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Abstract-A nodal-based finite element formulation coupled 
with absorbing boundary conditions has been developed to solve 
open boundary microwave problems. Only parallel computation 
enables to modelize large devices. We show in this paper how the 
code has been implemented on a parallel shared memory 
computer. Each step of the code is analyzed. Two types of 
storage for the matrix and two preconditioning methods for the 
conjugate gradient algorithm are particularly compared. 

Index terms-Finite element methods, parallel algorithms, 
shared memory systems, electromagnetic scattering. 

I. INTRODUCTION 

We are dealing with the modeling of unbounded frequency 
domain microwave problems. The Finite Element (FE) 
formulation is directly written in terms of E or H vector field. 
3D Enquist-Majda absorbing boundary conditions (ABC) are 
introduced to simulate open boundary domains [ 11. This leads 
to 3 complex unknowns per node (6 degrees of freedom). To 
obtain a good accuracy, 10 nodes per wavelength are 
necessary, and a minimal distance equal to 1 wavelength 
needs to be ensured between the microwave device and the 
outer boundary. These requirements lead that only simple 
problems (10000 nodes) can be modelized on scalar 
workstations. Only parallel computation actually enables to 
modelize real large devices because it reduces computation 
time and mainly arranges enough memory. 

The purpose of this paper is to show how to implement 
such a code on a CRAY C98 in order to obtain good parallel 
and vector performances. Speedup and vector performances 
are presented for the different steps of the program. All the 
performances are analyzed on a 60000 degrees of freedom 
test problem because the analysis of the parallel performances 
involves a monoprocessor computing. The example of an 
airplane illuminated by a plane wave is finally presented. 

11. FE FORMULATION AND SEQUENTIAL CODE 

The weak Galerkin form of the entire formulation in term of 
total field H is given by ( l ) ,  where Hi is the incident field. 
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with g A B C ( H ) = J k o H , - L V t H ,  the ABC. 
2ko 

Main steps of the sequential code are: 
1-Create the data structure of the global matrix: because 

the global matrix is sparse, a compressed storage is used with 
only the non-zero terms. 

2-Assemble the global matrix: each elementary matrix 
related to a volume FE is computed. Results are then 
distributed in the global matrix. 

3-Introduce ABC on the external boundaries, Boundary 
Conditions (BC) on conductors and on the symmetry planes. 

&Symmetrize the matrix: because of the ABC, the FE 
matrix is non symmetric. It is approximately symmetrized by 
addition with its transposed. 

5-Solve the system of equations: because the matrix 
system is sparse, the solving is performed using the Conjugate 
Gradient (CG) method. 

111. AUTOMATIC PARALLELISM 

The algorithms operating on monoprocessor calculator do 
not need to be entirely revised in order to work on a CRAY 
C98, which is a parallel shared memory computer. The code 
remains the same and runs quite immediately. Our code was 
first developed in a well structured way with many subroutine 
calls or error handling. Unfortunately, these points prevent 
the compiler from getting a good parallelization level. The 
compiler itself got only 17% of parallelization. Only simple 
loops such as initializations had been processed. Neither the 
matrix assembling nor the solver had gained parallelism. 
They only gained some vectorization. To obtain better results 
it is necessary to add manually compiler directives and to find 
the scope of the variables, as presented in the next sections. 

IV. MATRIX REPRESENTATION 

It has been shown previously lhat the matrix rcpresentation 
has a great influence on vectorial performances [3-41. Two 
kinds of matrix representation have then been compared. 
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A. Sparse row-wise matrix representation (storage #l): 
because the matrix is sparse and symmetric, only the non zero 
terms of its lower part are stored after its symmetrization [2]. 

B. Redundant Sparse row-wise matrix representation 
(storage #2): because the algorithms used in the solver need 
to access by column to the terms of the matrix, the entire FE 
matrix stays in memory even after its symmetrization. The 
memory space used is twice larger, but the access to the non 
zero terms of a column are adjacent in memory [3]. 

Sky line matrix representation has also been tested. 
Because all the terms contained in the bandwidth of the FE 
matrix are stored, this method is then too much memory 
consuming and cannot be used on very large devices. 

v. ASSEMBLING THE FE MATRIX 

A. The creation of the global matrix structure: this step 
prepares the storage of the non-zero terms of the matrix. It is 
very difficult to parallelize it because of many data 
dependencies. Furthermore, it decreases the parallel 
performances because it is especially sequential. 

