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Abstract

Let (Xt, t ≥ 0) be a Lévy process started at 0, with Lévy measure ν.
We consider the first passage time Tx of (Xt, t ≥ 0) to level x > 0, and
Kx := XTx

− x the overshoot and Lx := x − XT
x
−

the undershoot. We first
prove that the Laplace transform of the random triple (Tx, Kx, Lx) satisfies
some kind of integral equation. Second, assuming that ν admits exponential
moments, we show that (T̃x,Kx, Lx) converges in distribution as x → ∞, where

T̃x denotes a suitable renormalization of Tx.
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Introduction

1. Let (Xt, t ≥ 0) be a Lévy process, which is right continuous with left limits
and starts at 0. Let

Xt = σBt − c0t + Jt t ≥ 0 , (0.1)

be the canonical decomposition, when c0 ∈ R, σ > 0 and (Bt , t≥ 0) is a one-
dimensional Brownian motion started at 0. (Jt , t≥ 0) is a pure jump Lévy
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process which is independent from (Bt , t≥ 0). In addition J0 = 0. Recall
(see for instance Theorem 2.1, Chap. 2, [13]) that (Jt , t≥ 0) is the sum of
a compound Poisson process and a square integrable martingale whose jumps
are of magnitude less than 1.

For simplicity, we may assume that σ = 1.

2. We are interested in the first hitting time of level x > 0

Tx := inf {t ≥ 0; Xt > x} . (0.2)

We also consider the overshoot Kx and the undershoot Lx :

Kx := XTx − x , (0.3)

Lx := x − XT
x−

. (0.4)

The aim of this paper is to study the joint distribution of the triple (Tx,Kx, Lx).

3. In the usual theory of risk in continuous time the surplus of an insurance com-
pany is modelled by a stochastic process (Zt, t ≥ 0). The real number x = Z0

denotes the initial surplus, and the random time Tx := inf {t ≥ 0; Zt < 0}
may be interpreted as the ruin time. Historically, the first model (called clas-
sical or the Cramér-Lundberg one) was initiated by F. Lundberg [16] and H.
Cramér [4], [3]. It refers to the case when (Zt, t ≥ 0) is the sum of a drift and
a compound Poisson process. The later represents the aggregate claims. In
[8], Dufresne and Gerber have added a Brownian perturbation in the surplus
process. Thus, the process (x − Zt, t ≥ 0) corresponds to a particular case of
our process (Xt , t≥ 0). A lot of authors have developed extensions and have
considered a great variety of processes (Zt, t ≥ 0). They have mainly focused
on the choice of more adapted processes (Zt, t ≥ 0) to take into account the
complex reality. It is not our purpose to present here all these developments.
For more information one should refer to Rolski, Schmidli, Schmidt and J.
Teugels’ book [17], in which a large panel of models can be found.

Here are a few papers which are closely connected to the limit distribution of
(Tx,Kx, Lx), as x → ∞.

(a) J. Bertoin and R. Doney in [2] proved that the ruin probability P(Tx < ∞)
is equivalent to Ce−αx, as x → ∞. The authors has given in their paper
an expression of the constant C with the ascending ladder height process
associated with (Xt, t ≥ 0). When the Lévy process (Xt, t ≥ 0) has no
negative jumps, then C and α may be calculated explicitly.

(b) In the discrete time model, i.e. when (Xt, t ≥ 0) is replaced by a random
walk, A. Gut [11] has considered the limit distribution of normalized
passage times.
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(c) In both [10] and [7] analytical conditions are given to ensure that the
ratio XTx/x almost surely converges to 1, as x → ∞, in the discrete time
model as well as in the case of Lévy processes.

(d) R. Doney and A. Kyprianou [6] have showed that (Kx, Lx) converges in
the distribution sense as x goes to infinity.

Our study presents the following features :

(a) original analytic arguments of complex analysis are used, and especially
meromorphic and holomorphic functions (see Theorem 2.8);

(b) a decorrelation phenomenon : the couple (Kx, Lx) and a relevant normal-
ization of Tx become asymptotically independent, (x → ∞) (cf Theorems
2.1 and 2.3);

(c) new functional equations (cf Theorems 2.4 and 2.5).

4. Let us briefly describe the organization of the paper. In section 1, we will set
up notation and assumptions. In Section 2, we will suppose that the Lévy
measure ν of (Xt, t ≥ 0) satisfies the condition (H), which is defined in item
1.4 of Section 1.

In Section 2 we will list the main results of the paper. The two major theorems
(cf Theorems 2.1 and 2.3) are related to the convergence in distribution of the

triple (T̃x, Kx, Lx) with x → ∞. In addition T̃x is expressed in terms of Tx

and x and it depends on the sign of E(X1). In subsection 2.2 we present the
important theorems which permit to demonstrate Theorems 2.1 and 2.3. Our
approach is based on the study of the Laplace transform F of (Tx,Kx, Lx) :

F (θ, µ, ρ, x) := E

(
e−θTx−µKx−ρLx1l{Tx<∞}

)
, θ, µ, ρ ≥ 0. (0.5)

When ν(R) is finite, it is shown in Theorem 2.4 that F (θ, µ, ρ, ·) satisfies some
kind of integral equation. Introducing the Laplace transform F̂ (θ, µ, ρ, ·) of
F (θ, µ, ρ, ·) :

F̂ (θ, µ, ρ, q) :=

∫ +∞

0
e−qyF (θ, µ, ρ, y)dy , (0.6)

we proved in Theorem 2.5 that, under (H), the function F̂ (θ, µ, ρ, ·) solves an
equation which looks like an integral equation. Then an asymptotic develop-
ment of F (θ, µ, ρ, x) (x → ∞) with a finite number of terms like C(θ, µ, ρ)e−α(θ)x

is given in Theorem 2.8. In the third subsection 2.3 we will determine the be-
havior of the ruin probability P(Tx < ∞), when x runs to infinity. Theorem
2.10 asserts that the ruin probability has a polynomial rate of decay at ∞
as soon as ν admits polynomial moments. All the proofs of results stated in
Section 2 are postponed in Section 3.

Finally, in the last Section 4 we will give some complements and comments.
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1 Characteristic exponent and elementary properties

1.1 Let ψ be the characteristic exponent of a Lévy process (Xt , t≥ 0) with canonical
decomposition (0.1), i.e. E(eiqXt) = etψ(q) (q ∈ R). With the Lévy-Khintchine
formula, we get :

ψ(q) = −q2

2
− icq +

∫

R

(eiqy − 1 − iqy1l{|y|<1})ν(dy), q ∈ R. (1.7)

where ν is the Lévy measure which satisfies

∫

R

(
y2 ∧ 1

)
ν(dy) < ∞.

It is well known (cf [18], example 25.12) that as soon as

∫

R

|y|1l{|y|≥1}ν(dy) < ∞
then

E[|X1|] < ∞, (1.8)

and

E(X1) = −iψ′(0) = −c +

∫

R

y1l{|y|≥1}ν(dy). (1.9)

When (Jt, t ≥ 0) is a compound Poisson process, there exists a relation between the
drift term c0 in (0.1) and c :

c = c0 −
∫

R

y1l{|y|<1}ν(dy). (1.10)

1.2 The following assumptions will be needed throughout the paper :

∫ −1

−∞
esyν(dy) < ∞, ∀s ∈] −∞, 0[ (1.11)

and ∫ ∞

1
esyν(dy) < ∞, for some s > 0. (1.12)

It is convenient to introduce :

rν := sup
{
s ≥ 0;

∫ ∞

1
esyν(dy) < ∞

}
. (1.13)

It is clear that (1.12) implies that rν ∈]0,∞].
Under (1.11) and (1.12), the function ψ may be extended to the half-space {z ∈
C; Im(z) > −rν}. Let ϕ denote the function : ϕ(q) := ψ(iq), q > −rν . If we
consider the definition of ψ and the identity (1.7), we can infer that :

E(e−qXt) = etϕ(q), (1.14)

and

ϕ(q) =
q2

2
+ cq +

∫

R

(e−qy − 1 + qy1l{|y|<1})ν(dy), (1.15)
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for any q ∈] − rν ,∞[.
Note that :

ϕ′(0) = −E(X1). (1.16)

Assumptions (1.11) and (1.12) imply that ϕ is a function defined on ]− rν ,∞[ and :

ϕ′′(q) = 1 +

∫

R

y2e−qyν(dy), for any q ∈] − rν ,∞[.

Consequently, ϕ is convex on ] − rν ,∞[. It can be easily shown that ϕ(∞) :=
lim

x→∞
ϕ(x) = ∞.

Let us discuss the behavior of ϕ in the vicinity of −rν .

1. When rν = ∞ then ϕ(−rν) := lim
q→∞

ϕ(q) = ∞.

2. When rν < ∞ and

∫ ∞

1
erνyν(dy) = ∞ then ϕ(−rν) := lim

q→−rν

ϕ(q) = ∞.

3. In the case :

rν < ∞ and

∫ ∞

1
erνyν(dy) < ∞, (1.17)

then ϕ(−rν) is a real number and :

ϕ(−rν) =
r2
ν

2
− crν +

∫

R

(erνy − 1 − rνy1l{|y|<1})ν(dy). (1.18)

Let cν be the real number defined as :

r2
ν

2
− cνrν +

∫

R

(erνy − 1 − rνy1l{|y|<1})ν(dy) = 0. (1.19)

Hence :
ϕ(−rν) > 0 ⇔ c < cν . (1.20)

In the rest of the paper we assume

ϕ(−rν) ∈ ]0,∞] (1.21)

holds in any case.
1.3 In the sequel of the paper it will be convenient to deal with the parameter E(X1).
Note that this expectation may be expressed in terms of c and ν, via (1.9).
The zeros of

ϕθ(.) := ϕ(.) − θ (1.22)

are important parameters of our study. We can plot two graphs :

1. one represents ϕ and corresponds respectively to the three cases : E(X1) < 0,
E(X1) > 0 and E(X1) = 0;

2. another which represents ϕθ.

(see the Figures 1 and 2 for illustration).
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−γ0(0) u−rν

ϕ(u)

0 = γ∗
0(0)

a) E(X1) = −ϕ′(0) < 0

−rν −γ0(0) = 0 uγ∗
0(0)

ϕ(u)

b) E(X1) = −ϕ′(0) > 0

−rν u

ϕ(u)

−γ0(0) = 0 = γ∗
0(0)

c) E(X1) = −ϕ′(0) = 0

Figure 1: Graph of ϕ

0 γ∗
0(θ)−γ0(θ)

−θ

u−rν

ϕθ(u)

Figure 2: Graph of ϕθ

From the Figures 1 and 2, we can easily infer the existence of κ > 0 so that :

1. there is a unique γ∗
0(θ) ≥ 0 which satisfies :

ϕ
(
γ∗

0(θ)
)

= θ, ∀ θ ∈ [0, κ] (1.23)

and

γ∗
0(θ)

{
> 0 if θ > 0, or θ = 0 and E(X1) > 0
= 0 if θ = 0 and E(X1) ≤ 0.

(1.24)

2. there is a unique γ0(θ) ≥ 0 which satisfies :

ϕ
(
− γ0(θ)

)
= θ, ∀ θ ∈ [0, κ] (1.25)

and

−γ0(θ)

{
< 0 if θ > 0, or θ = 0 and E(X1) < 0
= 0 if θ = 0 and E(X1) ≥ 0.

(1.26)

So, when θ > 0 is rather small, the positive (resp. negative) zero of ϕθ is γ∗
0(θ) (resp.

−γ0(θ)).
1.4 In the rest of the paper, excepted in Section 2.3, we will require that ν and c sat-
isfy (1.11), (1.12) and (1.21). On principle, let us consider these three conditions as as-
sumption (H).
Note that, under (H), there is κ > 0 so that (1.23)-(1.26) holds.
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2 The results

We keep notation given in Section 1.

2.1 Normalized limit distribution of (Tx, Kx, Lx), as x → ∞
In this section we will investigate the limit behavior of the triple (Tx, Kx, Lx), as
x → ∞. Recall that Kx and Lx are defined by (0.3), resp. (0.4). Here as three
cases : either E(X1) > 0, or E(X1) < 0 or E(X1) = 0. First, it can be assumed that
E(X1) < 0.

Theorem 2.1 Under (H) and E(X1) < 0 then, conditionally on {Tx < ∞}, the

triple

(
1√
x

(
Tx +

x

ϕ′(−γ0(0))

)
, Kx, Lx

)
converges in distribution when x → ∞ to

the 3-dimensional law N
(
0;− ϕ′′(−γ0(0))

ϕ′3(−γ0(0))

)
⊗w−. In addition, w− is the probability

measure on R+ × R+ :

w−(dk, dl) =
−1

E(X1)

[
γ0(0)

2
δ0,0(dk, dl) + (eγ0(0)l − 1)1l{k≥0;l≥0} νl(dk) dl

+

∫

R−

(∫ −y

0
(1 − eγ0(0)(b+y))P(Tb < ∞)n(b, dk, dl)db 1l{k≥0,l≥0}

)
ν(dy)

]
,

(2.1)

νl(dk) is the image of ν(dk) by the map y → y− l, and n(b, dk, dl) is the distribution
of (Kb, Lb) conditionally on {Tb < ∞}.
If moreover the support of ν is included in [0;∞[, w−(dk, dl) is given explicitly :

w−(dk, dl) =
−1

E(X1)

[
γ0(0)

2
δ0,0(dk, dl) + (eγ0(0)l − 1)1l{k≥0;l≥0} νl(dk) dl

]
(2.2)

Remark 2.2 1. N (0;σ2) denotes the Gaussian distribution with mean 0 and
variance σ2.

