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Abstract. We describe the limit laws, as t — oo, of a Bessel process (R, s < t) of dimension d € (0, 2)
penalized by an integrable function of its local time L; at 0, thus extending our previous work of this
kind, relative to Brownian motion.
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1 Introduction

1) Let (2, (X¢)i>0, (Ft)i>0, Foos Po) denote the canonical real-valued Brownian motion, starting from
0. We denote by (L;);>0 its local time at 0.
Let h: Ry — Ry be a Borel function such that : / h(z)dz = 1.

0

Define
H(z) = /0 hMy)dy, x>0, (1.1)

the primitive of h such that H(0) =0 .
For any ¢ > 0 , we introduce the probability Po(t) on F; , which is defined by :

@ x y_ Eo(la,h(Lt))
PP (M) = m A, € F (1.2)

We have shown, in [19] that the limit, as t — oo , of Pét) (As) , for Ay € F, , and s fixed, exists :

M(A,) = Jim P(A)  (s>0,A, € F). (1.3)



This is a kind of “Brownian Gibbs measure”, which induces a probability on (2, Fso); in [19], we
described precisely the process (X;):>o under Qéh); the pair (X, L¢)¢>0 is Markov under Qéh), while
(Xt)¢>0 is not, in general, Markov on its own.

2) The aim of the present work is to extend the above result for a d-dimensional Bessel process,

d
0 < d < 2. Denote by v = % — 1 the index of this Bessel process, and let « = —v =1 — 3 €]0, 1].

More precisely, let (QJr, (R)1>0, (Fi)1>0, Foos (Pﬁfa))rzo) denote the canonical Bessel process of di-
mension d, or index v = —a, with a €]0,1[. € denotes the set of continuous functions from R, to
Ry, (R, t > 0) is the coordinate process on Q4, and (F3, ¢ > 0) its natural filtration.

Finally, we denote : Foo = Vg>0Fs.

The probability P makes the coordinate process (Ry,t > 0) a Bessel process with index (—a),
starting from r. We denote by (L¥;t > 0,2 € Ry) the jointly continuous family of local times of the
process (R;,t > 0). We choose the normalization of this family such that (R?* — L2/t > 0) is a
martingale.

We note simply (Li)¢>o0 for (LY);>0, and we consider a probability density h: R; — R;. Similarly as
in (1.3), we are interested in the limit, as ¢ — oo, of :

(~a)

E 1 L

P (A = 22 (ﬂ() AMED) ) e F s fixed. (1.4)
Ey " (h(L1))

Since, throughout this paper, the process of reference shall be the d-dimensional Bessel process with in-

dex (—«), we shall almost never again mention (—«) in our symbols, e.g., we shall write Fy for Eéfa).

We shall prove :

Theorem 1.1 Let h as in 1).
1. For every s > 0, and Ag € Fs,

QY (Ay) = Jm W exists. (1.5)
2. Q(()h) satisfies :
§ (M) = Eo(1a, MD), (1.6)
with
MP = h(L)R* +1— H(L,). (1.7)

The process (M!)s>0 is a ((Fs), Po) positive martingale, which converges to 0, as s — co. In
particular, it is not a uniformly integrable martingale.

3. The formula (1.6) induces a probability Q(()h) on (U4, Fs). Under Qéh), the canonical process
(R¢,t > 0) satisfies :

(a) The random variable Lo, is finite a.s., and it admits h as its probability density.
(b) Let g =sup{t >0: R, =0}. Then, Q((Jh)(O <g<oo)=1.
c i. The two processes (Ri,t < g) and (Ry4¢,t > 0) are independent;

g+

ii. The process (Rg4¢,t > 0) is a Bessel process with dimension (4 — d), starting from 0;

iti. Conditionally on Lo, =1, the process (Ry,t < g) is a Bessel process of dimension d,
starting from 0, stopped at 7, := inf{t > 0: L; > [}.



4. Let :
t
Ay = 4a2/ R2(Ca=bgs >0, (1.8)
0

and denote its inverse by :
p(u) :=1inf{t > 0: A; > u}. (1.9)

Then, under Qgh), the process (R?,ff + L,,,u > 0) is a 3-dimensional Bessel process, starting
from 0, which is independent from the random variable L.

Remark 1.2 1. We now remark that, for d =1, i.e : « = 1/2, part 4. of Theorem 1.1 may be
presented as follows :

(Rt + Ly, t > 0) is a 3-dimensional Bessel process, independent from Lo. (1.10)

2. Via Lévy’s theorem ( if (B,t > 0) denotes a Brownian motion, starting from 0, and if :

SB = sup By, then the two processes (SP — By, SE;t > 0) and (|By|, Ly;t > 0) have the same
s<t

law ), the result (1.10) has already been obtained in [20] : thus, point 4. of Theorem 1.1 appears
as a generalization of Pitman’s theorem which asserts that :

@

IS

(257 = Byt > 0) = (|Bi| + Ly, t > 0). (1.11)
18 a 3-dimensional Bessel process.

3) Just as we did in [18] concerning the 1-dimensional case, the above Theorem 1.1 invites to study
the penalization with a function of the local time, not for the Bessel process itself, but for its “long
bridges”.

Precisely, we shall be interested to show the existence of the limit, as ¢t — oo, of :

Py(As|Ly =y), y>0,As € Fs, (1.12)
and even of :
Py(As|Ry=a,Ly =y), a>0,y>0,A; €F,. (1.13)
We obtain the following :
Theorem 1.3 1. The limit
QY (M) = lim Po(As|L = y) (1.14)
(with As € Fs) exists and satisfies :
) (As) = pr. (y) Eol1a, R2*| Ly = y] + Eo[1a. 1(1. <)) (1.15)
where pr,. is the density of Ls.

2. The preceding formula (1.15) induces a probability Q(()y) on (Q, Fso). The probability Qéh) defined
in Theorem 1.1 admits the following disintegration :

§() = /Oo h(y)QY ()dy. (1.16)

0

Consequently, for any A € Foo :
Q" (AL = y) = Q" (A). (1.17)

Thus, the conditional law of Qéh) given Lo, =y does not depend on h.



8. For every s > 0,A; € Fs and every x,y > 0,

QY (A,) = Jm Po(As|Ry =z, Ly = y) (1.18)
exists, and satisfies :
QY () = b () Eo(1a, BRI = )
B e (o - LR
4. For every x,y >0,
QMO = s A0 + m/ Q5 ()d (1.20)

Note that formula (1.20) simplifies, in the case o = 1/2, to yield formula (1.13) of Theorem 1.3 in [18§]
(via Lévy’s Theorem) :

T

(@) _ . (). 1.21
0= a0+ [T (1.21)

4) As a Corollary of Theorem 1.3, we now present Theorem 1.4, which describes the penalization of
“long Bessel bridges” by an integrable function of their local times at 0 (see formula (1.23) below).

Theorem 1.4 Let (Q+, (Ri) >0, (F1)i>0, Foo, Po) denote the canonical Bessel process starting from 0,
with dimension d = 2(1 — a),0 < a < 1.

1. Let h: Ry — Ry be a Borel function such that / h(y)dy = 1. Denote, for x > 0,
0

Ty = / T h) (@ 4yt )y, (1.22)

assumed to be finite, and b} = 1/h,.
Then, for every s >0, and A; € F;

Eo([1a,h(Ly)| Ry = 2]

im exists and is equal to Q=) Ay), 1.23

t500  Bo[h(Ly)| Ry = 7] q Qo ' (As) (1.23)
where :

ho(y) = hy{zh(y) +2' 241 - H(y))}  (y=0). (1.24)

2. Let f: Ry xRy — Ry be a Borel function such that :
f= / fz,y)(z + yz' 2 dx dy < . (1.25)
R+ X]R+

Then, for every s >0 , and Ay € Fg,
Eo[1a, f(Ry, Lt)]

Jim — F(Res L) exists and is equal to Qg) (Ay), (1.26)
o 0 ty Mt
with :

Fon=r{ | " i (e y)de + / g, / " fa 2z (1.27)
and f* =1/f.