B. The assembling by elementary contributions: the 
elementary matrix related to a FE needs to have a private 
scope, and semaphores are used to avoid memory conflicts 
when the global matrix, stored in shared memory, is modified. 
So a parallel region is created which includes the loop on the 
finite elements. The global matrix is modified in a critical 
region, inside the parallel region. The code is executed in a 
sequential way in this region. 

C. Introduction of BC on conductors and on the symmetry 
planes: due to the method used to introduce BC [2], a global 
modification of the FE matrix is required. Each processor 
performs a part of the modifications on the global matrix. 
Semaphores are used to avoid memory conflicts. 

D. Symmetrization of the matrix: all the terms of each row 
are added with those corresponding of the transposed matrix. 
The external loop (rows) is parallelized while the internal one 
(columns) is vectorized. The variables used for this step can 
be shared because no memory conflict is possible. 

Fig. 1 shows the speedups for the creation of the FE matrix 
(steps A, B, C, D )  for both types of storage. Obviously the 
matrix representation has no influence. 

VI DIAGONAL PRECONDITIONING METHOD 

The diagonal preconditioning (DP) is the easiest 
preconditioning method to implement with the CG algorithm. 
The preconditioning is made by a vector-vector 
multiplication. So, this method requires a multiplication 
matrix-vector per iteration to compute the new residual 
vector. This step is parallelized by splitting the loop on the 
lines. When storage #I is used, each processor computes a 
partial residual vector in private memory (parallel region). 
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Fig 1 Speedups for the assembling step (60000 degrees of freedom 
problem) 

The addition of these partial results is performed in shared 
memory in a critical region (vectorization). When using 
storage #2, the multiplication is done in shared memory 
because the entire FE matrix is stored. Fig. 2 shows that the 
speedup is the same for both matrix representations. 

VI. INCOMPLETE CHOLESKY PRECONDITIONING METHOD 

The first step of this preconditioning method is the 
factorization of the FE matrix A in two matrices: A = L . Lt 
The building of the incomplete Cholesky matrix i s  performed 
by column [4] (fig. 3). The algorithm is given by (2). It is 
implicitly parallel because the L, terms can be computed 
independently once the diagonal term L,, has been computed. 

When using the storage #1, the computation of the terms 
located in the column J requires to search the rows i with a 
non zero term on the column J. This is expensive in CPU 
time. The parallelization IS made by splitting this loop. 
Furthermore this algorithm requires the multiplication of the 
rows i and j .  So an other search on the row i is necessary for 
all the terms of the row j to find the term of same rank. For 
this reason, the storage #1 is not adapted to the ICP. The 
vector performances obtained are low. However, only the 
lower part of the preconditioning matrix is built and only the 
lower part of A IS stored in memory after its symmetrization' 
no additional allocation of memory is required. 
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Fig 2 Speedups for the CG with the dlagonal preconditioning (60000 
degrees of freedom problem) 
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For j = 1 to number of lines 
I i-I 

Fori = j + 1 to number of lines 

IL [I1 Necessary to 

1 

1 El 

compute the term (ij)  
In computing 
To be computed 
Already computed 

j 

Fig. 3. Building of the incomplete Cholesky matrix per column. 

The storage #2 allows to access directly to the number of 
rows i with a non zero term on the column j .  It improves the 
vector performances of the code during the building of the 
preconditioning matrix. The entire preconditioning matrix is 
built to keep the advantage of the adjacent access to the terms 
of a same column (necessary for next step). The entire FE 
matrix is also stored in memory after its symmetrization. So 
this storage requires twice more memory than the storage #1. 

From fig. 4, it appears that the parallel performances 
during the building of the incomplete Cholesky matrix do not 
depend on the storage method. On the other hand, it has only 
a great influence on vector performances (Table I), 
preventing the use of the storage #1 for large problems. 

While solving using CG, both matrix-vector multiplication 
(parallelized as above) and forward-back substitutions steps 
are necessary. These last one have to be parallelized too. The 
system A.x=b is usually substituted by (L.L').x=b. L.y=b and 
L'.x=y are then computed (3). 

Forward substitution 
For i = 1 to number of lines (n) 

yi =(bi - 
k=i-1 

k = l  
Lik yk) / Lii 

End 

For i = number of lines (n) to 1 
Back substitution 

k=n 

k = i + l  
xi=(yi- CLkixk)/Li i  

End 

(3) 

The forward substitution cannot be parallelized by splitting 
the loop on the row because of the back dependency. So, the 
produce of the terms L.k yk is parallelized if the number of 
operations remaining to perform is at least equal to the 
number of processors available. Otherwise the produce is 
vectorized. This strategy allows a good load balancing. 
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Fig. 4. Parallel performances for the building of the incomplete Cholesky 
matrix (60000 degrees of freedom problem). 