2. a) We may observe that time and positions become asymptotically independent.
However the two components of the positions are not independent. In subsec-
tion 4.2, we give a stochastic interpretation of the limit distribution w−(dk, dl)
defined by (2.2).
b) Obviously Kx +Lx = XTx −XTx

− is the jump size of (Xt , t≥ 0) at Tx. It is

easy to infer from Theorem 2.1 that

(
1√
x

(
Tx +

x

ϕ′(−γ0(0))

)
, XTx − XTx

−

)

converges in distribution, as x → ∞, to N
(

0;− ϕ′′(−γ0(0))

ϕ′3(−γ0(0))

)
⊗ w̃ where
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w̃ is the probability measure on R+ :

w̃(ds) =
−1

E(X1)

[
γ0(0)

2
δ0(ds) +

eγ0(0)s − 1 − γ0(0)s

γ0(0)
1l{s≥0} ν(ds)

+

∫

R−

(∫ −y

0
(1 − eγ0(0)(b+y))P(Tb < ∞)n(b, ds)db

)
ν(dy)1l{s≥0}

]
,

(2.3)

and n(b, ds) is the distribution of XTb
− XTb

− conditionally on {Tb < ∞}.
If the jumps of (Xt , t≥ 0) are positive, w̃(ds) can be simplified :

w̃(ds) =
−1

E(X1)

[
γ0(0)

2
δ0(ds) +

eγ0(0)s − 1 − γ0(0)s

γ0(0)
1l{s≥0} ν(ds)

]
. (2.4)

Let list the results related to the two other cases : E(X1) > 0 and E(X1) = 0.

Theorem 2.3 Assume (H).

1. When E(X1) > 0, then Tx < ∞ a.s. and the triple

(
1√
x

(
Tx +

x

ϕ′(0)

)
, Kx, Lx

)

converges in distribution, as x → ∞, to N
(
0;− ϕ′′(0)

ϕ′3(0)

)
⊗ w+, where w+ is de-

fined by the relation obtained after replacing γ0(0) by −γ∗
0(0) in (2.1).

In particular if (Xt , t≥ 0) has only positive jumps :

w+(dk, dl) =
1

E(X1)

[
γ∗

0(0)

2
δ0,0(dk, dl) + (1 − e−γ∗

0 (0)l)1l{k≥0, l≥0} νl(dk) dl

]
.

(2.5)

2. When E(X1) = 0, then
(Tx

x2
,Kx, Lx

)
converges in distribution, as x → ∞, to

̺⊗w0. ̺ denotes the law of the first hitting time of level

√
1

ϕ′′(0)
by a standard

Brownian motion started at 0. Let us recall that

∫ ∞

0
e−θx̺(dx) = e

−
√

2θ
ϕ′′(0) .

Moreover ϕ′′(0) = 1 +

∫

R

y2ν(dy).

The probability measure w0 on R+ × R+ is defined as follows :

w0(dk, dl) =
1

ϕ′′(0)

[
δ0,0(dk, dl) + 2l1l{k≥0, l≥0} νl(dk) dl

−2

∫

R−

(∫ −y

0
(b + y)n(b, dk, dl)db 1l{k≥0, l≥0}

)
ν(dy)

]
, (2.6)
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when n(b, dk, dl) is the distribution of (Kb, Lb).
This expression may be simplified if (Xt , t≥ 0) has only positive jumps (i.e.
ν(] −∞, 0[) = 0):

w0(dk, dl) =
1

ϕ′′(0)

[
δ0,0(dk, dl) + 2l1l{k≥0, l≥0} νk(dl) dk

]
(2.7)

We will present two complements of Theorems 2.1 and 2.3.

1. Let us introduce :

T̃x =





1√
x

(
Tx +

x

ϕ′(−γ0(0))

)
when E(X1) < 0

1√
x

(
Tx +

x

ϕ′(0)

)
when E(X1) > 0

Tx

x2
when E(X1) = 0

(2.8)

In subsection 4.1, a rate of convergence of T̃x to the associated Gaussian dis-
tribution, as x → ∞ is given.

2. In subsection 4.2, we will provide a stochastic realization of the probability
measure w−, resp. w+ defined by (2.2), resp. (2.5).

2.2 Auxiliary results

To study the joint distribution of (Tx,Kx, Lx), the Laplace transform F of this three
dimensional r.v. is used :

F (θ, µ, ρ, x) = E

(
e−θTx−µKx−ρLx1l{Tx<∞}

)
, (2.9)

for any θ ≥ 0, µ ≥ 0, ρ ≥ 0.
a) When ν(R) < ∞ (i.e. (Jt, t ≥ 0) is a compound Poisson process), we first prove
(see Theorem 2.4 below) that F (θ, µ, ρ, ·) satisfies a kind of integral equation.

Theorem 2.4 Assume λ = ν(R) < ∞. For any θ ≥ 0, µ ≥ 0 and ρ ≥ 0, the
function F (θ, µ, ρ, .) is solution of the following integral equation :

G(x) = F0(θ, µ, ρ, x) + F1(θ, µ, ρ, x) + ΛθG(x) ∀x ≥ 0 (2.10)

9



where

αθ =
√

c2
0 + 2(λ + θ) , (2.11)

F0(θ, µ, ρ, x) = e−(c0+αθ)x , (2.12)

F1(θ, µ, ρ, x) =
e−(c0+αθ)x

αθ(µ − ρ + c0 + αθ)

∫

[0,x]

(
e(−ρ+c0+αθ)y − e−µy

)
ν(dy)

+
e−ρx

αθ(µ − ρ + c0 − αθ)

∫

]x,∞[

(
e−(ρ+αθ−c0)(y−x) − e−µ(y−x)

)
ν(dy)

+
e(µ−ρ)x − e−(c0+αθ)x

αθ(µ − ρ + c0 + αθ)

∫

]x,∞[
e−µy ν(dy)

− e−(c0+αθ)x

αθ(µ − ρ + c0 − αθ)

∫ ∞

0

(
e−(ρ+αθ−c0)y − e−µy

)
ν(dy) , (2.13)

and Λθ is the operator :

ΛθG(x) =
1

αθ

∫ ∞

−∞
ν(dy)

∫ (x−y)∧x

−∞
e−c0a

(
e−αθ|a| − e−(2x−a)αθ

)
G(x − a − y)da .

(2.14)

The positive operator Λθ will be studied in details in subsection 4.3. In particular,
it is proved that, under suitable assumptions, F (θ, µ, ρ, ·) is the unique function G
which solves the equation (2.10), and can be strongly approximated by a series.
b) However the operator Λθ cannot be defined if ν is not a finite measure. The
formula (2.10) does not permit to consider Lévy processes which are not reduced
to a Brownian motion with drift plus a compound Poisson process. To avoid this
difficulty, we introduce the Laplace transform F̂ (θ, µ, ρ, ·) of F (θ, µ, ρ, ·) :

F̂ (θ, µ, ρ, q) =

∫ ∞

0
e−qyF (θ, µ, ρ, y)dy. (2.15)

This definition is meaningful for any q such that Re (q) > 0, since F (θ, µ, ρ, .) is a
bounded function on [0,∞[.
Taking the Laplace transform in (2.10), proves (see Theorem 2.5 below) that under
(H), F̂ (θ, µ, ρ, .) verifies some kind of integral equation which remains valid when ν
is a Lévy measure with no necessary finite mass.
Before stating this result, let us denote by R the operator :

Rh(q) :=

∫ 0

−∞
ν(dy)

∫ −y

0

(
e−q(b+y) − 1

)
h(b)db , (2.16)

where q ∈ C, Re(q) > 0 and h ∈ L∞(R+).
Note that the identity (1.11) implies that Rh(q) is well defined.
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Theorem 2.5 Let us assume that (H) holds. Let θ, µ, ρ ≥ 0, q ∈ C, Re(q) > 0.
We get :

F̂ (θ, µ, ρ, q) =
1

ϕ(q) − θ

(
q − γ∗

0(θ)

2
+

∫ ∞

0

[
e−(q+ρ)y − e−µy

q + ρ − µ

−e−(γ∗
0 (θ)+ρ)y − e−µy

γ∗
0(θ) + ρ − µ

]
ν(dy)

+RF (θ, µ, ρ, .)(q) − RF (θ, µ, ρ, .)(γ∗
0(θ))

)
(2.17)

where γ∗
0(θ) is defined in (1.23) and (1.24).

Remark 2.6 1. If ν(]−∞, 0[) = 0 then RF (θ, µ, ρ, .) is cancelled, and F̂ (θ, µ, ρ, q)
is given by the following explicit formula :

F̂ (θ, µ, ρ, q) =
1

ϕ(q) − θ

(
q−γ∗

0(θ)

2
+

∫ ∞

0

[
e−(q+ρ)y−e−µy

q + ρ − µ

− e−(γ∗
0 (θ)+ρ)y − e−µy

γ∗
0(θ) + ρ − µ

]
ν(dy)

)
(2.18)

2. If ν(]0,∞[) = 0 (2.17) is reduced to :

F̂ (θ, µ, ρ, q) =
1

ϕ(q)−θ

(
q−γ∗

0(θ)

2
+RF (θ, µ, ρ, .)(q)−RF (θ, µ, ρ, .)(γ∗

0(θ))

)

(2.19)

3. Let us briefly detail the case θ = µ = ρ = 0 (i.e. F (0, 0, 0, x) is the ruin
probability). If E(X1) ≥ 0, it is easy to check that f : x → 1 satisfies (2.17).
In the more interesting case : E(X1) < 0, since γ∗

0(0) = 0, then the relation
(2.17) may be simplified. Suppose moreover that ν(] −∞, 0[) = 0, then (2.18)
is reduced to :

F̂ (0, 0, 0, q) =

∫ ∞

0
e−qyP(Ty < ∞)dy =

1

q
+

E(X1)

ϕ(q)
. (2.20)

Therefore (2.20) generalizes identity (3.3) in [8].

Since {Ty < ∞} = {X̄∞ > y}, where X̄∞ := sup
t≥0

Xt, then (2.20) is equivalent

to :
E

(
e−qX̄∞

)
= −E(X1)

q

ϕ(q)
, q > 0. (2.21)

Note that in the case ν(]0,∞[) = 0, then F (0, 0, 0, x) = P(Tx < ∞) = e−γ0(0)x.

11



c) Let us briefly indicate how Theorem 2.5 enables to obtain the asymptotic behavior
of

(
T̃x,Kx, Lx

)
as x → ∞. Using the Mellin-Fourier inverse transformation, it

is actually possible to recover F (θ, µ, ρ, ·) (see the formula (3.70) in Section 3.4).
It implies that the asymptotic behavior of F (θ, µ, ρ, x), x → ∞ depends on the
poles of F̂ (θ, µ, ρ, ·). According to (2.17), the complex zeros of ϕθ are the poles of
F̂ (θ, µ, ρ, ·). Under (H) and (2.23), we may determine in Proposition 2.7 the zeros
of ϕθ. Hence, we may obtain an expansion of F (θ, µ, ρ, x) as x → ∞ (see Theorem
2.8 below). Finally that allows to determine the limit distribution of the random
triple considered above as x goes to infinity.
Let

Bν := sup {b > 0 ; q 7→
∫ ∞

1
e−qyν(dy) admits a meromorphic extension to D−b} ,

(2.22)
where D−b := {q ∈ C; Re q > −b}
Note that Bν ≥ rν and Bν may be equal to ∞. Then ϕ has a meromorphic extension
to D−Bν . For simplicity, this extension will be denoted ϕ .
Our last assumption on ν is :

∀B ∈]0, Bν [, ∃K, R0 > 0, so that :
∣∣∣∣
∫ ∞

1
e−qyν(dy)

∣∣∣∣ ≤ K|q| , for any q so that

{
−B ≤ Re q ≤ 0
|Im q| ≥ R0

(2.23)

A large class of measures ν satisfying (H) and (2.23) will be given in subsection 4.4.
First, we will concentrate on the complex zeros of the function ϕθ defined by (1.22).
Then, we will give in Theorem 2.8 an asymptotic expansion of F (θ, µ, ρ, x) as x → ∞.