Note that, for both points 1. and 2. of Theorem 1.4, the main properties of the canonical process
(R;)¢>0 under the limit probabilities Qéh’”) and Q(()f ) are given by Theorem 1.1 : it suffices, in this

oo oo

Theorem 1.1, to replace h resp. by h, and f (and to note that : / he(y)dy = / fly)dy =1 )

0 0
5) Point 2. of Theorem 1.5 invites to study the penalization of (R;);>¢ by a function of L, and R,
which is not integrable, i.e. which does not satisfy (1.25). This led us to the following :

Theorem 1.5 Let A >0, and h : Ry — R a Borel function such that :

/00 h(y)dy < oo and /OO h(y)e"*dy =1, (1.28)
0 0
with

(AT -a)

1. For every s >0, and As € Fs,

Eo [1a,h(Lt) exp(AR:)]

lim exists 1.30

t—oo  Fjy [h(Lt) eXp(/\Rt)] ( )
and is equal to :

W T

QS )(As) 1= Eo[1a, M)"] (1.31)
with

MS/\)E = 67/\25/2R? |:?L(Ls) <i) F(l + O{)Ia (ARS)

~ 2\ ¢
+ (1 - H(LS)> <A> I(1 - a)l_o (ARy) ], (1.32)

where I,, denotes the modified Bessel function with index v (cf [9]), and

h(y) := h(y) — JAeUW/ h(z)e™7**dz, (1.33)

y
1—H(y) = e””’/ h(z)e™>*dz :/ h(z)dz. (1.34)
y y

2. (MM s >0) is a positive martingale, which tends to 0 a.s. as s — oo.

3. Formula (1.31) induces a probability Qé)"h) on the canonical space (Qy, Foo), with respect to
which the canonical process (R, t > 0) satisfies :

(a) Lo is finite a.s. and its distribution function is :

Q" (Loe <) = 1= (1= H(e))e™ (1.35)

with oy given by (1.29).
(b) Let g=inf{t >0: Ly = Lo} =sup{t >0: R, =0}. Then :

AR (0 < g < 00) = 1. (1.36)



(¢) 4. The processes (Ry,t < g) and (Rg4¢,t > 0) are independent.
ii. The process (Rgqt,t > 0) is a diffusion process starting from 0, whose infinitesimal
generator L1 satisfies :

Lf(r) = %f”(r) + {1 ;rza + AI‘};ES;) } 1(r). (1.37)

iti. Conditionally on Lo, =1, the process (Ry,t < g) is a diffusion process starting from
0, whose infinitesimal generator L' satisfies :

£ = 31+ {1522 A B ) (19

stopped when its local time at O reaches level [.

Remark 1.6 1. Let hg : Ry — Ry a Borel function such that / ho(y)dy < oo. Note that
0
h = hg/c verifies (1.28) where ¢ z/ h(y)e=*Ydy.
0

2. It is not difficult to check that, as X — 0, Theorem 1.5 yields precisely Theorem 1.1, because

1 zZ\V 1 Z\ Y

L~ ) ikt ~ rw) (2) (et

&) i (3) mi B = 50 (5) 7 @ )

3. Recall that the diffusions whose infinitesimal generators L and L are given in (1.37) and (1.38)
are the Bessel processes with dimension d = 2(1 — «), and drift A T and X | respectively. These
processes have been studied by Watanabe [21] and Pitman-Yor [14]. They play an important role
in Matsumoto-Yor ([12], [15]).

5) Organization of the paper.

e In Section 2, we define precisely the normalization of the continuous family of the local times
(L¥;t > 0;2z > 0) of the Bessel process (R, t > 0) of dimension d €]0, 2[, which we use through-
out this paper.

e In Section 3, we prove Theorem 1.1.
e In Section 4 we prove Theorem 1.3, and we deduce Theorem 1.4 from Theorem 1.3 .
e Finally, Section 5 is devoted to the proof of Theorem 1.5.

6) An overview of some penalization results. In our paper [17], we propose a survey-without
proofs- of most of the results obtained in our previous works [18], [19], [20] on the subject.

Acknowledgment : We thank the referee for a detailed list of suggestions which helped us to improve
our paper.

2 Definition and properties of the local time at 0

1) The Bessel process (R, ¢ > 0), with dimension d = 2(1 — «) € (0,2) which is being considered
throughout this paper, is an R, -valued diffusion whose infinitesimal generator L is defined as :

_1Ldf  1-2adf

=502 T T ar 21)
on the domain
D= {f Ry — R; EfGCb(R+);liH%)T172af/(T) :()} (2.2)
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2) The normalization we shall use for the local time at 0 , (Ly,t > 0) of (R, t > 0) is such that :
(Ny := R} — Ly, t > 0) is a martingale (2.3)

We note that the bracket of (NV;) equals :

t
Ay =< N >;= 4a2/ R2(2a=1 g, (2.4)
0

and that there exists a reflecting Brownian motion (7, u > 0) such that

R =4, 5 Li={la,, (2.5)
where (¢,,,u > 0) is the local time at 0 of «y, chosen such that :

(Yu — lu,u>0) is a (F] = o{ys,s < u},u > 0) martingale. (2.6)
Note that the finiteness of A;, especially for a < 1/2, follows from :

2 227 10(a) 94y

o 2
E RQ(ZQ—I) — a—l/ 2a—1 —E—Sd —
o[RS ri-a° J, % 7" TTra—a® >

which implies that Ey[A;] < oo.
3) With this normalization of (L¢, ¢ > 0) (cf [3]) , the occupation density formula writes :

t 1 [e%}
/ g(Rs)ds = —/ g(x)Lizt 2 dx (2.7)
0 @ Jo
for every Borel function g : Ry — R, and {L7} a jointly continuous family of local times, such that
LY=L,
4) Under Py,
the variable L; is distributed as t“ L4, (2.8)

and the law of L is the Mittag-Leffler distribution of index « (see for instance [2]; for details see [3]
and [10], p. 142), with density pr, :

pr, () = % : (‘1)k+1£!(ak +1) (?8 . Z; 9o z)k sin(kra) (1> 0). (2.9)
In particular it satisfies :
9—a
pr,(0) = limpy, (1) = Ta+a) (2.10)
5) Define the right continuous inverse of L :
m=inf{t >0:L; >1}. (2.11)

Then, (77,! > 0) is a stable subordinator with index «; more precisely, its Laplace transform is given
by :

(1-a)

E [exp(—=A71)] = exp ( — l?(l To) 2_0‘)\0‘) A 1>0. (2.12)

6) Let To = inf {t > 0: R; = 0} denote the first hitting time of 0 for the process (R, t > 0).



