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Effective Permittivity of 3D Lossy Dielectric Composite Materials 
\ 

P. Clauzon, L. Kriihenbuhl, A. Nicolas 
EcoleCentrale de Lyon, CEGELY. , U P W A  C.N.R.S. 5005, BP 163,69131 Ecully Cedex, France 

Absfract -In order to better know the behavior of di 
composite materials, we employ a Boundary Integral Eq 
Method to calculate both the complex effective permittin 

. Elementary cell characteristics 

As we will see it later, the calculations are achieved by 
the effective loss tangent of 36 lossy diele&c c o d t e  
materials. The topological arrangements considered are periodic 
lattices of inclusions. A method for the exploitation of the results 
has been proposed. 

Index terms -dielectric materials, nonhomogeneous media, 
dielectric losses, boundary integral equations. 

I. INTRODUCTION 

The materials considered in this survey are a mixture of 
two dielectric media. The elementary cell geometries of the 
materials are simulated with the help of a modified 3D 
C.A.D. package (PH13D). 

The aim of this survey is to calculate the complex 
effective permittivity and the effective loss tangent of these 
materials, this for different values of permittivities and 
volume fractions of the inclusions. 

Thereafter, some techniques of interpolation in two 
dimensions were used in order to calculate the complex 
effective permittivity and the loss tangent of the dielectric 
composite materials from the previous results. 

11. STUDIED STRUCTURES 

We considered two types of dielectric composite 
materials. For the both materials, the matrix is a dielectric 
having the properties of the air. The inclusions are a same 
dielectric of which the real part of the relative permittivity 
varies from 3 to 30. The permittivity of the inclusions is 
complex because they have lossy dielectric characteristics. 
The loss tangent of each inclusion is equal to 0.01. The 
differences between the two materials are the shapes of the 
matrix and the inclusions. The first material has spherical 
inclusions arranged in a cubic lattice (see Fig.1) whereas the 
second one has ellipsoidal inclusions arranged periodically in 
the three sDatial directions (see Fig.2). 

Fig. 1. Geometry of the material 
with ellipsoid inclusions.. 

Fig. 2. Geometry of the material 
with spherical inclusions. 
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Boundary Integral Equations. The heaviness of the 
computations is reduced considering only one elementary cell 
[ 13, because of the periodicity of the materials. 

The elementary cell of the material with ellipsoidal 
inclusions, is gotten from the cell of the material with 
spherical inclusions, by homothetical transformation of length 
ratio k=2 according to the z axis, and of center 0, center of 
the cell (see Fig. 3.). The height h is therefore equal to 4 mm, 
1=L=2 mm and b=c=aL?. When the ellipsoid is not in contact 
with the limits of the matrix, that is to say for a<2, the volume 
fraction takes the following expression: 

47rabc  f=- 
3 L l h  

When the ellipsoid intercepts the sides of the 
parallelepiped [2], the analytic expression of the volume 
fraction is hard to find. Its calculation is however possible. In 
fact, homothetical transformation preserves the forms of the 
volumes, but enlarges them of k3 ratio. The volume fraction 
being a volume ratio, this one remains unchanged compared 
with the material with spherical inclusions. 

The material with spherical inclusions has an elementary 
cell (see Fig. 4.)of which inclusion radius R varies from 0.457 
mm to 1.41 mm. The cubic matrix presents an edge a of 2 
mm in length. 

The volume fraction is: 

a R’ 
f =-with 6 R s 1  

and f =--- rcR3 n(R-1)2(2R-1) with l < R < & .  (3) 
6 4  

h 

L 
Fig. 3. Geometry of an elementary 
cell of the material with ellipsoidal 
inclusions. inclusions. 

Fig. 4. Geometry of an elementary 
cell of the material with spherical 

B. Boundary conditions 

During simulations, the boundary conditions for each 
geometry are set in the following way: 
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v,= -1 v 

Fig. 4. Boundary conditions for a) the material with spherical inclusions, b) 
the material with ellipsoidal inclusion in the z direction and c) in the x 
direction. 

All the surfaces not including information are set with 
some homogeneous Neumann conditions d V /  d n=O. 

111. NUMERICAL METHOD 

The permittivity of the studied materials is complex since 
their inclusions present dielectric losses [3]. The effective 
permittivity of the material with spherical inclusions takes 
merely the following shape: 

(4) 
since the material is isotropic. 