Proposition 2.7 Let us suppose that (H) and (2.23) hold. Then for any θ ∈ [0, κ],
there exists βθ > 0 such that for any B ∈]0, Bν [, ϕθ admits a finite number of
conjugated zeros in the strip D−B,βθ

:= {q ∈ C ; −B ≤ Re q ≤ βθ}.
This set of zeros of ϕθ in D−B,βθ

is equal to (cf. Figure 3 below) :

1. {−γ0(θ), −γ1(θ), −γ1(θ), · · · ,−γp(θ), −γp(θ)} if θ > 0 ,

2. {0, −γ0(0), −γ1(0), −γ1(0), · · · ,−γp(0), −γp(0)} if θ = 0 and E(X1) < 0,

3. {−γ0(0) = 0, −γ1(0), −γ1(0), · · · ,−γp(0), −γp(0)} if θ = 0 and E(X1) ≥ 0,

where

−B < Re (−γp(θ)) ≤ · · · ≤ Re (−γ1(θ)) < −γ0(θ) ≤ 0 . (2.24)

4. −γ0(θ) is a simple (resp. double) zero of ϕθ, if θ > 0, or θ = 0 and E(X1) 6= 0
(resp. otherwise, i.e. θ = 0 and E(X1) = 0).
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The zeros of ϕθ which are the poles of F̂ (θ, µ, ρ, ·) will play an important role in
our approach, as shown below (see the proof of Theorem 2.8 in Section 3.4, and
properties in Section 4.5).

Theorem 2.8 Let us suppose (H) and (2.23).
Then for any θ ∈ [0, κ], µ ≥ 0 and ρ ≥ 0, there exists a positive number C0(θ, µ, ρ) > 0
and complex x-polynomial functions C1(θ, µ, ρ, x), · · · , Cp(θ, µ, ρ, x) so that
F (θ, µ, ρ, x) has the following asymptotic expansion as x → ∞ :

F (θ, µ, ρ, x) =C0(θ, µ, ρ)e−γ0(θ)x +

p∑

i=1

ai

(
Ci(θ, µ, ρ, x)e−γi(θ)x + Ci(θ, µ, ρ, x)e−γi(θ)x

)

+ O
(
e−Bx

)
, (2.25)

where ai =
1

2
if γi(θ) is real and ai = 1 otherwise. The degree of Ci(θ, µ, ρ, .) is

ni − 1, where ni is the order of multiplicity of −γi(θ). In addition, O is uniform
with respect to µ ≥ 0, ρ ≥ 0 and θ ∈ [0, κ].

Remark 2.9 1. In (2.25), it is understood that B may be chosen in ]0, Bν [ closest
as possible to Bν .

2. In Section 4.5 we study the coefficients Ci(θ, µ, ρ, x).

3. Obviously, (2.25) and (2.24) imply that :

lim
x→∞

F (θ, µ, ρ, x)eγ0(θ)x = C0(θ, µ, ρ). (2.26)

This property has already been reached in [2] in the particular case : θ = µ =
ρ = 0 :

F (0, 0, 0, x) = P(Tx < ∞)∼C0(0, 0, 0)e−γ0(0)x as x → ∞. (2.27)

4. Heuristically, no assumption on the negative jumps is required to get :

F (θ, µ, ρ, x) ≤ Ce−γ0(θ)x . (2.28)

However to obtain an equivalent, or an asymptotic development of F (θ, µ, ρ, x)
when x goes to infinity, it is natural to suppose that the negative and the positive
parts of the jumps of (Xt, t ≥ 0) are controlled. Our asymptotic development
looks like a perturbation theorem around the case of Brownian motion with
negative drift.
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2.3 Polynomial decay

According to item 3. of Remark 2.9, under (H) and (2.23), the ruin probability goes
to 0, with exponential rate. The aim is to prove that under weaker assumptions,

F (x) := F (0, 0, 0, x) = P(Tx < ∞) (2.29)

has a polynomial type rate of decay, as x → ∞.
In this section we suppose neither (H) nor (2.23).

Theorem 2.10 Let us assume that
∫

R

|y|1l{|y|>1}ν(dy) < ∞ and E(X1) = −c +

∫

R

y1l{|y|≥1}ν(dy) < 0 . (2.30)

and ∫ ∞

0
ypν(dy) < ∞ , for some p ≥ 2 . (2.31)

Let n be the integer part of p − 2, then

∀x ∈ R+ P(Tx < ∞) ≤ Cn

1 + xn
, (2.32)

where Cn > 0.

3 Proofs

3.1 Proof of Theorems 2.1 and 2.3

Our approach is only based on the following estimate :

F (θ, µ, ρ, x)∼C0(θ, µ, ρ)e−γ0(θ)x as x → ∞ , (3.1)

where F (θ, µ, ρ, x) (resp. γ0(θ)) is defined by (2.9) (resp. (1.25) and (1.26)). The
coefficient C0(θ, µ, ρ) comes from (2.25) included in Theorem 2.8.
Theorems 2.1 and 2.3 related to the three cases E(X1) > 0, E(X1) < 0 and E(X1) = 0
may be proved by using the same technique. Therefore we will only consider the
case E(X1) = 0 and the case E(X1) < 0 (see Section 4.6 too).

3.1.1

Let us start with the case E(X1) = 0.

(i) Since ϕ(−γ0(θ)) = θ, ϕ(0) = 0 and ϕ′(0) = 0, we may use the asymptotic expan-
sion of ϕ at 0 at order 2 :

θ = ϕ(−γ0(θ)) = ϕ(−h) =
h2

2
ϕ′′(0) + o(h2) . (3.2)
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Therefore :

γ0(θ) = h =

√
2θ

ϕ′′(0)
+ o(

√
θ) . (3.3)

Recall that (3.1) is uniform with respect to θ ∈ [0, κ]. Then replacing θ by
θ

x2
in

(3.1) brings to :

F

(
θ

x2
, µ, ρ, x

)
= E

(
e−θ Tx

x2 −µKx−ρLx1l{Tx<∞}
)

∼ C0

(
θ

x2
, µ, ρ

)
e
−
√

2θ
ϕ′′(0) as x → ∞,

∼ C0 (0, µ, ρ) e
−
√

2θ
ϕ′′(0) as x → ∞ . (3.4)

(ii) We would like to demonstrate in this item that C0(0, µ, ρ) and e
−
√

2θ
ϕ′′(0) are

Laplace transforms of probability measures on [0,∞[×[0,∞[ and [0,∞[ respectively.

As for e
−
√

1
ϕ′′(0)

√
2θ

, it is well known (cf. [12] page 96 formula (8.6)) that it is the

Laplace transform of the first hitting time to level

√
1

ϕ′′(0)
for a standard Brownian

motion started at 0.
Let us prove that C0(0, µ, ρ) is a Laplace transform. We modify the identity (4.34)
in Section 4.5 via the relation :

e−ay − 1 + ay

a2
= −

∫ y

0
(z − y)e−azdz.

Then, we obtain :

C0(0, µ, ρ) =
1

ϕ′′(0)

[
1 − 2

∫ ∞

0
e−ρy

(∫ y

0
(z − y)e(ρ−µ)zdz

)
ν(dy)

−2

∫ 0

−∞

(∫ −y

0
(y + b)E

(
e−µKb−ρLb1l{Tb<∞}

)
db

)
ν(dy)

]
. (3.5)

Let n(b, du, dz) be the distribution of the couple (Kb, Lb). Consequently, C0(0, µ, ρ)
may be written as follows :

C0(0, µ, ρ) =
1

ϕ′′(0)

[
1 + 2

∫ ∞

0
e−µz

(∫

[z,∞[
(y − z)e−ρ(y−z)ν(dy)

)
dz

−2

∫ ∞

0

∫ ∞

0
e−µue−ρz

∫ 0

−∞

(∫ −y

0
(y + b)n(b, du, dz)db

)
ν(dy)

]

=

∫ ∞

0

∫ ∞

0
e−µue−ρzw0(du, dz) . (3.6)
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with w0 defined in (2.6). ⊓⊔

3.1.2

Next we study the case E(X1) < 0.
(i) On one hand, from (3.1), we have :

E

(
e−θTx−µKx−ρLx |Tx < ∞

)
=

F (θ, µ, ρ, x)

P(Tx < ∞)
=

F (θ, µ, ρ, x)

F (0, 0, 0, x)

∼ C0(θ, µ, ρ)

C0(0, 0, 0)
e−(γ0(θ)−γ0(0))x as x → ∞. (3.7)

On the other hand, the behavior of γ0(θ) in a neighborhood of 0 is the following :

γ0(θ) − γ0(0) = − 1

ϕ′( − γ0(0)
)θ +

ϕ′′( − γ0(0)
)

2ϕ′3( − γ0(0)
)θ2 + o(θ2) (θ → 0). (3.8)

Combining (3.7) and (3.8) leads after easy calculations to :

E

(
e
− θ√

x

�
Tx+ x

ϕ′(−γ0(0))

�
−µKx−ρLx |Tx < ∞

)
∼ C0(0, µ, ρ)

C0(0, 0, 0)
e
− 1

2
ϕ′′(−γ0(0))

ϕ′3(−γ0(0))
θ2

as x → ∞.

(3.9)

Let us observe that e
− 1

2
ϕ′′(−γ0(0))

ϕ′3(−γ0(0))
θ2

is the Laplace transform (with respect to the θ

variable) of the Gaussian distribution with mean 0 and variance
ϕ′′(−γ0(0))

ϕ′3(−γ0(0))
. As a

result Theorem 2.1 will be proved as soon as we demonstrate that
C0(0, µ, ρ)

C0(0, 0, 0)
is the

Laplace transform of a probability measure on [0,∞[×[0,∞[.
We proceed as in the case 3.1.1 above. We begin by using the relation (4.34) :

C0(θ, µ, ρ)

C0(0, 0, 0)
=

1

C0(0, 0, 0)ϕ′(−γ0(0))

[
−γ0(0)

2
+

∫ ∞

0

e−(−γ0(0)+ρ)y − e−µy

−γ0(0) + ρ − µ
ν(dy)

−
∫ ∞

0

e−ρy − e−µy

ρ − µ
ν(dy) + RF (0, µ, ρ, .)(−γ0(0))

]
. (3.10)

It follows :

C0(θ, µ, ρ)

C0(0, 0, 0)
=

1

C0(0, 0, 0)ϕ′(−γ0(0))

[
−γ0(0)

2
+

∫ ∞

0
e−µy

(∫ y

0
−e−(−γ0(0)+ρ−µ)zdz

)
ν(dy)

−
∫ ∞

0
e−µy

(∫ y

0
e−(ρ−µ)zdz

)
ν(dy) + RF (0, µ, ρ, .)(−γ0(0))

]
.

(3.11)
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Using the Fubini theorem we get :

C0(θ, µ, ρ)

C0(0, 0, 0)
=

1

C0(0, 0, 0)ϕ′(−γ0(0))

[
−γ0(0)

2
−

∫ ∞

0
(eγ0(0)z − 1)e−ρz

(∫

[z;∞[
e−µ(y−z)ν(dy)

)
dz

+

∫ 0

−∞

(∫ −y

0
(eγ0(0)z − 1)E

(
e−µKb−ρLb1l{Tb<∞}

)
db

)
ν(dy)

]
. (3.12)

Let n(b, du, dz) be the distribution of (Kb, Lb) conditionally on {Tb < ∞}. Then :

C0(θ, µ, ρ)

C0(0, 0, 0)
=

1

C0(0, 0, 0)ϕ′(−γ0(0))

[
−γ0(0)

2
−

∫ ∞

0
(eγ0(0)z − 1)e−ρz

(∫

[z;∞[
e−µ(y−z)ν(dy)

)
dz

+

∫ ∞

0

∫ ∞

0
e−µue−ρz

∫ 0

−∞

(∫ −y

0
(eγ0(0)z − 1)P(Tb < ∞)n(b, du, dz)db

)
ν(dy)

]

=

∫ ∞

0

∫ ∞

0
e−µue−ρzw−(du, dz) . (3.13)

with w− defined in (2.1).
⊓⊔

3.2 Proof of Theorem 2.4

In this subsection it is assumed that : λ := ν(R) < ∞. Then (Jt , t≥ 0) is a
compound Poisson process. As a result, it admits a first jump time τ1, expo-
nentially distributed with parameter ν(R) (cf [18], theorem 21.1). The process
(Xt+τ1 − Xτ1 ; t ≥ 0) is again a Lévy process distributed as (Xt , t≥ 0). This prop-
erty is the key of our approach that we will briefly describe. Let us consider three
cases :

• Tx = inf {t ≥ 0 ; Bt − c0t > x} < τ1 if sup
0≤t≤τ1

(Bt − c0t) > x,

• Tx = τ1 if sup
0≤t≤τ1

(Bt − c0t) < x and Jτ1 + Bτ1 − c0τ1 > x,

• Tx > τ1 otherwise. Then, conditionally on {Tx > τ1}, Tx − τ1 is distributed as
T̂x−Xτ1

where (T̂x ; x > 0) is an independent copy of (Tx ; x > 0). (T̂x ; x > 0)
is independent from (Xt , t≥ 0) as well. This ”renewal” part gives rise to the
integral kernel Λθ defined in (2.14).

This leads us to decompose F (θ, µ, ρ, .) defined by (2.9), as follows :

F (θ, µ, ρ, x) =E

(
e−θTx−µKx−ρLx1l{Tx<τ1}

)
+ E

(
e−θTx−µKx−ρLx1l{Tx=τ1}

)

+ E

(
e−θTx−µKx−ρLx1l{τ1<Tx<∞}

)
. (3.14)
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We will calculate the two first terms of (3.14) in Lemmas 3.1, 3.2. The third one
will be determined in Lemma 3.3.