Then, Ty is, under P,, distributed as :

Ty 2 r? /2, (2.13)
where 7, is a standard gamma variable with index «.
Consequently,

Y as12 r’
P.(Tp € dt) = (o) t T exp(—g) Lio,00[(t)dt, (2.14)
_22q 2 Ar\
= — _ . .1
E,.le 7] o) ( 5 Ko (Ar) (2.15)

Identity (2.15) is found in [8], see also Proposition (2.3) in [14]. For (2.14), which also extends to
a =1 (that is : d =0, when (R;) is the 0-dimensional Bessel process), see [4], and e.g ([16], ex 4.16,
p321). In [3], the reader will find a more detailed discussion of the various normalisations of the local
time process (L;) at level 0 for a Bessel process of dimension d € (0,2) which have been used in the
literature. The results presented in this section may be considered as standard knowledge; see, e.g.
Borodin-Salminen [1] for a more general presentation of diffusion local times.
7) In Section 5, the role of the following martingale will be crucial :
22 A%t

M,*" == R} Ko(AR;) exp (oxLy — 7), t>0, (2.16)
where o, is defined in (1.29).
That this process is indeed a martingale follows from the computation relative to a general diffusion
(Ry), its local time (L;), and inverse local time (7;) :

Ey [6_#n|ft] = e_“tf(Rt,l — Lt), on {t < Tl} = {Lt < l}, (217)

where f(r,\) = E,[A())], with A(X) = e7#™.
Using the strong Markov property we obtain :

f(r,\) = E, [efuTo(R)}e*/\w(u)’

where () denotes the Lévy exponent for (77).
2

A
Using the Laplace transform given in (2.15), for u = A?/2, and the fact that : w(7) = o) in this

particular case (cf (2.12) above), we get :

2

R} K, (AR;) exp (U)\Lt — %) = C\eE, [e_‘”‘ ‘}}], on {t <7}, (2.18)

where C), is a positive constant.
Now property (2.16) is a direct consequence of (2.18) together with the following calculations :

2 2
Eo[M7'10] = Jim Bo[M," '1a Lscry] = lim By [Cre™ Bo[e ™ | F ] 1y, 1 scny
= Jim Bp[MFa Lacry] = Bo[M.T L],

for any s <t and Ay € F.



3 Proof of Theorem 1.1

Proof of Theorem 1.1
The proof of Theorem 1.1 will be divided into eleven steps.
1) We prove the existence of : tlim Po(t) (As).
— 00
Let s > 0, and A € Fs. By conditioning h(L;) with respect to Fs, we get :

Eo[1a,h(Ls)]  Eo[1a.0(Rs, Lyt — 5)]

- ) 3.1
Eolh(L,)] 90,0.1) )
with
0(r,y,u) == E;[h(y + Lu)], 7y,u=0. (3.2)
Thus we are led to estimate 0(r,y, ) when u tends to +oo.
We denote by Tj the first hitting time of 0 by the process (R, t > 0) :
Ty := inf{t > 0, R, = 0}. (3.3)
Thus, we obtain :
9(T3y7t) = el(Tay7t) + 92(7",y7t), (34)
with :
01(r,y,t) = h(y)Pr(To > t), O2(r,y,t) = Er[Liry<ty h(y + L1yt i—m0)) ] - (3.5)
We examine separately the two terms 6, (r, y,t) and 02(r,y,t) featured in (3.5).
From (2.13), the first term 64 (r,y,t) is equal to :
2
Ou(ry,t) = h()P(va < 5)
r2 a
hy) [ a1 - hy) (r°
- o Tdr o~ — ) . 3.6
F(a)/o v xt_>oo1“(a+1) 2 (3.6)

As to the second term 6s(r, y,t), we find it to be equal, thanks to the scaling property (2.8), and after
conditioning with respect to Fr,, to :

62(T7 Y, t) = E’r‘[l{To<t}93<y7 t— TO)]7

with 03(y,u) = Eo [h(y + uaLl))].
Hence, denoting by pr, the density of Li, under P :

92(7', Y, t) = / ET‘ [1{To<t} h(y + (t - TO)Q‘:U)]le (l')d$,
0

so that, after making the change of variable : (¢t — Tp)%z = z, we get :

1 e z
O2(r,y,t) = E, {1{To<t}m/o h(y + 2)pr, (m)dz] (3.7)

Consequently (2.10) implies :

outrint) v, P20 [Tty 2yt = 2 - HG)L (35



Bringing together (3.6), (3.8) and (3.4), we get :
12

t—oo t* T(a+ 1)

We then deduce from (3.1) and (3.9) :

B [1a,2(Lt)]
t—oo  Eolh(Ly)]

0(r,y,t) h(y)r?® +1 — H(y)) ) (3.9)

= Bo[Ln, (h(L )R +1 - H(L,))] (3.10)

We note that, in (3.10), exchanging the order of taking either the limit or the expectation does not
make any problem, since it is justified by Lebesgue’s dominated convergence theorem, once it has been
noted that, with the help of (3.6) and (3.7) :

t*0(r,y,t) < C[h(y) + 1]r**.

2) We now show that (M := h(L,)R?>* +1 — H(L,),s > 0) is a martingale.
For h in O, it easily follows from Ito’s formula using (2.3), that (M” s > 0) is a local martingale.
Moreover it writes :

MM=1 +/ h(L.)dN,, s>0.
0

Now, to obtain the general case, it remains to apply the monotone class theorem. We might also have
used a balayage argument, see e.g. [16], Chap. VI. Thus, in particular,

t
M} =1 +/ h(Ls)dNs, t>0, (3.11)
0

where (N, t > 0) is the martingale defined by (2.3) is a local martingale.
Since M} > 0, for any ¢ > 0, (M}") is a positive supermartingale. In order to prove that (M}, ¢ > 0)
is a martingale, it suffices to show :

Eo(M]) =1, for every t > 0. (3.12)

Now, for n € N, let h,(z) = (h(z) An)l(z<n). It is clear that (M} is a martingale, therefore (3.12)
implies that : Fjy [Mth} = 1. Then, with the help of Beppo-Levi’s Theorem, we obtain :

n—oo

1= lim (Eo [hn(Le) RE* 4 (1 — Hn(Lt)}) = Eo[h(L)Ri* +1— H(L,)] = Eo[M}].

3) We now prove that : M} — 0 as t — cc.

Since (M}',t > 0) is a positive martingale, it converges a.s. as t — co. Let 7, = inf{s > 0: L, > [}
denote the inverse local time. Then :

ME = WL )R2 41— H(Lpy) =1~ H{l) =0, asl - . (3.13)
Hence M} T 0 a.s. In particular, the martingale (M}, > 0) is not uniformly integrable.

4) We now establish that Q{" (Lo € dI) = h(1)dl .
Indeed, for every ¢ > 0, using (1.6), Doob’s optional stopping theorem and (3.13), we have :

(L > ¢) = Q4" (t > 72) = Eollirocy M) = BolLir.cy ME] = (1= H(0)) Polt > 7).
Consequently, letting t — +00, we obtain :
(L >e¢)=1-H(c).

5) An auxiliary result.
In the sequel, we shall use a general result about continuous positive martingales, which is stated and
proven in [19], and which we shall then apply to M = M". Thus, we present this result without proof.

10



Proposition 3.1 (Theorem 4.2 in [19])
Let (Q, (ft)tzo,foo,P) denote a given filtered probability space, and consider a strictly positive con-
tinuous martingale (M), with respect to ((F¢)i>0,P), such that My =1 and Mo, = 0 a.s. We then
define the probability Q on (2, Foo) via :

Q(A¢) = E[1a,M;] t>0,A € F. (3.14)
We also define :

M, = ;I%EMQ (3.15)
Then, under Q, the following holds :

1. M « is uniformly distributed on [0, 1].
2. Let g:=sup{t >0, M; =M }. Then,

Q0<g<o) =1 (3.16)
3. Let :
Z, = Qlg > t|F). (3.17)
Then :

(a) Zy = M,/M;.
(b) (Zi,t >0) is a ((Ft)i>0,Q) positive supermartingale with additive decomposition :

t M .
Zy =1 —/ ﬁ; dM,, + In(M,). (3.18)
0 u
t
~ d< M >,
where My := M, 7/ % is the martingale part of (M) under Q, from Girsanov’s
0 u
theorem.