Partial results are added in a critical region. Because the 
access to the terms Llk is made by row, the vector 
performances are good. The back substitution is parallelized 
in the same way but the access by columns to the terms Llu 
decreases the vector performances (Table I). 

Figure 5 shows the speedups for forward-back substitutions 
depending on the matrix representation for the test problem. 
As previously, when using the storage #1, the search of the 
term Lh is penalizing in term of vector performances. So the 
overhead introduced by splitting the loop to perform the 
produce Lh.xk is negligible (good parallel performances). The 
use of the storage #2 involves less efficiency in term of 
parallel performances because the overhead introduced by the 
splitting is not negligible. On the other hand, the vectors 
performances are increased because the terms Lla are adjacent 
in memory. 

VII. COMPARISON BETWEEN METHODS 

Both convergence rate and vector-parallel performances 
have to be evaluated to compare the different methods. The 
test problem consists of the scattering of a plane wave by a 
perfect electric conducting (pec) cylinder. It is meshed with 
first order hexahedral, leading to 60000 degrees of freedom. 
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Fig. S. Speedups for the back-forward substitution 
freedom problem) 

(60000 degrees of 



3346 

The electromagnetic scattering of a plane wave by a perfect 
electric conducting airplane has also been modeled (fig. 7): a 
first problem is meshed with 33431 nodes and 201556 1" 
order tetrahedral, leading to 200586 degrees of freedom, and 
a second one is meshed with 51183 nodes and 308922 1" 
order tetrahedral, leading to 307098 degrees of freedom. 

Fig. 6 shows the total speedups and Table I compares the 
vector performances, the memory used and the number of 
iterations needed to solve the test problem. For this small 
example, the DP with the storage #2 is the most efficient. 
Furthermore it does not increase the memory space needed. 
On the other hand, when solving large problems and when the 
matrix system has a poor conditioning rate, the ICP with the 
storage #2 is more efficient, as shown in Table I1 and in Table 
111. This is due to the reduction of the number of iterations. 
However, this method requires twice more memory space. 
The increase of the problem size tends to raise the vector 
performances of the ICP method up to an acceptable level. 
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Fig 6 Speedups for the entire code (60000 degrees of freedom problem)- 
incomplete Cholesky or diagonal preconditioning 

TABLE I 
60000 DEGREES OF FREEDOM PROBLEM (HEXAHEDRAL) 

CPU time Mflops Memory Iterations 
DP storage#l 263 s 19 3 18 Mw 232 

storage #2 187 s 40 1 18 Mw 232 
ICP storage#l 5314s 2.5 18 Mw 76 

storage #2 733 s 1 0 2  34Mw 76 

TABLE I1 
200586 DEGREES OF FREEDOM PROBLEM (TETRAHEDRAL) 

CPU time Mflops Memory Iterations 
DP storages1 15357 s 52 28.5 Mw 32301 

storage #2 6654 s 151 28.5Mw 32501 

storage #2 5648 s 98 42 Mw 10701 
ICP storage #I too much CPU time consuming 

TABLE 111 
307098 DEGREES OF FREEDOM PROBLEM (TETRAHEDRAL) 

CPU time Mflops Memory Iterations 
DP storage#1 23035 s 56 48Mw 41507 

storage#2 9981 s 161 48Mw 41713 
ICP storage #1 too much CPU time consuming 

storage #2 8072 s 113 75 Mw 13667 

Fig. 7. Pec airplane illuminated by a plane wave at 0.3 GHz, magnitude of H 

IX. CONCLUSION 

The adaptation to a shared memory computer is easy 
because it does not require a complete restructuring of the 
code. This remains the same and runs quite immediately. The 
CRAY compiler can try to parallelize and vectorize it 
automatically. However it only works on simple loops and 
leads to bad parallel performances. So, the programmer have 
to manually add parallelization and vectorization directives 
and to check the scope of every variable. This method allows 
to keep the control on the parallelism granulity. 

The relative performances due to the vectorization are very 
weak with a classical matrix representation because the data 
streams are short: the ,matrix is sparse. The use of the 
redundant sparse row-wise matrix representation allows to 
obtain acceptable vector performances. However, this method 
requires twice more memory space. 

It seems that MIMD with shared memory parallel 
computers have reached their limits in terms of memory space 
and number of interconnected processors. The constructors 
build now distributed memory architectures. The 
implementation of sequential codes on such computers is 
much more difficult because a complete restructuring of the 
algorithms is then necessary [2] .  
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