Lemma 3.1 Let αθ be the real number, defined in (2.11), then :

E

(
e−θTx−µKx−ρLx1l{Tx<τ1}

)
= e−(c0+αθ)x . (3.15)

Proof of Lemma 3.1
Let (B̃t , t≥ 0) be the Brownian motion with drift −c0 :

B̃t := Bt − c0t ∀t ≥ 0 . (3.16)

We set T̃x := inf {t ≥ 0; B̃t > x}, x ≥ 0.
Then, {Tx < τ1} = {T̃x < τ1} a.s. and Kx = Lx = 0 on {Tx < τ1}.
Since τ1 is exponentially distributed with parameter λ and is independent from T̃x,
we have :

E

(
e−θTx−µKx−ρLx1l{Tx<τ1}

)
= E

(
e−(λ+θ)T̃x

)
. (3.17)

According to ([12], exercise 5.10 page 197) we can conclude that (3.15) holds. ⊓⊔

Lemma 3.2 We have :

E

(
e−θTx−µKx−ρLx1l{Tx=τ1}

)
=

e−(c0+αθ)x

αθ(µ − ρ + c0 + αθ)

∫

[0,x]

(
e(−ρ+c0+αθ)y − e−µy

)
ν(dy)

+
e−ρx

αθ(µ − ρ + c0 − αθ)

∫

]x,∞[

(
e−(ρ+αθ−c0)(y−x) − e−µ(y−x)

)
ν(dy)

+
e(µ−ρ)x − e−(c0+αθ)x

αθ(µ − ρ + c0 + αθ)

∫

]x,∞[
e−µy ν(dy)

− e−(c0+αθ)x

αθ(µ − ρ + c0 − αθ)

∫ ∞

0

(
e−(ρ+αθ−c0)y − e−µy

)
ν(dy) .

(3.18)

Proof of Lemma 3.2
Let us write : Y1 := Jτ1 . We observe that on {Tx = τ1}, Y1 > 0. Morever :

{Tx = τ1} = {sup
t≤τ1

B̃t < x, B̃τ1 + Y1 > x} , (3.19)

and
Kx = B̃τ1 + Y1 − x , Lx = x − B̃τ1 , (3.20)
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where (B̃t , t≥ 0) is defined by the relation (3.16). Conditioning by (τ1, Y1) implies
that :

∆ :=E

(
e−θTx−µKx−ρLx1l{Tx=τ1}

)

=e−ρx

∫ ∞

0
dt e−(λ+θ)t

∫ ∞

0
ν(dy) E

(
e−(µ−ρ)B̃t−µ(y−x)1l{supu≤t B̃u<x ; x−y≤B̃t}

)

(3.21)

since the distribution of Y1 is
1

λ
ν.

The density function of (sup
u≤t

Bu, Bt) is given in ([12] page 95), i.e. :

P

(
Bt ∈ da; sup

u≤t
Bu ∈ db

)
=

2(2b − a)√
2πt3

e−
(2b−a)2

2t 1l{a<b; b>0}dadb . (3.22)

Let us apply Girsanov’s formula :

P

(
B̃t ∈ da; sup

u≤t
B̃u ∈ db

)
=

2(2b − a)√
2πt3

e−c0a− c20
2

t e−
(2b−a)2

2t 1l{a<b; b>0}dadb . (3.23)

Combining (3.23) and (3.21) leads to :

∆ = e(µ−ρ)x

∫ ∞

0
ν(dy) e−µy

∫ x

x−y
da e−(c0+µ−ρ)a

∫ x

a∨0
db (2b − a)

∫ ∞

0

2√
2πt3

e
− 1

2

�
(2(λ+θ)+c20)t+

(2b−a)2

t

�

dt . (3.24)

Let us recall the classical identities (cf. [14] p 118, or [9] sections 8.432 6 page 959,
and 8.469 3 page 967) :

K 1
2
(δ) :=

1

2

∫ ∞

0

1√
t
e−

δ
2
(t+ 1

t
)dt =

√
π

2δ
e−δ ∀δ > 0 , (3.25)

and ∫ ∞

0

1√
t3

e−
1
2
(βt+ γ

t
)dt =

√
2π

γ
e−

√
βγ ∀β > 0, ∀γ > 0 . (3.26)

obtained by derivation and the changing of variable t →
√

β
γ t.

This allows to first compute explicitly the integral with respect to dt in (3.24) :

∆ = 2e(µ−ρ)x

∫ ∞

0
ν(dy) e−µy

∫ x

x−y
da e−(c0+µ−ρ)a

∫ x

a∨0
e−αθ(2b−a) db

(3.27)
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In a second step we evaluate the integral with respect to db :

∆ =
e(µ−ρ)x

αθ

∫ ∞

0
ν(dy) e−µy

∫ x

x−y
da e−(c0+µ−ρ)a

(
e−αθ|a| − e−αθ(2x−a)

)
. (3.28)

Let us introduce two cases x − y ≥ 0 and x − y < 0 :

∆ =
e(µ−ρ)x

αθ

∫

[0,x]
ν(dy) e−µy

∫ x

x−y
e−(c0+µ−ρ+αθ)a da

+
e(µ−ρ)x

αθ

∫

]x,∞[
ν(dy) e−µy

[∫ 0

x−y
e−(c0+µ−ρ−αθ)a da +

∫ x

0
e−(c0+µ−ρ+αθ)a da

]

− e(−2αθ+µ−ρ)x

αθ

∫ ∞

0
ν(dy) e−µy

∫ x

x−y
e−(c0+µ−ρ−αθ)a da . (3.29)

If the integral is computed according to da, we may easily obtain (3.18). ⊓⊔

Lemma 3.3 In (3.14), the third expectation is equal to :

E

(
e−θTx−µKx−ρLx 1l{τ1<Tx<∞}

)
=

1

αθ

∫ ∞

−∞
ν(dy)

∫ (x−y)∧x

−∞
e−c0a

(
e−αθ|a| − e(2x−a)αθ

)
F (θ, µ, ρ, x − a − y)da . (3.30)

Morever :
e−αθ|a| − e−(2x−a)αθ ≥ 0 if a ≤ (x − y) ∧ x , (3.31)

so Λθ defined by (2.14) is an non-negative operator.

Proof of Lemma 3.3
Formula (3.30) may be proved proceeding analogously to the proof of previous
Lemma. ⊓⊔

Remark 3.4 By introducing adapted functional Banach spaces, we may study in
subsection 4.3 (cf. Theorem 4.2 and Proposition 4.3) the operator Λθ. We can
prove that F (θ, µ, ρ, .) is the unique solution of (2.10). Moreover, if θ > 0, or θ = 0
and E(X1) < 0, then F (θ, µ, ρ, .) has a sub-exponential rate of decay :

F (θ, µ, ρ, x) ≤ Ce−γx, ∀x ≥ 0, for some C > 0, γ > 0 . (3.32)

The optimal value of γ has be given in Remark 2.9.
Note that if θ = 0 and E(X1) ≥ 0, then F (0, 0, 0, x) = 1, hence there is no hope to
obtain a sub-exponential rate of decay.
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3.3 Proof of Theorem 2.5

Assume that ν satisfies the assumptions given in Theorem 2.5. The proof of Theo-
rem 2.5 will be divided into two steps. We will first prove (2.17) when ν(R) < ∞.
In a second step, we will approximate ν by a sequence of finite measures (νn). Then
by replacing ν by νn, and by taking the limit n → ∞, it will be proved that (2.17)
remains valid.

Step 1 Let us suppose that ν(R) < ∞.
a) Taking the Laplace transform in functional equation (2.10) leads to :

F̂ (θ, µ, ρ, q) = F̂0(θ, µ, ρ, q) + F̂1(θ, µ, ρ, q) + Λ̂θF (θ, µ, ρ, .)(q) q ∈ D0, (3.33)

with D0 := {z ∈ C, Re(z) > 0}.
The identity (2.12) implies :

F̂0(θ, µ, ρ, q) =
1

c + αθ + q
, (3.34)

As for F̂1(θ, µ, ρ, x), starting from (2.13), we split the integral in four parts :

F̂1(θ, µ, ρ, q) =

∫ ∞

0
e−qxF1(θ, µ, ρ, x)dx

= I1(θ, µ, ρ, q) + I2(θ, µ, ρ, q) + I3(θ, µ, ρ, q) + I4(θ, µ, ρ, q) (3.35)

where

I1(θ, µ, ρ, q) :=

∫ ∞

0

e−(q+c+αθ)x

αθ(µ + c + αθ − ρ)

(∫

[0,x]

(
e(c+αθ−ρ)y − e−µy

)
ν(dy)

)
dx

=
1

αθ(q + c + αθ)(µ + c + αθ − ρ)

∫ ∞

0

(
e−(q+ρ)y − e−(q+µ+c+αθ)y

)
ν(dy) ,

(3.36)

I2(θ, µ, ρ, q) :=

∫ ∞

0

e−(q+ρ)x

αθ(µ + c − αθ − ρ)

(∫

]x,∞[

(
e−(ρ+αθ−c)(y−x) − e−µ(y−x)

)
ν(dy)

)
dx

=
1

αθ(µ + c − αθ − ρ)

∫ ∞

0

(
e−(ρ+αθ−c)y − e−(q+ρ)y

q + c − αθ
+

e−(q+ρ)y − e−µy

q + ρ − µ

)
ν(dy) ,

(3.37)
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I3(θ, µ, ρ, q) :=

∫ ∞

0

e−(q+ρ−µ)x − e−(q+c+αθ)x

αθ(µ − ρ + c + αθ)

(∫

]x,∞[
e−µy ν(dy)

)
dx

= − 1

αθ(µ − ρ + c + αθ)

∫ ∞

0
ν(dy)

(
e−(q+ρ)y − e−µy

q + ρ − µ
− e−(q+µ+c+αθ)y − e−µy

q + c + αθ

)
,

(3.38)

I4(θ, µ, ρ, q) := −
∫ ∞

0

e−(q+c+αθ)x

αθ(−ρ + µ + c − αθ)
dx

(
ν̂+(ρ + αθ − c) − ν̂+(µ)

)

=
ν̂+(µ) − ν̂+(ρ + αθ − c)

αθ(q + c + αθ)(−ρ + µ + c − αθ)
,

(3.39)

and ν̂+ denotes the Laplace transform of ν|]0,∞]
:

ν̂+(q) := ν̂|]0,∞]
(q) =

∫ ∞

0
e−qyν(dy), q ∈] − rν ,∞[ . (3.40)

Therefore :

F̂1(θ, µ, ρ, q) = − ν̂+(q + ρ)

αθ(q + c + αθ)(q + ρ − µ)
+

ν̂+(q + ρ)

αθ(q + c − αθ)(q + ρ − µ)

+
2 ν̂+(ρ + αθ − c)

(µ + c − αθ − ρ)(q + c − αθ)(q + c + αθ)

− 2 ν̂+(µ)

(µ + c − αθ − ρ)(q + ρ − µ)(q + c + αθ)
. (3.41)

Let us introduce :

Cθ(q) := (q + c + αθ)(q + c − αθ) = q2 + 2cq − 2(λ + θ) . (3.42)

A straight calculation gives :

F̂1(θ, µ, ρ, q) =
2

Cθ(q)

(
ν̂+(q + ρ) − ν̂+(µ)

q + ρ − µ
− ν̂+(µ) − ν̂+(ρ + αθ − c)

µ − ρ + c − αθ

)
. (3.43)
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b) Let us now compute Λ̂θF (θ, µ, ρ, .)(q).
Setting b = x − a − y in (2.14) leads to :

ΛθF (θ, µ, ρ, .)(x)

=
1

αθ

∫ ∞

−∞
ν(dy)

∫ ∞

0
e−c(x−b−y)

(
e−αθ|x−y−b| − e−(x+y+b)αθ

)
F (θ, µ, ρ, b)db

− 1

αθ

∫ 0

−∞
ν(dy)

∫ −y

0
e−c(x−b−y)

(
e−αθ(x−y−b) − e−(x+y+b)αθ

)
F (θ, µ, ρ, b)db

= H1F (θ, µ, ρ, .)(x) + I(θ, µ, ρ, x)

+
e−(c+αθ)x

αθ
(RF (θ, µ, ρ, .)(αθ − c) − RF (θ, µ, ρ, .)(−αθ − c)) , (3.44)

where we recall that R has been defined by (2.16), and

H1F (θ, µ, ρ, .)(x) :=
1

αθ

∫ ∞

−∞
ν(dy)

∫ ∞

0
e−c(x−b−y)e−αθ|x−y−b|F (θ, µ, ρ, b)db , (3.45)

I(θ, µ, ρ, x) := − 1

αθ

∫ ∞

−∞
ν(dy)

∫ ∞

0
e−c(x−b−y)e−(x+y+b)αθF (θ, µ, ρ, b)db

=
1

αθ
e−(c+αθ)x ν̂(αθ − c) F̂ (θ, µ, ρ, αθ − c) .