6) We now remark that :

MP=1—H(L). (3.19)

Indeed,
M" = h(L,)R?>® +1—H(L,) >1—H(L,) >1— H(L;), forany0<s<t.

Moreover Mg't =1— H(L;) where g = sup{s < t; R, = 0}. This implies (3.19).
We also note that (3.19), together with point 1. of Proposition 3.1, allows to rediscover the fact,
obtained in 4), that Q{") (Lo € dI) = h(l)dl. Indeed, we get :

M (Lo <¢) = QY (H(Ls) < H(¢)) = Q) (1 — H(Loo) > 1 — H(c))
= QM (M >1- H(c)) = H(c).

7) Another definition of g.
Let ¢ be defined as in point 2. of Proposition 3.1, but we now replace M by M", ie :

g:sup{tEO;Mth:MZO . (3.20)

Then, under Qgh) :

g=sup{s >0,R;, =0} =inf{s >0,Ls = Lo} . (3.21)

11



Indeed, (3.21) follows from (3.19) and the fact that M ? = 1 — H(L;) is constant after g (hence, so is

Ly).
8) A preliminary step to prove point 3. (c) of Theorem 1.1.

We shall use the technique of progressive enlargement of filtrations (see [6], [22], [7] and[11]). We
denote by (Gt, t > 0) the smallest filtration which contains (F%, ¢ > 0), and which makes g, defined by

(3.21), a (G, t > 0) stopping time.

a) Recall that (N;) is the ((F)i>0, Po) martingale defined by (2.3), whose bracket is given by (2.4).

Hence, from Girsanov’s theorem, and (3.11), the process :

N th(Lu)
NtZ:Nt—/O M,f d<N>u

is a ((Ft)e>0, QY martingale, so that :

t
N h(Lw)
RQa:Lt+Nt+/ v
' o M}

d< N >, .

b) From Proposition 3.1, 3. (b), we have :

(h) M Arh h
Zy = Q (g>t|7—‘t):1—/O (]\Z?)QdMquln(MtL

with

t h
h _ h u
MtMt—/Og .

a ((ft)tZO;Qéh)) martingale.
Due to (3.22), (3.25) and (3.11) we have :

. . Mh __ . Mh t Mh
N —u_ M >=< N —u_ M :/;“hLud N >, .
<N [ g =< N [ gl | (Lu)d < V>

(M])?

We deduce, after Jeulin [6] and Yor [23], that in the filtration (G¢)i>0, under Q(()h) :

. - tAg 1 Mh t 1 Mh
Nt:Nt(Q)—/ —_—u (Lu)d<N>u+/ ——— U _p(L)d < N >, .
0

Z (M})? ing 1= Zu (M)

where (Kft@),t >0) is a ((Ge)eo, Q(()h)) local martingale.
Plugging (3.26) in (3.23), we obtain :

" h(L ~ A W Vg
R?a:Lt =+ / ( u>d<N>u +Nt(2)_/ I
0

L, N >,
MY o ZorppEud <N >

t h

1 M

+ Y h(Ly,)d < N >, .
/tAgl—zuMz;)?( )

Using 3. (a) of Proposition 3.1 the relation (3.27) simplifies, and becomes :

¢ 1

RQ@ — Lt +N(2) +
‘ ‘ tAg Mg 7MZ

h(L,)d < N >, .

But, since, from (3.19), we have :

My = My, = h(L,) Ry +1 = H(Ly) = (1= H(Ly)) = h(La) R,

12
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then (2.4) implies :
¢
R?a — Lt + Nt(2) + 4@2 Ri(a_l)du. (329)
tAg

We note that, despite the different changes of probability, or of filtration, which we have made, the
brackets of N and N(® are equal, hence :

t
< N® >, = 40? / R22a=D gy, (3.30)
0

9) Description of the Qéh) process, after g.
From (3.29) and because R, =0 and Ly, =0, t > 0, we have :

t
R%, = N + 40” / RV ds, (3.31)
0
where
N® — N®, _J®, >0 (3.32)

Note that g is a (G¢):>0 stopping time, therefore (Nt(B)) is a ((gg+t)t20,Qéh)) continuous local mar-
tingale.
We then apply It6’s formula to compute f(R2%,), with f(z) := z'/2%; we get, from (3.30) :

1/t e a(al L—2a [ | 40 n2(20-1
Ryer = 5~ / RIT2%AN® + 24 / Ry 2R ds + — / R RV s
0 0 0
1/t ~ 1420 (' ds
= — [ R2AN®) + —— / : 3.33
2a Jo Ot T 0 Bgts (3.33)
I ~
But, from (3.30), the (((]g+t)t20,Qéh)) local martingale (Bt = %/0 R;I_?o‘stf?’),t > 0) admits as
bracket :
1

t
oz [ BT (e RIE T ds = 1.
0

This implies that (B, ¢ > 0) is a ((gg+t)t20, Qéh)) Brownian motion and is therefore independent from
Gg-
Finally (Rgy4+) solves :

14+2a [t d
Rypi = By + 020 / 5 (3.34)
2 0 Rgys

This proves that (Rgy¢,t > 0) is a Bessel process starting from 0, with dimension § =2+ 2a =4 —d.
The solution of (3.34) being strong, the processes (R;,t < g) and (R4, > 0) are independent under
Q-

10) Description of the Qéh) process before g.

Before g, we have, from (3.29) and (3.30) :

t
RE = Lipg + N3, with < N® >,=4a? /0 R2(e=1) g, (3.35)
Let us introduce : .
1 1~
By = — AN® | t>0.

2c 0 R%a_l
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It is clear that (3.35) implies that (8¢,t > 0) is a ((gt)tzo, Qéh)) Brownian motion and :

tAg
R%, = Lipg + 20 / R2*1dp,. (3.36)
0

Then applying It6’s formula to (3.36), to compute R7,, = (Rf}\*g)l/a we obtain (since 1/a > 1) :

R2 B tAg lRQ(l—a)z RQa—ld 1—a tAg Rg(l_ga) 4 2 R2(2a—1)d
thg = s a5 dBs + 202 ° (a%)R, "
o« o Jo

(note that, because é > 1, the term in dL, disappears) hence :

tAg
th/\g = 2/0 \/R?dﬁs +2(1 —a)(tAg). (3.37)

which proves that Rng is the square of a Bessel process with dimension d = 2(1 — «) stopped at time
g=1inf{t > 0; L; = L }.

11) We now prove point 4. of Theorem 1.1.

We first show that (Rp(u + Ly, u > 0) is a 3-dimensional Bessel process, starting from 0 (recall that
p(u) is defined by (1.9)).

a) Let us start by studying the process (R;) before g.

It is clear that (3.36) implies :

R2a

o(u) = L

p(u) — Wy, u< Aga (338)

p(u)
where (Wu = —Za/ R2YdB3,, u > 0) is ((gp(u))uzo,Q(()h)) Brownian motion.

0
From Skorokhod’s reflection lemma ([16], Chap. VI) we have : L) = sup Wy, u > 0.
s<u
According to Pitman’s theorem (cf [15]), the process (2 supW, —W;, t > 0) is a 3-dimensional Bessel
u<t

process, started at 0.
Finally (Rp(u) + Loy, u< A ) is a three dimensional Bessel process, started at 0, stopped at the
stopping time A,.
b) We consider now (Rg4¢).
We first observe :

Dp2a . 2a 2a

R = Rluga,) = Bipwy, w20,

where (p(u))y>0 is the right-inverse of :
¥ 2 (2a—1)
At:Ag+t—Ag:4o¢/Ré+g d tZO,
0

(recall that (A;);>0 is the process defined by (1.8)).
Then (3.31) may be written as :

~ A(u) d/T
R =N® + / :
p(u) o Rgig

1 n(3)
Since (W = Np( )

after making the change of variables As =0

u > O) is a ((gﬁ(u))uZO,Qéh)) martingale, with bracket g‘;(u) = u, we obtain
t

~ d

Re=w+ | 22
o R2

14



Note that Lyu1a,) = Lgyst) = Lg is a G50) measurable r.v. Consequently, (R?* + Ly(44,), t > 0)
is a 3-dimensional Bessel process, starting from L.

