrix is sparse and symmetric, only the non zero
terms of its lower part are stored after its symmetrization [2].

B. Redundant Sparse row-wise matrix representation
(storage #2): because the algorithms used in the solver need
to access by column to the terms of the matrix, the entire FE
matrix stays in memory even after its symmetrization. The
memory space used is twice larger, but the access to the non
zero terms of a column are adjacent in memory [3].

Sky line matrix representation has also been tested.
Because all the terms contained in the bandwidth of the FE
matrix are stored, this method is then too much memory
consuming and cannot be used on very large devices.

v. ASSEMBLING THE FE MATRIX

A. The creation of the global matrix structure: this step
prepares the storage of the non-zero terms of the matrix. It is
very difficult to parallelize it because of many data
dependencies. Furthermore, it decreases the parallel
performances because it is especially sequential.

B. The assembling by elementary contributions: the
elementary matrix related to a FE needs to have a private
scope, and semaphores are used to avoid memory conflicts
when the global matrix, stored in shared memory, is modified.
So a parallel region is created which includes the loop on the
finite elements. The global matrix is modified in a critical
region, inside the parallel region. The code is executed in a
sequential way in this region.

C. Introduction of BC on conductors and on the symmetry
planes: due to the method used to introduce BC [2], a global
modification of the FE matrix is required. Each processor
performs a part of the modifications on the global matrix.
Semaphores are used to avoid memory conflicts.

D. Symmetrization of the matrix: all the terms of each row
are added with those corresponding of the transposed matrix.
The external loop (rows) is parallelized while the internal one
(columns) is vectorized. The variables used for this step can
be shared because no memory conflict is possible.

Fig. 1 shows the speedups for the creation of the FE matrix
(steps A, B, C, D) for both types of storage. Obviously the
matrix representation has no influence.

VI DIAGONAL PRECONDITIONING METHOD

The diagonal preconditioning (DP) is the easiest
preconditioning method to implement with the CG algorithm.
The preconditioning is made by a vector-vector
multiplication. So, this method requires a multiplication
matrix-vector per iteration to compute the new residual
vector. This step is parallelized by splitting the loop on the
lines. When storage #I is used, each processor computes a
partial residual vector in private memory (parallel region).

7

6

$ 5

T 4
& v , 3

2

1

0
0 1 2 3 4 5 6 7 8

Fig 1 Speedups for the assembling step (60000 degrees of freedom
problem)

The addition of these partial results is performed in shared
memory in a critical region (vectorization). When using
storage #2, the multiplication is done in shared memory
because the entire FE matrix is stored. Fig. 2 shows that the
speedup is the same for both matrix representations.

VI. INCOMPLETE CHOLESKY PRECONDITIONING METHOD

The first step of this preconditioning method is the
factorization of the FE matrix A in two matrices: A = L . Lt
The building of the incomplete Cholesky matrix i s performed
by column [4] (fig. 3). The algorithm is given by (2). It is
implicitly parallel because the L, terms can be computed
independently once the diagonal term L,, has been computed.

When using the storage #1, the computation of the terms
located in the column J requires to search the rows i with a
non zero term on the column J. This is expensive in CPU
time. The parallelization IS made by splitting this loop.
Furthermore this algorithm requires the multiplication of the
rows i and j . So an other search on the row i is necessary for
all the terms of the row j to find the term of same rank. For
this reason, the storage #1 is not adapted to the ICP. The
vector performances obtained are low. However, only the
lower part of the preconditioning matrix is built and only the
lower part of A IS stored in memory after its symmetrization'
no additional allocation of memory is required.

I
6
5

4

3

2
1

0
0 1 2 3 4 5 6 7 8

Fig 2 Speedups for the CG with the dlagonal preconditioning (60000
degrees of freedom problem)

3345

For j = 1 to number of lines
I i-I

Fori = j + 1 to number of lines

IL [I1 Necessary to

1

1 El

compute the term (ij)
In computing
To be computed
Already computed

j

Fig. 3. Building of the incomplete Cholesky matrix per column.

The storage #2 allows to access directly to the number of
rows i with a non zero term on the column j . It improves the
vector performances of the code during the building of the
preconditioning matrix. The entire preconditioning matrix is
built to keep the advantage of the adjacent access to the terms
of a same column (necessary for next step). The entire FE
matrix is also stored in memory after its symmetrization. So
this storage requires twice more memory than the storage #1.

From fig. 4, it appears that the parallel performances
during the building of the incomplete Cholesky matrix do not
depend on the storage method. On the other hand, it has only
a great influence on vector performances (Table I),
preventing the use of the storage #1 for large problems.

While solving using CG, both matrix-vector multiplication
(parallelized as above) and forward-back substitutions steps
are necessary. These last one have to be parallelized too. The
system A.x=b is usually substituted by (L.L').x=b. L.y=b and
L'.x=y are then computed (3).

Forward substitution
For i = 1 to number of lines (n)

yi =(bi -
k=i-1

k = l
Lik yk) / Lii

End

For i = number of lines (n) to 1
Back substitution

k=n

k = i + l
xi=(yi- CLkixk)/Li i

End

(3)

The forward substitution cannot be parallelized by splitting
the loop on the row because of the back dependency. So, the
produce of the terms L.k yk is parallelized if the number of
operations remaining to perform is at least equal to the
number of processors available. Otherwise the produce is
vectorized. This strategy allows a good load balancing.