(3.46)

and ν̂ stands for the Laplace transform of ν :

ν̂(q) :=

∫ ∞

−∞
e−qyν(dy), q ∈] − rν ,∞[ . (3.47)

We multiply both sides of (3.44) by e−qx and we integrate with respect to the
Lebesgue measure restricted to [0,∞[. We get :

Λ̂θF (θ, µ, ρ, .)(q) = Ĥ1F (θ, µ, ρ, .)(q) − ν̂(αθ − c)F̂ (θ, µ, ρ, αθ − c)

αθ(q + c + αθ)

+
RF (θ, µ, ρ, .)(αθ − c) − RF (θ, µ, ρ, .)(−αθ − c)

αθ(q + c + αθ)
. (3.48)
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We now focus on the calculation of Ĥ1F (θ, µ, ρ, .)(q). By using (3.45), we come to :

Ĥ1F (θ, µ, ρ, .)(q) =
1

αθ

∫ ∞

−∞
ecyν(dy)

∫ ∞

0
ecbF (θ, µ, ρ, b)db

∫ ∞

0
e−(q+c)xe−αθ|x−y−b|dx

=
1

αθ

∫ 0

−∞
ecyν(dy)

∫ −y

0
ecbF (θ, µ, ρ, b)db

∫ ∞

0
e−(q+c)xe−αθ(x−y−b)dx

+
1

αθ

∫ ∞

−∞
ecyν(dy)

∫ ∞

0∨(−y)
ecbF (θ, µ, ρ, b)db

∫ b+y

0
e−(q+c)xeαθ(x−y−b)dx

+
1

αθ

∫ ∞

−∞
ecyν(dy)

∫ ∞

0∨(−y)
ecbF (θ, µ, ρ, b)db

∫ ∞

b+y
e−(q+c)xe−αθ(x−y−b)dx .

The x-integrals can be computed :

Ĥ1F (θ, µ, ρ, .)(q) =
1

αθ

∫ 0

−∞
e(c+αθ)yν(dy)

∫ −y

0
e(c+αθ)bF (θ, µ, ρ, b)db

1

q + c + αθ

+
1

αθ

∫ ∞

−∞
e(c−αθ)yν(dy)

∫ ∞

0∨(−y)
e(c−αθ)bF (θ, µ, ρ, b)

1 − e−(q+c−αθ)(b+y)

q + c − αθ
db

+
1

αθ

∫ ∞

−∞
e(c+αθ)yν(dy)

∫ ∞

0∨(−y)
e(c+αθ)bF (θ, µ, ρ, b)

e−(q+c+αθ)(b+y)

q + c + αθ
db .

By using (2.16) we may obtain :

Ĥ1F (θ, µ, ρ, .)(q) =
1

αθ(q + c + αθ)

[
RF(θ, µ, ρ, .)(−αθ−c) +

∫ 0

−∞
ν(dy)

∫ −y

0
F (θ, µ, ρ, b)db

]

+
1

αθ(q + c − αθ)

∫ ∞

−∞
e(c−αθ)yν(dy)

∫ ∞

0∨(−y)
e(c−αθ)bF (θ, µ, ρ, b)db

− 1

αθ(q + c − αθ)

∫ ∞

−∞
e−qyν(dy)

∫ ∞

0∨(−y)
e−qbF (θ, µ, ρ, b)db

+
1

αθ(q + c + αθ)

∫ ∞

−∞
e−qyν(dy)

∫ ∞

0∨(−y)
e−qbF (θ, µ, ρ, b)db .

Since
1

αθ(q + c + αθ)
− 1

αθ(q + c − αθ)
= − 2

Cθ(q)
, (3.49)
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we get :

Ĥ1F (θ, µ, ρ, .)(q) =
RF (θ, µ, ρ, .)(−αθ − c)

αθ(q + c + αθ)

+
ν̂(αθ − c)F̂ (θ, µ, ρ, αθ − c) − RF (θ, µ, ρ, .)(αθ − c)

αθ(q + c − αθ)

− 2

Cθ(q)

(
ν̂(q)F̂ (θ, µ, ρ, q) − RF (θ, µ, ρ, .)(q)

)
. (3.50)

Combining (3.33) and (3.48) gives :

F̂ (θ, µ, ρ, q)

(
1 +

2ν̂(q)

Cθ(q)

)
= F̂0(θ, µ, ρ, q) + F̂1(θ, µ, ρ, q) +

2

Cθ(q)
RF (θ, µ, ρ, .)(q)

+
2

Cθ(q)

(
ν̂(αθ − c)F̂ (θ, µ, ρ, αθ − c) − RF (θ, µ, ρ, .)(αθ − c)

)
. (3.51)

As Cθ(q) + 2ν̂(q) = 2(ϕ(q) − θ), it is easy to check :

(ϕ(q) − θ)F̂ (θ, µ, ρ, q) =
1

2
Cθ(q)

[
F̂0(θ, µ, ρ, q) + F̂1(θ, µ, ρ, q)

]
+ RF (θ, µ, ρ, .)(q)

+ ν̂(αθ − c)F̂ (θ, µ, ρ, αθ − c) − RF (θ, µ, ρ, .)(αθ − c) .

(3.52)

Let us recall that (H) implies the existence of γ∗
0(θ) ≥ 0 such that ϕ

(
γ∗

0(θ)
)

= θ (cf
(1.23) and (1.24)). Therefore taking q = γ∗

0(θ) in (3.52) brings to :

ν̂(αθ − c)F̂ (θ, µ, ρ, αθ − c) − RF (θ, µ, ρ, .)(αθ − c)

= −1

2
Cθ(γ

∗
0(θ))

(
F̂0(θ, µ, ρ, γ∗

0(θ)) + F̂1(θ, µ, ρ, γ∗
0(θ))

)
− RF (θ, µ, ρ, .)(γ∗

0(θ)) .

(3.53)

First we determine F̂0(θ, µ, ρ, γ∗
0(θ)) resp. F̂1(θ, µ, ρ, γ∗

0(θ)) by using (3.34) resp.
(3.43). Then relations (3.53) and (3.52) imply directly (2.17).

Step 2 Let νn be the finite measure on R :

νn(dy) := ν| R� ]− 1
n , 1

n [(dy) ∀n ≥ 1 . (3.54)

Let Fn be the Laplace transform of (Tn
x , Kn

x ) :

Fn(θ, µ, ρ, x) = E

(
e−θT n

x −µKn
x−ρLn

x 1l{T n
x <∞}

)
, (3.55)
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where Xn
t = Bt − c0 + Jn

t , (Jn
t , t ≥ 0) a compound Poisson process with Lévy

measure νn, Tn
x = inf {t ≥ 0 , Xn

t > x} and Kn
x = Xn

T n
x
−x. Since lim

n→∞
Tn

x = Tx and

lim
n→∞

Kn
x = Kx, we can therefore infer that (2.17) will result from a limit procedure.

⊓⊔

3.4 Proof of Theorem 2.8

Let us recall that F (θ, µ, ρ, .) resp. F̂ (θ, µ, ρ, .) have been defined by (2.9) resp. (0.6).
In the sequel, B ∈]0, Bν [ is supposed to be as close as possible to Bν .

Step 1 : We replace F (θ, µ, ρ, .) by F̃ (θ, µ, ρ, .); an equation associated with
F̃ (θ, µ, ρ, .)
We extend continuously F (θ, µ, ρ, .) to the whole line as follows :

F̃ (θ, µ, ρ, x) := F (θ, µ, ρ, x)1l[0;∞[(x) + (1 + x)1l[−1;+0](x), ∀x ∈ R . (3.56)

Let
̂̃
F (θ, µ, ρ, .) be the Laplace transform of F̃ (θ, µ, ρ, .) :

̂̃
F (θ, µ, ρ, q) :=

∫ ∞

−∞
e−qxF̃ (θ, µ, ρ, x)dx . (3.57)

The advantage of using F̃ (θ, µ, ρ, .) instead of F (θ, µ, ρ, .) lies in the fact that we shall

prove below in Lemma 3.5 , that t → ̂̃
F (θ, µ, ρ, q1 + it) is an integrable function on

R, for any q1 in ]0, βθ[ (βθ being defined in Proposition 2.7).

Since

∫ 0

−1
(1 + x)e−qxdx =

eq − 1 − q

q2
, (2.17) implies :

̂̃
F (θ, µ, ρ, q) =

eq − 1 − q

q2

+
1

ϕ(q) − θ

(
q − γ∗

0(θ)

2
+

∫ ∞

0

[
e−(q+ρ)y − e−µy

q + ρ − µ
− e−(γ∗

0 (θ)+ρ)y − e−µy

γ∗
0(θ) + ρ − µ

]
ν(dy)

+ RF (θ, µ, ρ, .)(q) − RF (θ, µ, ρ, .)(γ∗
0(θ))

)
(3.58)

We may observe that

ϕ(q) − θ

q + γ∗
0(θ)

=
ϕ(q) − ϕ(γ∗

0(θ))

q + γ∗
0(θ)

=
q − γ∗

0(θ)

2
+ c

q − γ∗
0(θ)

q + γ∗
0(θ)

+

∫ ∞

−∞

e−qy − e−γ∗
0 (θ)y + (q − γ∗

0(θ))y1l{|y|<1}
q + γ∗

0(θ)
ν(dy) ,

(3.59)
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and
eq − 1 − q

q2
+

1

q + γ∗
0(θ)

=
eq − 1

q2
− γ∗

0(θ)

q(q + γ∗
0(θ))

. (3.60)

Consequently, for any q, so that Re q > 0 :

̂̃
F (θ, µ, ρ, q) =

eq − 1

q2
− γ∗

0(θ)

q(q + γ∗
0(θ))

+
1

ϕ(q) − θ

[
−c

q − γ∗
0(θ)

q + γ∗
0(θ)

−
∫ ∞

−∞

e−qy − e−γ∗
0 (θ)y + (q − γ∗

0(θ))y1l{|y|<1}
q + γ∗

0(θ)
ν(dy)

+

∫ ∞

0

[
e−(q+ρ)y − e−µy

q + ρ − µ
ν(dy) − e−(γ∗

0 (θ)+ρ)y − e−µy

γ∗
0(θ) + ρ − µ

]
ν(dy)

+RF (θ, µ, ρ, .)(q) − RF (θ, µ, ρ, .)(γ∗
0(θ))

]
. (3.61)

It is clear that (1.11) implies that RF (θ, µ, ρ, .) (defined by (2.16)) is an entire func-
tion on C and all the integrals in (3.61) are holomorphic at least in D−Bν . Therefore,

the right hand-side of (3.61) is the meromorphic extension of
̂̃
F (θ, µ, ρ, .) to D−Bν .

Before ending step 1, we may remark that if θ > 0 or θ = 0 and E(X1) 6= 0,
̂̃
F (θ, µ, ρ, .) and F̂ (θ, µ, ρ, .) are holomorphic in a neighborhood of q = γ∗

0(θ). Al-

though γ∗
0(θ) is a zero of ϕθ, this value is a false singularity for

̂̃
F (θ, µ, ρ, .). But if

θ = 0 and E(X1) = 0, then γ∗
0(0) = 0 is a pole for

̂̃
F (0, µ, ρ, .).

Step 2 : t → ̂̃
F (θ, µ, ρ, q1 + it) belongs to L1(R)

We may consider θ as a fixed element in [0, κ] and βθ > 0 as being given by Propo-
sition 2.7. In addition, let q1 ∈]0, βθ[.

Lemma 3.5 Under (H) and (2.23), the function t → ̂̃
F (θ, µ, ρ, q1 + it) belongs to

L1(R).

So that to prove Lemma 3.5, we may begin with enumerating a few technical in-
equalities. These relations will be also used in the sequel.
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Lemma 3.6 Let θ1 < θ2. Let us suppose (2.23). Then :

(i) ∃k > 0 so that for any q which satisfies Re q ∈ [θ1, θ2], we have :

∣∣∣∣
∫ 1

−1

(
e−qy − 1 + qy1l{|y|<1}

)
ν(dy)

∣∣∣∣ ≤ k|q| , (3.62)

∣∣∣∣
∫ 0

−1

(
e−qy − 1 + qy1l{|y|<1}

)
ν(dy)

∣∣∣∣ ≤ k|q|, (3.63)

∣∣∣∣
∫ 1

0

(
e−qy − 1 + qy1l{|y|<1}

)
ν(dy)

∣∣∣∣ ≤ k|q| , (3.64)

(ii) ∀d > 0, ∃k0 > 0 such that sup
Re q≤d

∣∣∣∣
∫ −1

−∞
e−qyν(dy)

∣∣∣∣ ≤ k0 (3.65)

(iii) ∀A > 0 ∃k1 > 0 such that ∀q which satisfies :

{
−B ≤ Re q ≤ A
|Im q| ≥ R0

,

∣∣∣∣
∫ ∞

−∞

(
e−qy − 1 + qy1l{|y|<1}

)
ν(dy)

∣∣∣∣ ≤ k1(1 + |q|), (3.66)

1

k1
|q|2 ≤ |ϕ(q)| ≤ k1 |q|2, (3.67)

(iv) ∀h ∈ R, sup
Re q≤h

|RF (θ, µ, ρ, q)| < ∞ . (3.68)

Proof of Lemma 3.6
The proof of Lemma 3.6 may be directly infered from (2.23). ⊓⊔
Proof of Lemma 3.5
Proposition 2.7 tells us that ϕθ has no zero in the strip {q ∈ C ; 0 < Re q < βθ}. So,

if q1 ∈]0, βθ[, ϕ(q1+it)−θ never cancels and (3.61) implies that t → ̂̃
F (θ, µ, ρ, q1 + it)

is a continuous function. Let us focus on (3.61). Lemma 3.6 implies that all the nu-
merators in (3.61) are bounded on the line {q1+it ; t ∈ R}, and the denominators are

smaller than C|q2| for some C > 0 and |q| large . This proves t → ̂̃
F (θ, µ, ρ, q1 + it)

belongs to L1(R). ⊓⊔

Step 3 : Proof of the asymptotic development (2.25), through the Mellin
Fourier inverse transform

Proposition 2.7 provides the existence of κ > 0 and B so that for any θ ∈ [0, κ], ϕθ

does not cancel on {−B + it ; t ∈ R} and B 6= γ∗
0(θ).