This result, together with point a) proves that (Ri?t) + Lyt > 0) is a three-dimensional Bessel process
started at 0.

The independence of L., and of (Ri?‘u) + Ly(uy ; u > 0) follows from the fact that the law of (Rz?u) +
L,y ; u > 0), conditionally on L, =y, does not depend on y.
|

Remark 3.2 1. Replacing in step 4) of the above proof , the event {L; > ¢} by {L, > c1,..., Ly, >
e} withty > ... >t, >0 and ¢y > ... > ¢, >0, proves that the law of the process (L, t > 0)

under Qéh) is the same as that of the process (Lt ANEE > O) under Py, where & is a random
variable of density h and independent from (L, t > 0) (under Pp).

2. We now present a heuristic method to obtain the distribution of Lo, under Q(()h). We write, for
every function g, bounded and continuous :

Eo[g(Li)h(Ly)] _ Eo[g(t*Ly)h(t*Ly)]
Eo[h(Ly)] Eo[h(t*Ly)]

|t aipn, o)
/OO h(t*x)pr, (z)dx
0

(by scaling)

/OO gh(y)pr, (%)dy

0
oo y .
h(y)pL1 (tj)dy
0

Property (2.10) implies :

Eolg(Lo)h(Ly)] pL, (0) /0 (gh)(y)dy

lim = N _ [ 9(y)h(y)dy.
e BRI ) [ bay I
0

However, this computation is not, at least without any further justification, “licit”. The correct
manner to obtain the law of Lo, under Q(()h) is to first study

Eo(g(Ls)h(Ly))

Folh(Ly) for a fized s < t,

then to first let t tend to +o00, and finally to let s tend to cc.

4 Proofs of Theorems 1.3 and 1.4

Recall that under Py, (R:) is a d-dimensional Bessel process started at 0, with d = 2(1 — «) and
a €]0,1[.
To prove Theorems 1.3 and 1.4, it is convenient to introduce the following notation :

1. pr (1) is the density function of L;, under P,

2. pr r4(r,1) is the density function of the couple (R, L), under Py,
3. {II;} denotes the semigroup of (R:, L),
4

. pgu)(m, y) denotes the density of the transition semigroup of the Bessel process with index p, at
time ¢ > 0.
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4.1 Proof of Theorem 1.3

We begin the proof of Theorem 1.3 with two preliminary results : Lemma 4.1 and 4.2 below, in which
we compute the conditional expectation of an event Ag in F;, given Ly, resp. given X;, L; with t > s.

Lemma 4.1 For every s and t such that 0 < s <t, Ay € Fs, and y > 0, one has :

pL,s(y)
Eyl1 = = : FEyll t—s,Rs)|Ls =
o[1a, ] L) o[1a, ¥1( )l Y]
1
+ — Fy[lal t— s, R,y — L), 4.1
pL,t(y) 0[ As (Ls<y)302( Y )} (4.1)
with
e1(u,r) = Pp(To > u), r,u>0, (4.2)
pa(u,rl) = [1{To<u}pL,u—Tg (l)], rlu>0, (4.3)

and Ty :=inf{s > 0, Ry, = 0}.

Proof. Let f: R, — R, be a positive, Borel function. We compute in two different manners the

quantity Eo[la, f(L¢)]-
On one hand, by conditioning with respect to L; = y, we obtain :

Eo(1a. f(L4)) / Eo(1a,|Le = 9)f(0)prs(y)dy. (4.4)

On the other hand, by conditioning with respect to Fs, we obtain :

Eo[1x, f(L4)] = Eo[1a, E(f(Lo)|Fo)] = Eo[1a,Me—s f(Rs, Ls)]. (4.5)

Let us introduce :

w(t.) = Bolf U+ L] = [ Fopealy - Dy (46)
Then, using the strong Markov property at time Ty, we get :

L f(r) = Ef(+ L)l = FOP(To > u) + Er [Ligy<uy(u — To, )]

F(Dgr(ur) + / " W)ealury — D1y dy. (47)

Now, plugging (4.7) into (4.5), and then comparing (4.4) and (4.5), for an arbitrary function f, yields
Lemma 4.1.

|
Lemma 4.2 For every a,y >0, s >0, Ay, € Fy, and t > s,
Bl =,y =y) = 2T preyo) (g )i, =]
pR,L,t(xa y)
1
———Fo|1a p3(t — s, Rs,z,y — L)1 . 4.8
PrLe(@Y) o[ A p3( Y ) {y>L }] (4.8)
with

Y3 (U, r,Z, y) = ET [1{Tg<u}pR,L,U7To (‘T7 y)] ) ru,r,y Z 07 (49)
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Proof. Let g: Ry x Ry be a positive Borel function. We shall compute in two different manners
the quantity Eo[la,g(Ry, Lt)]. First, by conditioning with respect to Ry = « and L; = y, we obtain :

Eo[1a,9(Re, Ly)] = / Eo[1a,|R: = x, Ly = ylg(z, v)pr,L.i (2, y)dzdy. (4.10)
=

Secondly, by conditioning with respect to F, we obtain :

Eo[1a,9(Ry, Lt)] = Eo[1a.1i—sg(Rs, Ls)]. (4.11)
We note that :

IL,g(r,1) = Er[g(Ru, Ly +1)). (4.12)

We proceed as in the proof of Lemma 4.1, decomposing the right-hand side of (4.12) in two parts Ay,
resp. As depending upon whether u is smaller, or greater than Ty = inf{s > 0; Ry = 0}. Thus, we
obtain :

ug(r,1) = A1 + As, (4.13)
where :

A1 = ET [g(Ru, l)l(Tg>u)]7 A2 = Er[g(Ru, Lu + l)l(Tg<u)] (414)
We shall study successively A; and As.
a) Recall the absolute continuity relationship between : P |z, Aru<r,} and Pr(+a)| £
(see, [16], Chap. XTI or [5], section 1.2):

P Funfu<to) = (E) P 7, (4.15)
Consequently :

o [ o [T o
Ay = Eﬁ )[ﬁg(Rual)] = /0 prqg )(r,x)dx. (4.16)

b) Next we compute As. Conditioning with respect to Fr,, we get :

A2 = Er [1{T0<u}1/12(u - TO7 Z)] 5
with
¢2(U7 l) =Ly [Q(Rm L, + l)] = / g(a:, y)pR,L,v(xa Yy — l)l{y>l}dxdy'
2
Using (4.9) we have :
A2 = / g(%l/)%%(“ﬂ“a%l/ - l)l{y>l}dxdy (417)
RQ

+

Combining (4.13), (4.14), (4.16) and (4.17), we get :

< xaLs «
E() [1A59(Rt7 Lt)] = EQ I:lAb Rga / %])Efl(RS? I>d$:|
0
+/2 g(xvy)EO [11\5903@ -5, RS; z,y— Ls)l{y>Ls}]dmdy'
R+

It is then easy to conclude since the function ¢ is arbitrary.
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To prove the existence of the limit (1.14) (resp. (1.18)) of Theorem 1.3, we need to obtain an asymptotic
estimate of pr,+(y) (resp. pr.rt(x,y)) as t — oo. The first result may be obtained directly. As for
pr,Lt(2,y), we first prove in Lemma 4.3 below that this function can be written as a convolution of
two functions, having a decay rate of the type Ct~(1+e) (t — 00). Then Lemma 4.4 allows to prove
in Lemma 4.5 that ¢ — pg 1 .(z,y) enjoys an analogous polynomial decay.