81 A 8-

a,

0 1 2 3 4 5 6 7 8

Fig. 4. Parallel performances for the building of the incomplete Cholesky
matrix (60000 degrees of freedom problem).

Partial results are added in a critical region. Because the
access to the terms Llk is made by row, the vector
performances are good. The back substitution is parallelized
in the same way but the access by columns to the terms Llu
decreases the vector performances (Table I).

Figure 5 shows the speedups for forward-back substitutions
depending on the matrix representation for the test problem.
As previously, when using the storage #1, the search of the
term Lh is penalizing in term of vector performances. So the
overhead introduced by splitting the loop to perform the
produce Lh.xk is negligible (good parallel performances). The
use of the storage #2 involves less efficiency in term of
parallel performances because the overhead introduced by the
splitting is not negligible. On the other hand, the vectors
performances are increased because the terms Lla are adjacent
in memory.

VII. COMPARISON BETWEEN METHODS

Both convergence rate and vector-parallel performances
have to be evaluated to compare the different methods. The
test problem consists of the scattering of a plane wave by a
perfect electric conducting (pec) cylinder. It is meshed with
first order hexahedral, leading to 60000 degrees of freedom.

b

L

0 1 2 3 4 5 6 7 8

Fig. S. Speedups for the back-forward substitution
freedom problem)

(60000 degrees of

3346

The electromagnetic scattering of a plane wave by a perfect
electric conducting airplane has also been modeled (fig. 7): a
first problem is meshed with 33431 nodes and 201556 1"
order tetrahedral, leading to 200586 degrees of freedom, and
a second one is meshed with 51183 nodes and 308922 1"
order tetrahedral, leading to 307098 degrees of freedom.

Fig. 6 shows the total speedups and Table I compares the
vector performances, the memory used and the number of
iterations needed to solve the test problem. For this small
example, the DP with the storage #2 is the most efficient.
Furthermore it does not increase the memory space needed.
On the other hand, when solving large problems and when the
matrix system has a poor conditioning rate, the ICP with the
storage #2 is more efficient, as shown in Table I1 and in Table
111. This is due to the reduction of the number of iterations.
However, this method requires twice more memory space.
The increase of the problem size tends to raise the vector
performances of the ICP method up to an acceptable level.

0 1 2 3 4 5 6 7 8

Fig 6 Speedups for the entire code (60000 degrees of freedom problem)-
incomplete Cholesky or diagonal preconditioning

TABLE I
60000 DEGREES OF FREEDOM PROBLEM (HEXAHEDRAL)

CPU time Mflops Memory Iterations
DP storage#l 263 s 19 3 18 Mw 232

storage #2 187 s 40 1 18 Mw 232
ICP storage#l 5314s 2.5 18 Mw 76

storage #2 733 s 1 0 2 34Mw 76

TABLE I1
200586 DEGREES OF FREEDOM PROBLEM (TETRAHEDRAL)

CPU time Mflops Memory Iterations
DP storages1 15357 s 52 28.5 Mw 32301

storage #2 6654 s 151 28.5Mw 32501

storage #2 5648 s 98 42 Mw 10701
ICP storage #I too much CPU time consuming

TABLE 111
307098 DEGREES OF FREEDOM PROBLEM (TETRAHEDRAL)

CPU time Mflops Memory Iterations
DP storage#1 23035 s 56 48Mw 41507

storage#2 9981 s 161 48Mw 41713
ICP storage #1 too much CPU time consuming

storage #2 8072 s 113 75 Mw 13667

Fig. 7. Pec airplane illuminated by a plane wave at 0.3 GHz, magnitude of H

IX. CONCLUSION

The adaptation to a shared memory computer is easy
because it does not require a complete restructuring of the
code. This remains the same and runs quite immediately. The
CRAY compiler can try to parallelize and vectorize it
automatically. However it only works on simple loops and
leads to bad parallel performances. So, the programmer have
to manually add parallelization and vectorization directives
and to check the scope of every variable. This method allows
to keep the control on the parallelism granulity.

The relative performances due to the vectorization are very
weak with a classical matrix representation because the data
streams are short: the ,matrix is sparse. The use of the
redundant sparse row-wise matrix representation allows to
obtain acceptable vector performances. However, this method
requires twice more memory space.

It seems that MIMD with shared memory parallel
computers have reached their limits in terms of memory space
and number of interconnected processors. The constructors
build now distributed memory architectures. The
implementation of sequential codes on such computers is
much more difficult because a complete restructuring of the
algorithms is then necessary [2] .

X. REFERENCES

L. Nicolas, K. A. Connor, S. J. Salon, B. G. Ruth, L. F. Libelo, "Three

Trans. on Mug., no 2, March 93, pp. 1642.1645.
C. Vollaire, L. Nicolas, and A. Nicolas, "Finite Elements Coupled with
Absorbing Boundary Conditions on Parallel Distributed Memory
Computer," IEEE trans. on Mug, vol. 33, no 2, pp. 1448-1451, March
1997.
H. Margin, J.L. Coulomb, "Parallel and vectorial solving of finite
element problems on a shared-memory multiprocessor," IEEE Trans.
on Mug., Vo1.28, no 2, March 1992, pp. 1712-1715.
H. Magnin, J.L. Coulomb, "A parallel and vectorial implementation of
basic linear algebra subroutines in iterative solving of large sparse
linear systems of equations," IEEE Truns. on Mag., Vo1.25, no 4, July

dimensional FE analysis of high power microwave devices," IEEE

1989, pp. 2895-2897.