Let 0 < q1 < βθ. Since t → ̂̃
F (θ, µ, ρ, q1 + it) belongs to L1(R) (cf. Lemma 3.5), we
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may use the Mellin Fourier inverse transform (see for instance [19], pages 232-239).
So, for any x ≥ 0 :

e−q1xF̃ (θ, µ, ρ, x) = e−q1xF (θ, µ, ρ, x) =
1

2π

∫ ∞

−∞
eitx ̂̃

F (θ, µ, ρ, q1 + it)dt , (3.69)

hence

F (θ, µ, ρ, x) =
1

2π

∫ ∞

−∞
e(q1+it)x ̂̃

F (θ, µ, ρ, q1 + it)dt = − i

2π

∫

Γq1

ezx ̂̃
F (θ, µ, ρ, z)dz ,

(3.70)
where Γq1 is the path :

Γq1 := {z = q1 + it such that t ∈ R, t increasing} . (3.71)

In Proposition 2.7, it has been proved that there is R1 > R0, so that ϕθ has no zero
in the two half-strips {q ∈ C ; −B ≤ Re q < βθ and |Im q| > R1}. In particular
̂̃
F (θ, µ, ρ, .) is holomorphic in this domain.
Let Γ−B,q1,R be the rectangular path (see Figure 3) :

Γ−B,q1,R := Γq1,R ∪ ΓR ∪ Γ−B,R ∪ Γ−R , (3.72)

where :

Γq1,R := {q1 + it ; |t| ≤ R, t growing} , (3.73)

ΓR := {t + iR ; −B ≤ t ≤ q1, t decreasing} (3.74)

Γ−B,R := {−B + it ; |t| ≤ R, t decreasing} , (3.75)

Γ−R := {t − iR ; −B ≤ t ≤ q1, t growing} . (3.76)

If the residual theorem is applied to the meromorphic extension of z → ezx ̂̃
F (θ, µ, ρ, z)

to D−Bν , the result is for any R > R1 :
∫

Γ−B,q1,R

ezx ̂̃
F (θ, µ, ρ, z)dz =

2iπ

[
C0(θ, µ, ρ, )e−γ0(θ)x +

p∑

i=1

ai

(
Ci(θ, µ, ρ, x)e−γi(θ)x + Ci(θ, µ, ρ, x)e−γi(θ)x

)]

(3.77)

where ai =
1

2
if −γi(θ) is a real number and ai = 1 otherwise, and :

C0(θ, µ, ρ) := Res

(
̂̃
F (θ, µ, ρ, z); −γ0(θ)

)
, (3.78)

Ci(θ, µ, ρ, x) := eγi(θ)xRes

(
ezx ̂̃

F (θ, µ, ρ, z); −γi(θ)

)
, (3.79)

29



−γ0(θ) βθ γ∗
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−γ2(θ)

−γp(θ)
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−γ2(θ)

q1

R0

−R0

R

−R

−Bν −B

Figure 3: The path Γ−B,q1,R

where Res(f(z); γ) denotes the residual of f at point γ. Let us notice that (3.78) is

valid since −γ0(θ) is a simple pole of
̂̃
F (θ, µ, ρ, .).

Since z → ez − 1 − z

z2
has an holomorphic extension to the whole plan C, the identity

(3.56) implies that :

C0(θ, µ, ρ) = Res
(
F̂ (θ, µ, ρ, z); −γ0(θ)

)
, (3.80)

Ci(θ, µ, ρ, x) = eγi(θ)Res
(
ezxF̂ (θ, µ, ρ, z); −γi(θ)

)
∀i ∈ {1, · · · , p} . (3.81)

We observe that Ci(θ, µ, ρ, x) = eγi(θ)xRes
(
ezxF̂ (θ, µ, ρ, z); −γi(θ)

)
. We will prove

below in Section 4.5, that x → Ci(θ, µ, ρ, x) is a polynomial function (see the formula
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(4.30)). Since z → ezx ̂̃
F (θ, µ, ρ, z) belongs to L1(R), we come to (cf. (3.69)) :

F (θ, µ, ρ, x) = − i

2π
lim

R→∞

∫

Γq1,R

ezx ̂̃
F (θ, µ, ρ, z)dz

= − i

2π
lim

R→∞

[∫

Γ−B,q1,R

ezx ̂̃
F (θ, µ, ρ, z)dz −

∫

ΓR

ezx ̂̃
F (θ, µ, ρ, z)dz

−
∫

Γ−B,R

ezx ̂̃
F (θ, µ, ρ, z)dz −

∫

Γ−R

ezx ̂̃
F (θ, µ, ρ, z)dz

]
.

(3.82)

We claim that in the right hand-side of (3.82), the limits of the second term and the
fourth one are null. As for the third limit, we have :

lim
R→∞

∫

Γ−B,R

ezx ̂̃
F (θ, µ, ρ, z)dz = O(e−Bx) , (3.83)

where O is uniform with respect to θ ∈ [0, κ], µ ∈ R+ and ρ ∈ R+.
Hence, as x → ∞ :

F (θ, µ, ρ, x) = C0(θ, µ, ρ)e−γ0(θ) +

p∑

i=1

ai

[
Ci(θ, µ, ρ, x)e−γi(θ)x + Ci(θ, µ, ρ, x)e−γi(θ)x

]
+ O(e−Bx) .

(3.84)

⊓⊔

Remark 3.7 Let us determine the sign of C0(θ, µ, ρ). The asymptotic expansion
(2.25) implies that :

lim
x→∞

eγ0(θ)xF (θ, µ, ρ, x) = C0(θ, µ, ρ) ≥ 0 . (3.85)

The residual C0(θ, µ, ρ) at −γ0(θ) of F (θ, µ, ρ, .) cannot cancel because −γ0(θ) is a
single pole of F̂ (θ, µ, ρ, .) when θ > 0 or θ = 0 and E(X1) 6= 0.
If θ = 0 and c = E(J1), it is easy to see that C0(0, µ, ρ) 6= 0 (cf. item c) iii) in
subsection 4.5 below).
We will give in subsection 4.5 some complements related to the calculation of the
coefficients Ci(θ, µ, ρ, x).

3.5 Proof of Theorem 2.10

Let us recall that the ruin probability is the function :

F (x) := F (0, 0, 0, x) = P(Tx < ∞) , (3.86)
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Let us denote F̂ the Laplace transform of F :

F̂ (q) :=

∫ ∞

0
e−qxF (x)dx ∀q ∈ C , Re (q) > 0 . (3.87)

In this section, it is only assumed that the Lévy measure ν satisfies (2.30) and (2.31).
The proof will be divided into five parts.

Step 1 We will prove that we only need to consider a Lévy measure ν whose
support is included in [−k,∞[, for some (finite) k ≥ 0.

The assumption (2.30) implies that there is k > 0 such that
∫ ∞

−k
1l{|y|≥1}yν(dy) < c . (3.88)

Let (Xk
t , t≥ 0) be a Lévy process with decomposition :

Xk
t := Bt − c0t + Jk

t ∀t ≥ 0 , (3.89)

where (Jk
t , t≥ 0) is a pure jump process independent from (Bt , t≥ 0) and with

Lévy measure : νk := ν|[−k,∞[
. In addition, it can be supposed that the processes

(Jk
t , t≥ 0) and (Jt , t≥ 0) are defined on the same probability space. Since ν − νk

is a non-negative measure whose support is included in ] − ∞,−k], then Jt ≤ Jk
t ,

∀t ≥ 0. Consequently Xt ≤ Xk
t , ∀t ≥ 0 a.s., and T k

x ≤ Tx, ∀x ≥ 0 where

T k
x := inf {t ≥ 0 / Xk

t > x} . (3.90)

As a result,
∀x ≥ 0 F (x) ≤ F k(x) := P(T k

x < ∞) . (3.91)

Note that the relation (3.88) implies that νk satisfies (2.30) and (2.31). This proves
the claim.

Step 2 The aim is to prove that we can suppose that the support of ν is included
in [−k, −1] ∪ [0,∞[.
It is clear that the relation (2.30) implies that there is ε > 0 so that

−c + ε +

∫

[−k,∞[
y1l{|y|≥1}ν(dy) < 0. (3.92)

Let ν(1) be the Lévy measure : ν(1)(dy) := 1l]−1,0[(y)ν(dy). Consider X(1) the Lévy

process whose function ϕ(1) is defined as follows :

ϕ(1)(q) := εq +

∫

R

(
e−qy − 1+ qy1l{|y|<1}

)
ν(1)(dy) = εq +

∫

]−1,0[

(
e−qy − 1+ qy

)
ν(dy).
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Consequently E(X
(1)
1 ) = −ε < 0.

Since ϕ(1)(q) ≥ −qε for any q ∈] − ∞, 0], then lim
q→−∞

ϕ(1)(q) = ∞. Note that the

graph of ϕ(1) corresponds to the Figure 1, case a). As a result, there exist γ(1) > 0
such that ϕ(1)

(
− γ(1)

)
= 0. According to [2] there exists C(1) > 0 such that

P(T (1)
x < ∞) ≤ C(1)e−γ(1) x, x ≥ 0 (3.93)

where T
(1)
x := inf{t ≥ 0, X

(1)
t > x}.

Next let ν(2)(dy) := 1l[−k,−1]∪]0,∞[(y)ν(dy), and X(2) the Lévy process associated
with

ϕ(2)(q) :=
q2

2
+ (c − ε)q +

∫

R

(
e−qy − 1 + qy1l{|y|≥1}

)
ν(2)(dy).

Consequently :

E(X
(2)
1 ) = −(c − ε) +

∫

R

y1l{|y|≥1}ν
(2)(dy) = −c + ε +

∫

R

y1l{|y|≥1}ν(dy) < 0.

In addition suppose that X(1) and X(2) are independent. Since ϕ = ϕ(1) + ϕ(2),
therefore X is distributed as X(1) + X(2). Let us note that :

{
T

(1)
x/3 = ∞

}
∩

{
T

(2)
x/3 = ∞

}
⊂

{
X

(1)
t + X

(2)
t < x

}
, x > 0.

Applying moreover (3.93) we get :

P(Tx < ∞) ≤ P
(
T

(1)
x/3 < ∞

)
+ P

(
T

(2)
x/3 < ∞

)
≤ C(1)e−γ(1) x/3 + P

(
T

(2)
x/3 < ∞

)
.

This inequality implies that the rate of decay of x 7→ P(Tx < ∞) is polynomial as

soon as x 7→ P(T
(2)
x < ∞) enjoys the same asymptotic behavior.

In the sequel we can suppose that (2.30) and (2.31) hold and the support of ν is
included in [−k,−1] ∪ [0,∞[, for some k > 0.

Step 3 F belongs to L1(R+).

We will first prove that :

sup
0<q≤q0

|F̂ (q)| < ∞ , for some q0 > 0 . (3.94)

By taking the limit θ, µ, ρ → 0 in (2.17), we may easily obtain :

F̂ (q) =
1

ϕ(q)

(
q

2
+

1

q

∫ ∞

0
(e−qy − 1 + qy)ν(dy) + RF (q)

)
. (3.95)

33



Let us determine the asymptotic behavior of the numerator and the denominator as
q → 0. Let us begin with the denominator :

ϕ(q) ∼ qϕ′(0) = q
(
c −

∫

R

1l{|y|≥1}yν(dy)
)

as q → 0. (3.96)

Next, we consider the numerator. We have :

q

2
+

1

q

∫ ∞

0
(e−qy − 1 + qy)ν(dy) ∼ q

2

[
1 +

∫ ∞

0
y2ν(dy)

]
as q → 0 . (3.97)

Since the support of ν is included in [−k,−1]∪ [0,∞[, then RF (q) can be simplified :

RF (q) =

∫ −1

−k
ν(dy)

∫ −y

0

(
e−q(b+y) − 1

)
F (b)db. (3.98)

But RF (0) = 0 and the derivative of RF (q) is bounded, then |RF (q)| ≤ Cq, for any
0 ≤ q ≤ q0. (3.94) follows immediately.

It is now easy to check that F is in L1(R+). The function F is non-negative, then
the monotone convergence theorem implies :

∫ ∞

0
F (x)dx = lim

q→0

∫ ∞

0
e−qxF (x)dx ≤ sup

0<q≤q0

F̂ (q) < ∞ . (3.99)

As a result F is integrable.