Lemma 4.3 Let v; denote the density of 1.

1. For every x,y,q > 0 there is the identity :

/ooe_qtpRLt(x :l/)dt:i /Ooe_qt_g o /ooe_qt%( : ) i - (4.18)
o ,L, s F(].+Ck) 0 tlto o yl/a yl/a

2. Let (1, B2 :]0,00[%x]0, 00[— R be the two functions :

Bi(z,t) = ﬁtcﬁle—%, x,t >0, (4.19)
and
1 t
Ba(y,t) == W’Yl <y1/°‘> ) y,t > 0. (4.20)
Then :
Pr.Lt(7,y) = (Bi(z, ) * Ba(y, ) (1) (4.21)

Proof. Let © denote an exponential variable with parameter ¢ > 0, independent from (R, ¢ > 0).
Let xo denote the last zero of (Ry,t > 0) before ©. It is well known, from the last exit decomposition
results, that (R, t < xe) and (Rygo4u,u < © — xo) are two independent processes. Since Rx, = 0,
and Lg = Ly, it follows that Re and Lg are independent. As a consequence, we obtain, for every
pair f, g of Ry valued Borel functions :

Eo [f(Re)g(Le)] = /]R3 qge” " f(Ng(W)pr.L.+(\ y)dAdydt = Ey [f(Re)] Eo [9(Le)] - (4.22)
a) We first compute Ey [f(Ro)].
Recall :

PV = gt N F L), (1.23)

then :
Bolf(Ro)] = [ aear / f(A)pi‘”(A)dA
/ dt/ fA )to‘ I\t 20‘exp{—/\—Q—qt}d/\
2
1704 / FOOA 2adA/ o 1exp{—)\——qt}dt (4.24)

Setting t = A\?/(2gs) we obtain :

ql—u 0 [e%e} )\ )\2
Blf(Ro)l = i [ / e~ 5 —as}ds (4.25)
21+a/21 a/2

- | rvrovm S

1—a
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b) As for the computation of Ey[g(Le)] , we observe that Lg is exponentially distributed with para-

meter m (%)a, since from (2.12) we have :
Po(Le > 1) = Py(© > 1) = Ey(e™"") = exp{ - zmg)a} 1> 0.
Hence :
Ealg(Le)l =t () sew { ~1p o) (2) Jat (1.26)

Applying (2.12) with (I, \) changed into (1,¢l*/®) yields to :

F(l*&) q\*\ IV 0 _qt/os _ 0 gt t dt
e { ~irrrey (3) =B = e e = [T e ()

Consequently :

Bulo(Le)] = tq o (£)" [T [~ et () e @)

¢) Since f and g are arbitrary, it is clear that (4.22), (4.25) and (4.27) imply (4.18).
d) (4.21) follows directly from (4.18).

|
Lemma 4.4 Let 3 and (39 be two integrable functions from Ry to Ry, such that :
k k
0 1 0 2
ﬂl (t) t:oo ti+a ’ 52 (t) t:oo tl_;'_a‘ (428)
Then :
1 oo oo
B0 o (b [ Bt [ #@anf (4.29)
— 00 0 0

Proof. Let us write :
t
Bes) = [ B wiu
0

et (1—-e)t t
| s -+ | ...du+/( i

t 1—e)t

= L+L+]1s

For t large enough, one has :

1—¢
I =t 9 (tu) B3 (t(1 — w))du
A e | L
— t1+2a . u1+a (1 _ u)1+a v.

1
This implies that Iy = o(m), t — oo and this term does not contribute to the limit.

On the other hand, for any 0 < § < ko, there exists rg > 0 such that :

ko — 0 ko + 06
Tia < By(r) < it T2 T.
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Let 0 <e <1/2and t > 2ry. For any u < et we have : t >t —u > t(1 —¢) > t/2 > ry. Therefore
replacing r by ¢t — u in the previous inequality we get :
ko — 6 0 ko +0 1

e < Byt —u) < {1 =gy’ t > 2rg. (4.30)

Integrating (4.30) over [0, et] with respect to 4Y(u)du, we obtain :

et k _,_5
(K2 —5)/0 B(u)du < 0L < =2 1+a/ 3 (u

Taking the limit ¢ — oo we have :

k ]
(ko — / B0 (u)du < hm 1nf (tHO‘Il) < limsup (tHO‘I ) < 2 +1+a / B9 (u)du.
t—o0
k o0
Taking the limit §,e — 0 implies that I; R t(l%a) / B (u)du
Since

I - /( B9(u) B3t — w)du = / " ARt — u)du

1—e)t

we can apply the previous result, with 49 and 39 interchanged, to obtain :

t~>oo t H”O‘) / 52

Thanks to Lemmas 4.3 and 4.4, we are able to determine the asymptotic behavior of pr 1 +(x,y) as
t — oo. Observe that we may not deduce it from (4.18), since we do not know that ¢ — pg (2, y) is
monotone, hence the Tauberian theorem may not be applied.

Lemma 4.5 The following equivalence holds :

99—« x+yx1—2a
—oo (1 4+a)  tlte 7

PR, Y) z,y > 0. (4.31)

Proof. Recall that 5, and [y are defined resp. in (4.19), (4.20).
a) It is clear that :

27« T

Gz, b)), ~ T(L+a) it (4.32)

Recall that from (2.12), we have :

Ep(e™9™) =exp — <m (g>a> , q>0.

Then we deduce, by differentiating both sides of this identity with respect to ¢ and using the Tauberian
theorem that :

a2 1
t—oo I'(1+ ) tite’

71 (t)
Hence :

2™ Y
t—oo ['(1 + a) t1te’

Ba2(y,t) (4.33)
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b) We have :

o0 pl—2 120
t)dt = ———I'(a)= 4.34
| e = gote) = (434
/ Bo(y,t)dt = 1. (4.35)
0
Finally, Lemma 4.5 follows from Lemma 4.4, together with (4.32)-(4.35). [ |

Proof of Theorem 1.3

1) a) We first prove points 1. and 2. of Theorem 1.3.

We claim that the proofs of (1.14) and (1.15) follow immediately from Lemma 4.1.
From (2.13), we have :

,],.2 ,),,2 «
PoTo > 1= 8) = Pla < 5—5) mia) (Qt) . (4.36)

Relations (2.8) and (2.10) imply :

pL,(y) = iJ@Ll(g) ! pr,(0) = %%

R A TR

(4.37)

Taking the limit ¢ — oo in (4.1), using (4.2), (4.3) and the two estimates (4.36), (4.37) above demon-
strate point 1. of Theorem 1.3.
b) We now prove (1.16).

Let h: Ry — R, as in Theorem 1.1 and Ay € Fs. Thanks to the definition (1.15) of Q(()y) we have :

/ QY (Ah(y)dy = / pLs(y)Eo[lAsRﬁalLs=y]h(y)dy+/ Eo[1a, {1, <y} | h(y)dy
0 0 0

oo

= / Eqo[1a,h(Ls)R?*|Ls :y}pLs(y)dy+Eo[1As/ h(y) 1L, <yrdy)
0 0

= Eo[la {h(Ls)R¥ +1— H(L,)}] = Eo[1x, M}

= QA = / QM (Ay) Loy = y)h(y)dy,

the latter relation following from the fact that L., admits h as its probability density.
Therefore the two probability measures on (€, F), / Q(()y)(-)h(y)dy and Qéh) coincide on Fj, for
0

any s > 0, hence they are equal :
L o0
P00 = [ e Ona

On the other hand, from the definition (1.15) of Q{’, we easily deduce that Q¥ is carried by Lo = y.
Indeed, for every € > 0,

(Lo <y—e) = lim QY (Ly<y—e)
= sll)rgo {pLs (y)EO [1{L5§y75}R§a‘Ls = y} + PO(Ls <y-— 5)}
= lim Py(Ly <y—¢)

= 0 since Lo, = 00, Py a.s.
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A similar computation shows that Q) (Lss >y + ) = 0.
Consequently :

h

6" (1o = 4) = Q) ().