On the other hand, the effective permittivity of the 
material with ellipsoidal inclusions must be calculated in the z 
direction and in the x or y direction, as this material is 
anisotropic: 

( 5 )  

- & = &' - j&" and tan ~=E"/E', 

E:' 

E :  
- E ,  = E : - j E : ,  tan6, =-,  

and 
- E:,,, 

Erovy - E L " "  -jE:o"Y 7 t a n L ,  =)a ( 6 )  
E X W Y  

The dimensions of the inclusions remain lower than the 
wavelength of the applied field whichever the used frequency 
(F << v/2R, v is the speed of propagation of the applied field, 
here the highest frequency is 1 MHz). We will consider that 
there is no propagation. Moreover, the imaginary part of the 
permittivity of the inclusions as well as the loss tangent, are 
small compared to the real part of this permittivity. The 
displacement currents are negligible and have no influence on 
the electric field ( the frequency must be above the 
microwaves frequencies: 300 MHz). One consider that the 
electric potential V is sinusoidal with a F frequency and has 
an amplitude equal to the static value. The dissipated power is 
therefore equal to: 

The dissipated power correspond to the dielectric losses. 
Each loss tangent tan 6i is identical in all the corresponding 
lossy medium i. 

All the previous hypotheses lead us to solve a static 
problem, that is to say the Laplace's equation. This equation is 
solved with the help of the PHI3D software based upon the 
Boundary Integral Equations Method [4]. The electric 
potential V is determined on the whole volume domain v with 
the aid of (7), 

(8) 
d G  d V  

I a n  d n  
c. V(  p )  = -55 ( V - - G -) dx dy , 

where G is the Green's function, c is the solid angle under 
which the point p sees the volume v, n stands for the normal 
direction, and S is the bounding surface of the domain v. 

With this numeric method, only the surfaces bounding the 
volumes are meshed. The computation of the integral above 
in all points of the mesh grid leads us to solve a linear system. 
This system is construct from physical properties on the 
boundaries and from boundary conditions. The results of this 
system, V and d V/d n are gotten in each point of the mesh 
grid. Only 1/8* of the geometry is simulated because the 
system presents two symmetries and one anti-symmetry. This 
reduction of the studied domain allows to reduce the time of 
computation and the space memory taken by the matrices of 
the system. 

In order to determine the effective complex permittivity of 
the materials, the real and imaginary parts, and the effective 
loss tangent, an electric field is set in a direction of the xyz- 
coordinate system, by fixing the potential V on the 
perpendicular surfaces to the direction of the field. For the 
material with spherical inclusions, only one of the three 
directions of the xyz-coordinate system will be necessary 
since the material is isotropic. On the other hand, for the 
material with ellipsoidal inclusions, the computations will be 
achieved for the direction of the xyz-coordinate system 
parallel to the long axis of the ellipsoid and for one of the two 
perpendicular directions, this material is anisotropic. 

The real part of the effective permittivity of each material 
is calculated from the flux of the electric induction D through 
one of the perpendicular surfaces to the direction of the 
applied field: 

for the 

direction for example. (9) 

with S area of the considered surface, E', is the real part of the 
effective permittivity in the z direction, $z being the flux of 
the electric induction D in the z direction, e is the distance 
between the two perpendicular surfaces to the field direction 
(see Fig. 2-3-4 for the significance of the different variables 
no specified). 

The imaginary part of the effective permittivity of each 
material is computed from the dielectric losses. It is a matter 
therefore of calculating the volume integral of the expression 



1225 

(7) nynerically. In order to achieve 
comes back to the Maxwell's equations: 

V(-€ v V) = 0 
" .  

By integrating (lo), d 

_ I  this calculation, one _ r  

Fig. 8. Imaginary part of the effective permittivity of the material with 
ellipsoidal inclusions, according to the z direction. this whichever the cp weighed function belonging to v. 

By application of the first identity of Green, we have: 

The terms V and E', d V/ d n are the results of the 
boundary integral formulation used in PHISD. By modifying 
PHDD to calculate the flux of the expression V&; d V/ d n 
through the surfaces bounding the lossy materials and for 
which 6' V/ d n is different of zero, we compute the dielectric 
losses with the help of expression (7). The knowledge of the 
dielectric losses leads us to the imaginary part of the effective 
permittivity: 

1 S 
2 e 

Dielectriclosses =-&:E, -o(V, -v2)* (14) 

(15) 
ll - 2 x Dielectric losses x e 

E r  - 
SE, o(v, -v$ 

R.(p.rmltmty 01th. ~nclvronr) 

Fig. 9. Effective loss tangent of the material with ellipsoidal inclusions, 
according to the z direction. 