Step 4 Definition of F̃ .

The function F can be extended to the whole line, setting F (x) = 0, for any x ≤ 0.
However F may have a jump at 0. Let F̃ be the following continuous extension of
F :

F̃ (x) := F (x)1l[0;∞[(x) + (1 + x)1l[−1; 0](x), ∀x ∈ R . (3.100)

Let q → ̂̃
F (iq) be the Fourier transform of F̃ :

̂̃
F (iq) =

∫ ∞

−∞
e−iqxF̃ (x)dx =

∫ ∞

−1
e−iqxF̃ (x)dx ∀q ∈ R . (3.101)

Step 5 q → ̂̃
F (iq) is in L1(R).

Since F ∈ L1(R+), then F̃ ∈ L1(R) and q 7→ ̂̃
F (iq) is continuous.

So, if we establish : ∣∣∣∣
̂̃
F (iq)

∣∣∣∣ ≤
C

1 + q2
, (3.102)
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then
̂̃
F will be an element of L1(R).

It is proved in Proposition 2.7, that ϕ(iq) = 0, q ∈ R iff q = 0.
Therefore we are allowed to replace q by iq in (3.95).
By using the identity :

∫ 0

−1
(1 + x)e−iqxdx = −eiq − 1 − iq

q2
, (3.103)

and (3.94) we may deduce :

1. (3.102) holds for any |q| ≤ q0 (for some q0 > 0),

2.
̂̃
F (iq) may be written as follows :

̂̃
F (iq) =

1 − eiq

q2
+

1

ϕ(iq)

[
−c −

∫ ∞

1
yν(dy) +

i

q

∫ −1

−k

(
e−iqy − 1

)
ν(dy) + RF (iq)

]
.

(3.104)

The inequality (3.102) will be a direct consequence of following estimates :

ϕ(iq) ∼ − q2

2

( ∫

R

y21l{|y|<1}ν(dy)
)

(|q| → ∞) (3.105)

∣∣∣
∫ 0

−k
(e−iqy − 1)ν(dy)

∣∣∣ ≤ |q| k ν
(
[−k,−1]

)
, (3.106)

|RF (iq)| ≤ 2 k ν
(
[−k,−1]

)
. (3.107)

Step 6 The n first derivatives of
̂̃
F belong to L1(R).

Obviously any k derivative of q → 1 − eiq

q2
is continuous, bounded by

C

q2
, |q| ≥ 1,

and therefore belongs to L1(R).

The second term in the right hand-side of (3.104) may be written this way :
N(q)

ϕ(iq)
.

By proceeding likewise Step 5 and using (2.31) it can be proved that the n first

derivatives of N are bounded. As a result

∣∣∣∣
N(q)

ϕ(iq)

∣∣∣∣ ≤
C

q2
, |q| ≥ 1.

As for the asymptotic behavior of
N(q)

ϕ(iq)
in a neighborhood of 0, it can be proved

through a similar reasoning that this ratio is bounded, for any |q| ≤ 1.

Step 7 Proof of (2.32).

Since the n derivatives of q → ̂̃
F (iq) belong to L1(R), then
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xnF̃ (x) =
in

2π

∫

R

eiqx dn

dqn

(
̂̃
F (iq)

)
dq . (3.108)

This identity directly implies (2.32). ⊓⊔

4 Appendix

4.1 Rate of convergence in Theorem 2.1

We would like to point out that the asymptotic development of F (θ, µ, ρ, x) which is

given by (2.25) provides the rate of convergence of

(
1√
x

(
Tx +

x

ϕ′(−γ0(0))

))
to the

Gaussian distribution. Let us suppose that E[X1] > 0. Let Ax be the distribution

function of

(
1√
x

(
Tx +

x

ϕ′(−γ0(0))

))
and let Âx be its characteristic function :

Ax(t) = P

(
1√
x

(
Tx +

x

ϕ′(−γ0(0))

)
≤ t

)
, t ∈ R

Âx(θ) = E

[
e

iθ√
x
(Tx+ x

ϕ′(−γ0(0))
)
]
, θ ∈ R.

Thanks to (2.25), it is not difficult to check that, if x is large enough we obtain :

sup
θ>0

|Âx(θ) − Â(θ)| ≤ kθ√
x

. (4.1)

Here k is a positive constant and Â is the characteristic function of N
(

0;− ϕ′′(−γ0(0))

ϕ′3(−γ0(0))

)
.

Berry-Essen’s inequalities (see for instance [15], p 285) imply the existence of two
positives constants k1 and k2 such that :

sup
t∈R

|Ax(t) − A(t)| ≤ k1

∫ a

0

kθ√
x

dθ

θ
+

k2

a
, for any a > 0, (4.2)

where A is the distribution function of the previous Gaussian distribution.
Choosing a = x1/4, we get :

sup
t∈R

|Ax(t) − A(t)| ≤ k3

x1/4
, x ≥ 1, (4.3)

for some k3 > 0.
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4.2 Stochastic interpretation of w− and w+

We would like to give a stochastic interpretation of the probability measure w−

defined by (2.2). Let (K, L) be a two-dimensional r.v. with probability distri-
bution w−. Obviously the event {K = 0} (= {L = 0} a.s.) occurs with proba-

bility
−γ0(0)

2E(X1)
. Conditionally on {L > 0}, the distribution of (K, L) is of type

α
(
eγ0(0)l − 1

)
1l{k>0;l>0}νl(dk)dl where νl is the positive measure defined in Theo-

rem 2.1.
This leads us to consider the positive measure :

w(γ)(dk, dl) = α(eγl − 1)1l{k>0;l>0}νl(dk)dl , (4.4)

in which γ > 0, νl is the image of ν by y → y− l. In addition, ν is a positive measure
on ]0;∞[ which satisfies :

∫ ∞

0
(eγk − 1 − γk)ν(dk) < ∞ , (4.5)

here α is the normalization factor : α =
γ∫ ∞

0
(eγk − 1 − γk)ν(dk)

.

Proposition 4.1 Let (K∗, L∗) be a two dimensional r.v. with distribution w(γ) de-
fined by (4.4) . Then L∗ has a density function given by α(eγl − 1)ν([l,∞[)1l{l>0}.

Conditionally on L∗ = l, the distribution of S∗ = L∗ + K∗ is
1

ν([l,∞[)
1l{s>l}ν(ds).

It is obvious that choosing γ = γ0(0) (resp. γ = γ∗
0(0)) allows to recover the

probability measure w− (resp. w+) introduced in (2.2) (resp. (2.5)). Consequently,
Proposition 4.1 gives a stochastic interpretation of the limit law of (Kx, Lx) as x →
∞, in the case where ν (] −∞; 0[) = 0.

4.3 Study of Λθ

To investigate uniqueness in (2.10), we will prove that Λθ is a contraction on the
Banach space :

Bγ := {f : R+ → R ; sup
x∈R+

eγ x|f(x)| < ∞ } γ ≥ 0 . (4.6)

Bγ is equipped with the norm :

‖f‖γ := sup
x∈R+

eγ x|f(x)| . (4.7)
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Theorem 4.2 Let us suppose that ν(R) < ∞.

(i) For any θ ≥ 0, the operator Λθ defined by (2.14) is a linear and non-negative

operator, whose norm is equal to
λ

λ + θ
in L∞(R+).

(ii) Let γ ∈ [0, rν [ and θ > 0 or θ = 0 and E(X1) < 0 (recall that rν has been
defined by (1.13)). Then :

a) Λθ is a bounded operator from Bγ to Bγ. More precisely :

‖Λθf‖γ ≤ cθ,γ‖f‖γ ∀f ∈ Bγ , (4.8)

with

cθ,γ =
ν̂(−γ)

ν̂(−γ) − ϕ(−γ) + θ
, (4.9)

and ν̂ the Laplace transform of ν (cf (3.47)).

b) There exists γ ∈]0, rν [ such that ϕ(−γ) < θ. Therefore Λθ is a Bγ-
contraction since :

0 < cθ,γ < 1 . (4.10)

Proof of Theorem 4.2
(i) Relation (3.31) implies that Λθ is a non-negative operator.
It is easy to check that the function ℓ :

ℓ(x) := 1l{a+y≤x ; a≤x}e
−c0a

(
e−αθ|a| − e−(2x−a)αθ

)
(4.11)

is increasing, then :

ℓ(x) < ℓ(∞) = e−c0ae−αθ|a| ∀x ∈ R . (4.12)

A straightforward calculation shows that |Λθh(x)| ≤ λ

λ + θ
‖h‖∞, for any x ≥ 0.

If we take h : x → 1, we have ‖Λθh‖∞ =
λ

λ + θ
. Therefore, ‖|Λθ|‖L∞(R+) =

λ

λ + θ
.

(ii) Let f be an element of Bγ , then |f(x)| ≤ ‖f‖γ e−γx, ∀x ≥ 0. It follows that :

|Λθf(x)| ≤ 1

αθ
‖f‖γ e−γx

∫ ∞

−∞
ν(dy)

∫ (x−y)∧x

−∞
e−c0a

(
e−αθ|a| − e−(2x−a)αθ

)
eγ(a+y)da ,

(4.13)
for any γ ∈ [0, rν [.
By using (4.12), we get :

|Λθf(x)| ≤ 1

αθ
‖f‖γ e−γx

∫ ∞

−∞
ν(dy)eγy

[∫ 0

−∞
e−(c0−αθ−γ)ada +

∫ ∞

0
e−(c0+αθ−γ)ada

]

Computing the integral with respect to da, leads directly to (4.8). ⊓⊔
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Proposition 4.3 Let us assume ν(R) < ∞, rν > 0, µ ≥ 0, θ > 0, or θ = 0 if
E(X1) < 0. Let γ be in [0, rν [, such that ϕ(−γ) < θ. Then the function F (θ, µ, ρ, .)
belongs to Bγ and the equation (2.10) has a unique solution in Bγ.

To prove Proposition 4.3, we need the following preliminary.

Lemma 4.4 Suppose either θ > 0, or θ = 0 if E(X1) < 0, then for any x > 0,

lim
n→∞

Λn
θ F (θ, µ, ρ, .)(x) = 0 . (4.14)

Proof of Lemma 4.4

1) Suppose θ > 0. Since F is bounded by 1, and the norm of Λθ is
λ

λ + θ
(cf. Theo-

rem 4.2) : ‖Λn
θ F (θ, µ, ρ, .)‖∞ ≤

(
λ

λ + θ

)n

. This proves (4.14).

2) Let us now turn to the case θ = 0 and E(X1) < 0. By iterating the functional
equation (2.10), we come to :

F (θ, µ, ρ, x) =

n−1∑

p=0

Λp
θ [(F0 + F1)(θ, µ, ρ, .)] (x) + Λn

θ F (θ, µ, ρ, .)(x) . (4.15)

The Bγ-norm of Λθ is strictly less than 1, then the series in (4.15) converges. The
remaining term Λn

θ F (θ, µ, ρ, .)(x) converges in Bγ to some function G(θ, µ, ρ, x). It
is easy to check what follows :

a) G(0, µ, ρ, .) is a bounded and non negative function ,

b) G(0, µ, ρ, .) is a continuous function on [0,∞[ ,

c) lim
x→∞

G(0, µ, ρ, x) = 0 ,

d) Λ0G(0, µ, ρ, .) = G(0, µ, ρ, .) .

Using (i) in Theorem 4.2 leads to :

G(0, µ, ρ, x) = Λ0G(0, µ, ρ, .)(x) ≤ ‖G(0, µ, ρ, .)‖∞, x ≥ 0 . (4.16)

As (4.12) is a strict inequality then (4.16) is a strict one too if ‖G(0, µ, ρ, .)‖∞ 6= 0.
According to b) and c), there exists x0 ≥ 0 such that : G(0, µ, ρ, x0) = ‖G(0, µ, ρ, .)‖∞.
This implies ‖G(0, µ, ρ, .)‖∞ = 0. ⊓⊔
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Proof of Proposition 4.3
Using the explicit expression of F0 and F1 (cf. (2.12) and (2.13)), by a straightfor-
ward calculation, enables us to infer that both F0(θ, µ, ρ, .) and F1(θ, µ, ρ, .) belong
to Bγ (for a detailed proof, cf. [20]).
Due to Lemma 4.4 and (4.15)we may obtain :

F (θ, µ, ρ, x) =
∞∑

n=0

Λn
θ (F0 + F1)(θ, µ, ρ, .)) (x) , (4.17)

Because F0 +F1 ∈ Bγ and Λθ is a contraction in Bγ , the serie converges in Bγ , which
directly implies the result. ⊓⊔

Remark 4.5
1. Under the conditions stated in Proposition 4.3, we have actually proved that

F (θ, µ, ρ, x) can be approximated by

p∑

n=0

Λn
θ [(F0 + F1)(θ, µ, ρ, .)] (x). More pre-

cisely :

∣∣∣∣∣F (θ, µ, ρ, x) −
p∑

n=0

Λn
θ [(F0 + F1)(θ, µ, ρ, .)] (x)

∣∣∣∣∣ < cp+1
θ,γ K e−γx , (4.18)

where K =

∥∥∥∥∥
∞∑

n=0

Λn
θ [(F0 + F1)(θ, µ, ρ, .)]