2) Proof of point 3. of Theorem 1.3.
To prove that the limit in (1.18) exists, we start with Lemma 4.2 :

EO(As|Rt:$,Lt:Z/)=@1+@27 Aefs,t>3,
where
o, — P L B2l (R, )| Lo — o]
Pr,Lt(T,Y) ‘
(4.38)

1
O = —Fy|l t-S,RSv.’E’ _Ls 1 Al
? PR (T, Y) o[1a, @5( Yy Niy>r.}]

the function @3 being defined by (4.9).
We study successively the limits of ©1, O, as t — oco.

a) From ([16], Chap. 10), we have :
, a /a\« ar a? —|—T2
p(r0) = 1 (?) Lo (T) Y
1 & a . .
Since I,(z) o m (%) an equivalent for pg )(r, a) as t — oo is easily deduced :
— 1+2«
() - 27« a
pi(r0) t—oo D(a+ 1) tita’ (4.39)
Consequently using moreover Lemma 4.5, we obtain :
. _ b, (y)(E 20 —
t1l>I£lo @1 = WEO (1ASRS |Ls = y) . (440)
b) Next we study the limit of ©3, as t — oo.
It is clear that (4.9) may be interpreted as :
903(u7 r,m,y) = (M(Tv ) *pR’L,-(‘%y))(u)v (4'41)
where p is the density function of Ty under P,.
Thanks to (2.14), we have :
( t) a2~ 7,.2(1
T ~
,U, ) t—o0 F(l —|—Oé) t1+a
Taking ¢ = 0 in (4.18) we have :
o0 xl—Za
/ PR,Lt(T,y)dt =
0 a
Hence, applying (4.41) together with Lemmas 4.5 and 4.4 leads to :
Oé27ar2a x172a 9—a % 1
w3(u,r,7,Y) A |:F(1 T a) a + F(l T a) (x +yx ) ulta
1
(4.42)

27 2« 12«
U 00 F(l +a) [I+ (7’ er)x ] ul—i—a'

22



Plugging this expression in (4.38), and using again (4.31), we deduce that :

) 1 20 1-2a
Am Oz = = s o [l Loy (@4 (BS™ +y — L) a' 7).
This result together with (4.40), proves that the limit in (1.18) exists and has the form given in (1.19).
3) We end the proof of Theorem 1.3, by showing point 4.

Following the definitions (1.19) and (1.15), of resp. Qéw’y) and Qéy), we have :

(z+yr' 2 QT (A) = 2(QY(As) — Bo[la,ln, <))

+Eq [1A51{L5<y} (33 + (y — L+ R?a)xl_ga)]

= 2QY (A) + 2" 2 Eo[1a, 141, <y (y — Ls + R2)]. (4.43)

1
For a given y > 0, let h¥ be the function : h¥(x) = —1j9(z), * > 0, and HY the primitive of hY,
Y

vanishing at 0; hence :

1-— Hy(x) = / hy(z)dz = 1{z§y} (1 - g) (444)
x
Thanks to (1.16), (1.7) and (1.6), we have :
/ Qo (2)dz = Eo[lAsMshy]
y 2a LS
= EO[lAs (h (Ls) BS™ + Lip, <y (1 = Z))]
1
= B[l (B 4y~ Lo)liz.<p]- (4.45)

Plugging (4.45) in (4.43), we get :

(%Zl)A _ (y) (2)
AP0 = v+ =L [P

This ends the proof of Theorem 1.3.

Remark 4.6 Suppose that « =1/2 (i.e : d=1).
1. Seweral of the above computations become easier, in particular, that of the function @3 introduced

in (4.9). From Lévy’s theorem :

d
(S = X0 80),¢ > 0) @ ((Ri, Ly) > 0) (4.46)
where, on the left-hand side (X¢) is a standard Brownian motion started at 0, (S:) its unilateral
mazrimum, i.e. Sy = max X, and the right-hand side (R¢,t > 0) is a reflected Brownian motion

(i.e. a Bessel process with index (—1/2)), and (Ly) its local time at level 0, and ([16] section
II1.3 p105), we have :

2 (z+1)? Py (T, X) edt
PRL(T,y) = (:2 oy () € )

—5 (@ +y)e” - ). wy>0, (4.47)

since :

7,2
Py(T-(X) € dt) = re” % 1y ydt, >0,

1
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where T,.(X) denotes the first hitting time of level r for the Brownian motion (X).

Since under P,., Ty is distributed as T,.(X ) and T, (X )—|—T (X) is distributed as Tyy.(X), where
ﬁ) is independent from T,.(X) and T, (X) @ T, (X), then using (4.41), we have :
P(Tyyysr(X) € du)

du

[ 2
(Pg(U,T,l’,y) u:oo ﬁ(x+y+r)

2. We keep the notation relative to Brownian motion introduced above. We have proven in ( [18],
Theorems 1.2, 1.3 and the proof of Theorem 1.8) that, for a <y, y >0 and A, € F,

tlirgloE[lAu\Xt =a,S =y

@3(“77‘71‘73/) =2

This implies that

We recover (4.42).

_Yy—a
2y —a

ps., W) E[1a, (y—Xu)|Su = y] + E[1x, (s, <y Qu—a—X,)],

2y —a
where pg, denotes the density function of S,.
Obviously, this result is equivalent to :

thjgoE[lA“‘Xt =y—ux,5 = y]

T 1
= Tt (W) E[1a, (v — Xu)|Su = y] + mE[lAul{su@}(m +y— X))

Therefore, from Lévy’s theorem (4.46), we obtain :

tlgglo Eo[1a,|Ry =z, Ly =y

x 1
— Eolls RylLy = 4] +
s pru(y) o[1a, Rul y] .

which is indeed (1.19) of our Theorem 1.3 for a = 1/2.

yEo [1A,‘,1{Lu<y}(x +y—L,+R,)|.

4.2 Proof of Theorem 1.4

Let h : Ry — R, be a probability density. Recall that h, = / h(y)(xz + yx'~2*)dy < oo where
0

x > 0. Define H(z /h )dy, z > 0.

1) We first prove (1.23).
It is clear that :

PRt (T, Y) en /2t

Py(L; € dy|R, = dy =2"°T(1 — d
(Lt € dy|Ry = x) = (0, 2) (1= )55 = PR.L (2, Y)dy.

Applying Lemma 4.5, formula (4.31), we obtain :

Py(Lt € dy|Ry = ) 2720T(1 — @) x + yal 2@ 1
dy t—o00 F(]_ _|_ a) x172a t2a .

(4.48)
Since

B[l bt o], 0N = L=yl Rk € iR =)
E() [h(Lt)|Rt = ZE:I

)

/00O h(y)PO(Lf S dy|Rt = ZZ?)
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we deduce from (4.48) and point 3. of Theorem 1.3 that :

Ey|1x h(L =
- o[1ah(Li)|Ry = 2] / QU (A
t—oo Eo[ (Lt)|Rt = fE

where h¥ = 1/h,.
According to (1.20), we may write the right-hand side as follows :

nef [ @aentdr+ [t ntay Q8 (s},

Applying Fubini’s theorem, the previous term equals :

h(y)(z + ya'~—>*)dy,

hi{ /OOO QY (M) (zh(y) + ='72%(1 — H(y)))dy} = Q"= (A).