R.@wmmWy 01th. mclus~onsl "OIWn. h"l0" 0 0  

Fig. 10. Real part of the effective permittivity of the material with ellipsoidal 
inclusions, according to the x or y direction. 

The results, the calculation of the real and imaginary parts 
of the effective permittivity as well as the effective loss 
tangent, are represented, for each material, as a function of 
the volume fraction and of the real part of the permittivity of 
the inclusions. A representation as a function of the frequency 
is not proposed because if one observes the formulation, the 
frequency does not appear after simplification. A 
representation as a function of the frequency would give 
therefore only a constant curve. 

For the first material with ellipsoidal inclusions, we 
represented the results successively for the z direction, then 
for the perpendicular direction x or y .  

a 

R q p m a l m ~  dln tndusms) 

Fig. 1. Imaginary part of the effective 
ellipsoidal inclusions, according to the x or y direction. 

of the with 

0 . 5 7  

Fig. 7. Real part of the effective permittivity of the material with ellipsoidal 
inclusions, according to the z direction. 

Fig. 12. Effective loss tangent of the material with ellipsoidal inclusions, 
according to the x or y direction. 
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For this material with ellipsoidal inclusions, one notes that 
the real and imaginary parts evolve progressively as a 
function of the volume fraction, according to a polynomial 
form, with a marked increase of this evolution, shortly before 
the fraction 0.5 and beyond. The evolution of the effective 
permittivity, real and imaginary parts, is almost linear as a 
function of the real part of the permittivity of the inclusions. 
The loss tangent present two different regions as a function of 
the volume fraction, a first region where the loss tangent 
remains weak and close to the lowest fraction, a second 
region where this tangent is important and near to the 
inclusion loss tangent. This division in two regions brings to 
the material a certain selectivity to its properties. All these 
remarks are valid both for the results in the z direction and in 
the perpendicular direction. For the two directions, the shapes 
of the curves look alike, but if one could superimpose these 
curves, one would note that the values in the z direction, are 
more important, except for upper limit values, and shows 
therefore that the material possesses a privileged direction, 
the z direction. 

Rdmrmmnly ofthe nsluron*J 

Fig. 13. Real part of the effective permittivity of the material with spherical 
inclusions, according to the z direction. 

a 

Relprmitnny dlhe mclusiom) 

Fig. 14. Imaginary part of the effective permittivity of the material with 
spherical inclusions, according to the z direction. 

a 

Re(p@rmmnty ofthe mtlunono) 

Fig. 15. Effective loss tangent of the material with spherical inclusions, 
according to the z direction. 

All the observations made for the material with ellipsoidal 
inclusions are valid for this material, with the exception of the 
direction of calculations. This material , due to the geometry 
of its inclusions, is isotropic. The computations are achieved 
in one of the directions of the coordinate system, and are 
therefore valid in the two others directions. 

Iv. EXPLOITATION OF THE RESULTS 

So that the previous results are useful, we used two 
methods of interpolation in two dimensions, in order to 
compute the effective complex permittivity in some unknown 
points of the data bank, which are in the limits of the results, 
but which are not part of the results. These methods will be 
used to know the properties of materials with similar 
structures to those of this present survey, but with different 
proportions between inclusions and matrices, for example 
before their conception. 

In the same way, this kind of methods allows us to 
represent these heterogeneous materials with some 
homogeneous equivalent ones, always for some materials 
having similar structures to those of the survey. So a finite 
element mesh would required few elements, which is not the 
case when one studies a composite material with small and 
numerous inclusions. We will not present the two methods of 
interpolation here. The interested readers will see [ 5 ]  [6 ] .  The 
first method of interpolation comes from the MATLAB 
software. This method has been used for the first steps of the 
development of the exploitation method. Finally, we chose a 
second method based on a spline bicubic interpolation 
routine, written in C, easily portable on different computers. 

V. CONCLUSION 

With modifications and approximations, the BIE method can 
be useful to compute the complex effective permittivity and 
the effective loss tangent of 3D dielectric composite 
materials. A method of exploitation of these results has been 
proposed with the view of creating a data bank and of 
introducing this data in a field calculation package. 
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