∥∥∥∥∥
γ

< ∞ and cθ,γ is defined by (4.9).

2. Let us consider the case when the support of ν is included in ] −∞, 0]. ϕ is well
defined on ] −∞, 0] and rν = ∞. Moreover Kx = Lx = 0 and F1(θ, µ, ρ, x) = 0 for
any x ≥ 0. As a result, (2.10) is reduced to :

F (θ, µ, ρ, x) = e−(c+αθ)x + ΛθF (θ, µ, ρ, .)(x) . (4.19)

If either θ > 0, or θ = 0 and E(X1) < 0, from both (1.25) and (1.26) we can infer
the existence of a unique real number γ0(θ) such that :

−γ0(θ) < 0 and ϕ(−γ0(θ)) = θ . (4.20)

A direct (but fastidious !) calculation shows that x → e−γ0(θ)x is a solution of (2.10).
For more details see [20].
Hence F (θ, µ, ρ, x) = F (θ, 0, 0, x) = e−γ0(θ)x.

4.4 Few examples of ν satisfying (2.23)

We give three classes of measures ν which satisfy (H) and (2.23) :
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a) Let us suppose that ν has finite exponential moments :

∀q ∈ R

∫ ∞

−∞

∣∣e−qy − 1 + qy1l{|y|<1}
∣∣ ν(dy) < ∞ . (4.21)

In that case, ν̂|[1,∞[
and ϕ are holomorphic functions in the whole plane C,

then Bν = ∞. Moreover, for any B > 0 :

sup
Re q≥−B

∣∣∣∣
∫ ∞

1
e−qyν(dy)

∣∣∣∣ ≤
∫ ∞

1
eByν(dy) < ∞ . (4.22)

Then (2.23) holds. The condition (4.21) is fulfilled if, for instance, ν has a
compact support.

b) Let ν be a linear combination of gamma distributions :

ν(dy) :=

n∑

i=1

ρie
−βiyymi1l{y≥0}dy . (4.23)

where ρi > 0, βi > 0 and mi ∈ N, for any i ∈ {1, 2, · · · , n},.
Since the Laplace transform of ν is explicit, we obtain immediately its mero-
morphic extension to the whole plane (Bν = ∞) and (2.23). Moreover :

ν̂(q) =

∫ ∞

0
e−qx

n∑

i=1

ρie
−βixxmidx =

n∑

i=1

ρi

∫ ∞

0
xmie−(q+βi)xdx . (4.24)

If we set y = (q + βi)x, we have :

ν̂(q) =
n∑

i=1

ρi

(q + βi)mi+1

∫ ∞

0
ymie−ydy =

n∑

i=1

ρimi!

(q + βi)mi+1
. (4.25)

This implies that ν̂ resp. ϕ is holomorphic in C−{−β1, · · · ,−βn} resp. mero-
morphic in C.

c) The example above may be generalized as follows :

ν(dy) := φ(y)1l{y≥0}dy , (4.26)

where φ ≥ 0, bounded on [0, y0], and for every y ≥ y0 :

φ(y) := ρ0e
−β0yym0−1 +

n∑

i=1

(ρie
−βiy + ρie

−βiy)ymi−1 + O(e−βn+1 y) , (4.27)

with y0 ≥ 0, ρ0 ≥ 0, β0 > 0,Re βi > 0, ρi ∈ C∗, mi ∈ N∗ et βn+1 ≥ sup
1≤i≤n

Re βi.

Then ν̂ and ϕ are meromorphic functions in {q ; Re q ≥ βn+1}, Bν = βn+1

and (2.23) holds.

d) If ν1 and ν2 satisfy (2.23), then ν = ν1 + ν2 satisfies (2.23) too.
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4.5 Calculation of the Ci coefficients

Let us suppose in this section that (H) holds.
a) We claim that Ci(θ, µ, ρ, .) is a polynomial function. We may assume that

−γi(θ) is a zero of ϕθ with multiplicity ni, and F̂ (θ, µ, ρ, z) has the following asymp-
totic expansion in a neighborhood of −γi(θ) :

F̂ (θ, µ, ρ, z) =
Ki,ni

(θ, µ, ρ)

(z + γi(θ))ni
+

Ki,ni−1(θ, µ, ρ)

(z + γi(θ))ni−1
+ · · · + Ki,1(θ, µ, ρ)

z + γi(θ)
+ · · · . (4.28)

Since

ezx = e−γi(θ)x

(
1 + (z + γi(θ))x +

(z + γi(θ))
2

2!
x2 + · · ·

)
(4.29)

then relations (3.80) and (3.81) imply that :

Ci(θ, µ, ρ, x) =
Ki,ni

(θ, µ, ρ)

(ni − 1)!
xni−1+

Ki,ni−1(θ, µ, ρ)

(ni − 2)!
xni−2+· · ·+Ki,1(θ, µ, ρ) . (4.30)

b) We suppose in this item that −γi(θ) is a single zero of ϕθ = ϕ − θ. Then
Ci(θ, µ, ρ, x) does not depend on x. Furthermore Ci(θ, µ, ρ, x) is given by the follow-
ing :

Ci(θ, µ, ρ) = Res
(
F̂ (θ, µ, ρ, z); −γi(θ)

)
. (4.31)

Note, that in this case, according to (2.17), −γi(θ) is a single pole of F̂ (θ, µ, ρ, ·).
i) When the real part of −γi(θ) is bigger than −rν , Ci(θ, µ, ρ) can be determined as
follows :

Ci(θ, µ, ρ) =
1

ϕ′(−γi(θ))

[−γi(θ) − γ∗
0(θ)

2

+

∫ ∞

0

[
e(γi(θ)−ρ)y − e−µy

−γi(θ) + ρ − µ
− e−(γ∗

0 (θ)+ρ)y − e−µy

γ∗
0(θ) + ρ − µ

]
ν(dy)

+RF (θ, µ, ρ, .)(−γi(θ)) − RF (θ, µ, ρ, .)(γ∗
0(θ))

]
, (4.32)

where it is supposed that
eay − 1

a
= y if a = 0.

It has to be observed that if the support of ν is included in ]0,∞[, then the formula
above reduces to the two first lines, since RF (θ, µ, ρ, ·) = 0. What is more, if
θ = µ = ρ = 0 then

Ci(0, 0, 0) =





ϕ′(0)

ϕ′(−γi(0))
if E(X1) < 0

1 if i = 0 and E(X1) ≥ 0
0 if i ≥ 1 and E(X1) ≥ 0

(4.33)
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Considering i = 0 in (4.33) allows to recover the result given in [5].
ii) As for the case Re (−γi(θ)) < −rν , the previous ν-integrals and ϕ, have to be
replaced by their meromorphic extensions.

c) In this item we can focus on C0(θ, µ, ρ), which is the dominent term in (2.25).

i) When θ > 0 or θ = 0 and E(X1) 6= 0, then −γ0(θ) is a single zero of ϕθ and
−γ0(θ) > −rν . Therefore C0(θ, µ, ρ) is given by (4.32) with i = 0. Let us
recall that when θ = 0 and E(X1) < 0 (resp. E(X1) > 0), then γ∗

0(0) = 0
(resp. γ0(0) = 0).

ii) In the case E(X1) = 0, then γ0(0) = γ∗
0(0) = 0 is a double zero of ϕ, but a

simple pole of F̂ (θ, µ, ρ, .). Thus, a direct calculation shows :

C0(0, µ, ρ) =
1

ϕ′′(0)

(
1 − 2

(ρ − µ)2

∫ ∞

0
e−ρy

(
1 − e(ρ−µ)y + (ρ − µ)y

)
ν(dy)

−2

∫ 0

−∞
ν(dy)

∫ −y

0
(y + b)F (0, µ, ρ, b)db

)
. (4.34)

In particular :

C0(0, 0, 0) =
1

ϕ′′(0)

(
1 +

∫ ∞

0
y2 ν(dy) − 2

∫ 0

−∞
ν(dy)

∫ −y

0
(y + b)F (0, 0, b)db

)

= 1 − 2

ϕ′′(0)

∫ 0

−∞
ν(dy)

∫ −y

0
(y + b)F (0, 0, 0, b)db . (4.35)

iii) The constant C0(θ, µ, ρ) is positive because µ → F̂ (θ, µ, q −γ0(θ)) is decreasing
and

lim
µ→∞

C0(θ, µ, ρ) =





1

ϕ′′(0)
> 0 if θ = 0 and E(X1) = 0

− γ0(θ) + γ∗
0(θ)

2ϕ′(−γ0(θ))
> 0 otherwise.

4.6 Girsanov transformation

Let (Xt , t≥ 0) be a Lévy process. It is well known that there is a family of prob-
ability measures

(
P(λ) , 0 ≤ λ ≤ γ

)
so that, under P(λ), (Xt , t≥ 0) is still a Lévy

process and :
P(λ)(Xt ∈ dx) = eλxe−tϕ(−λ)P(Xt ∈ dx). (4.36)

Consequently ϕ(λ)(q) = ϕ(q − λ)−ϕ(−λ), where ϕ(λ) is associated with (Xt , t≥ 0)
under P(λ). Under (H), there exists λ such that ϕ(−λ) = θ and ϕ′(0)ϕ′(−λ) < 0.
Since E(X1) = −ϕ′(0), and E(λ)(X1) = −ϕ′(λ)(0) = −ϕ′(−λ), then E(X1)E

(λ)(X1) <
0. This trick allows to only consider the case E(X1) > 0 (or E(X1) < 0), and then
simplify the proofs of Theorems 2.1 and 2.3 and the result given in subsection 4.1.
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4.7 Wiener-Hopf factorization

Let us recall the Wiener-Hopf decomposition (cf. [1], page 165) : for any θ > 0, we
have :

θ

θ + ϕ(−q)
= ψ+

θ (q)ψ−
θ (q) , (4.37)

where
ψ+

θ (q) := E
(
eiqSτθ

)
, ψ−

θ (q) := E

(
eiq(Sτθ

−Xτθ
)
)

, (4.38)

and τθ is an exponential r. v. with parameter θ, independent from process (Xt , t≥ 0)
and St := sups≤t Xs.
Since :

P(Sτθ
> a) = P(Ta < τθ) = E(e−θTa) = F (θ, 0, 0, a) , (4.39)

it is easy to deduce the following identity :

ψ+
θ (q) = 1 + iqF̂ (θ, 0, 0, iq) . (4.40)

Equation (2.17) implies that the Wiener-Hopf factor ψ+
θ verifies a functional equa-

tion. In particular, if ν(] − ∞, 0]) = 0, combining equations (2.18) and (4.40) an
explicit form of ψ+

θ (q) may be obtained. Due to (4.37), ψ−
θ (q) is also explicit.

4.8 Proof of Proposition 2.7

1. It is clear that ϕθ is holomorphic in {q ∈ C ; Re q > −rν} and the only real zeros
of ϕθ in this domain are −γ0(θ) and γ∗

0(θ).

2. We claim that the complex zeros of ϕθ in {q ∈ C ; −γ0(θ) ≤ Re q ≤ γ∗
0(θ)} are

−γ0(θ) and γ∗
0(θ).

a) Suppose first that −γ0(θ) < Re q < γ∗
0(θ). We have :

|eϕθ(q)| = |E(e− qX1−θ)| ≤ E

(
e−Re q X1−θ

)
= eϕθ(Re q) < 1 ,

since ϕθ < 0 on ] − γ0(θ), γ
∗
0(θ)[. Then ϕθ(q) 6= 0.

b) Let q = −γ0(θ) + ib, b ∈ R. We compute ϕθ(q) :

ϕθ(q) =ϕθ(−γ0(θ)) −
b2

2
+

∫ ∞

−∞
eγ0(θ)y(cos(by) − 1)ν(dy)

+ i

(
−bγ0(θ) + cb −

∫ ∞

−∞

(
eγ0(θ)ysin(by) − by1l{|y|<1}

)
ν(dy)

)
.

(4.41)
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But ϕθ(−γ0(θ)) = 0, then Re (ϕθ(q)) ≤ − b2

2 . Consequently ϕθ(q) = 0 iff b = 0.

c) The same reasoning applies to the case q = −γ∗
0(θ) + ib.

3. Let us prove that ϕθ has a finite number of zeros in the strip {q ∈ C; −B ≤
Re q ≤ βθ}, for some βθ in ]0, γ∗

0(θ)[. Proposition 2.7 is a consequence of both items
1. and 2. as described above and of the following properties :
(i) According to (2.23) there is R > R0 > 0, k > 0 so that :

|ϕθ(q)| ≥ k|q2| for any q such that − B ≤ Re q ≤ 0, |Im q| > R. (4.42)

As a result, ϕθ(q) 6= 0.
(ii) The function ϕθ is meromorphic in {q ∈ C ; Re q > −B} and therefore admits
at most a finite number of poles in the compact domain {q ∈ C;−B ≤ Re q ≤
0, |Im q| ≤ R}.
Acknowledgments: We wish to thank the referee for carefully reading the manu-
script and making useful suggestions.
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