This proves (1.23).

2) Next we prove point 2. of Theorem 1.4.

Let f: Ry x Ry — Ry be Borel and such that (1.25) holds.

We proceed as above. Using Lemma 4.5 and point 3. of Theorem 1.3 we have :

E 1A5R :l’,L :yfx’yp L w,ydwdy
Bl fez] e, L8N =2 L = ) Pt

Eo[f(Ry, Ly)] / F@9)pr.pa(x,y)dedy
R+XR+
Consequently :
_ Eo[la, f(Ry, Ly)] (z,y) _
lim . = f* S (A (x+ yxt T2 fz,y) dy.
t—oo  Eo[f(Re, Ly)) Ry xR o () Jf(@y)

E 1A§R :l‘,L :yfxayp,,l',ydxdy
Eo[lAsﬂRtaLtﬂ /R+><]R+ O[ By t ] (@, 9)pr,Lt(x,y)

Eolf(Ri, L)) [ f@wpnse sy
R+ XR+
- Eo[ia, f(Re, L)), () (A 1-2a d
t—o0 EO [f(Rt7 Lt):l B f ]R+ XR+ QO ( 6)(x + y'r )f(x7 y) y

Hence, from (1.20) and Fubini’s theorem, this limit equals :

Yy
f*{/ﬂwIR+ (xQéy)(As)erl—za/O Q5 (A)d=) f () dady |

- /OO ng(AS)dy{/w xf(x,y>dx+/owx1—2adx[m f(x,z)dz}

=/Q Fy)dy = Q5 ().

This ends the proof of Theorem 1.4.
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5 Proof of Theorem 1.5

Let h: Ry — Ry satisfy (1.28).

1) We first prove point 1. of Theorem 1.5.

Let t > s>0and A, € Fs.

The Markov property at time s allows to write :

Eo [1a,h(Ly)e M) N(s,t)
Eo [M(Ly)er]  — D(t) '

where :

D(t) = Ey [h(Lt)e)‘Rt] = / h(y)e’\“’plsg’LJ(;16,y)d:valy7

Ry xRy
N(s,t) = Eo [1a,h(L¢)e*] = Eg [15,N1(Rs, Ls, t — )],
Ni(z,y,u) = E, [h(y + Lu)e)‘R“] ,  z,y,u > 0.
Recall that pg 1 (z,y) denotes the density function of (R, L;) under Py.

We study successively the asymptotic behaviors of D(t) and of Ny(z,y,t) as t — oo.

cannot apply Lemma 4.5 since f(z,y) = h(y)e*® does not satisfy (1.25).
1.a) Let us determine the rate of decay of D(t), as t — oc.
Since pp 1+ satisfies (4.21), then

9—a t du e} e’} o 2
D(t) = dyh T dg
( ) F(l + Oé) /O (t — u)a+1 A Yy (y)ﬂz(y7 U) /(; xe X

Setting = A\(t — u) + 2/t — u in the integral with respect to dz, we obtain :

RV 372 220=w = c —z%/2
re W dy = (t—u)?e” 2 + )\)e dz Mow )\\/%(t —
0

,)\m(\/t—u

— 00

Consequently :

-~ t A2(t—u)
27X\ 27 e 2
e Tt a) Jo (E—ue 172

27NV2m 1 A2t ¢ A2y o
~  ——t2 %7 e 2 du h ,u)dy.
e e / | hw ety

D(t) du / ” h(y)Baly, u)dy

Next, using the definition (4.20) of B2, we get :

27AN2m 1, a2 [ h(y) b u
D(t) t:oo mtz e 2 A yl/ady/ov € 2 'Yl(ﬁ)du

27NV2T 1 A2t & t/yl/a A2yl/e
~ 12" % h(y)d v)e” 2z “dv.

27NV 2 2 A2¢ & ° AZyl/
~ 12" %" h(y)d - Ydv.

~1 being the density function of 71, applying identity (2.12) (with [ = 1 and A replaced by

leads to :

27N\ 21 > 1 A2t
D(t) ~ ——— h TNy )tz e T
0, T (] swemvay)iees,

26
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since o) is defined by (1.29).

We now counsider the function N (z,y,u) defined by (5.4), where x,y > 0 are fixed and v — co.
We decompose Ni(z,y,u) as the sum of two terms :

Nl(mayvu) :N1,1($7yau)+N1,2($aZ/,U)v (56)
where :

Nig(z,y,u) = Eulh(y+ Lu)eM 1pcry] = h(y) Eo [N 1<)

Nia(z,y,u) = Eu[h(y+ Lu)e*™ Lismyyl. (5.7)

1. b) We look for an equivalent of Ny 1(z,y,u), as u — oo.
From the absolute continuity relationship between Bessel laws (cf ex 1.22, chap XI in [16])) we get :

Ny (2, y,u) = h(y)ELY [Rm ARU} ;

where as in the Introduction, under nga), the process (R;) is a Bessel process with index «, starting
at .
Since (cf for instance section 1. p446 of [16]) :

P (R, € da) = % (%)ala (%) exp—m22_za2 da, (5.8)

we get :
2,
N ,1 (.’E;ya ) - h( 76 2“ >\ / I iL’) 2u (a—Au) da.

Setting a = Au + \/ub, we get :

z2 | A2 > b \1-«a b 2
Niai(z,y,u) = h(y)sr:o‘uéfo‘efﬂ+ 2 / A+ — In((A+ —=)z)e " /2db
W ( \/E) o Vu )
2
~  h(y)a® AL, (Ae) V2 uE e T (5.9)
1. c¢) We now find an equivalent of Ny o(z,y,u),u — oco.
Conditioning with respect to T, we get :
Nig(z,y,u) = By [th(u — To)1{usmy3 ]
where :
() = Bo[h(y + Ly)e*™].
Applying (5.5), we have :
2= a\/2 A 1 2,
Consequently :
27X/ 2w \e?>Y > 2 2y
Niao(z,y,u) o F(liof)(/y h(z)e_"*zdz)Ex [e_%TO] uz %, (5.10)

Using (2.15), we get finally :
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21—2a>\a+1
~ o ——
wSoo VT D@ (a+ 1) "

A2u 1 ~

“Ko(Az)e z u2™%(1 — H(y)), (5.11)

N1,2 ({L‘7 Y, u)
where we denoted :

1— H(y) := e¥™> / h(z)e™7**dz.
y

_ Eo [1a,h(Ly)e ]
1. d) We now compute : tlingo Eo [1(Lo)e ]

From (5.5), (5.6), (5.7), (5.9) and (5.11), we have :

Eo [1a,h(Ly)eM] Ay
Eo WL ] o B,

where :

A, = E, <1AS {\/27rh(Ls)R§/\1“Ia(>\Rs)(t _g)Emak s

V2omr2l—2e atl pa 22 (1 g) 1_,
+m)\ RSKOL(ARS)S 2 (t*$)2 :|),
_ 272w 22t 1_qo > —Lloy

B, = T+ o) Ae T t2 /0 h(f)e dr. (5.12)

Hence :

Eo [1a,h(Ly)eM]
2% T By [h(Lg) ]

= Eo[la, Ms], (5.13)

with

M, = e‘AjSR?{ (i)a T(1+ a)h(L)I.(ARs) + (;)a %(1 - fI(LS))Ka(/\RS)}. (5.14)

2) We now prove that M, = Ms’\’ﬁ, 5 > 0, where (Ms)‘ﬁ) is the process defined by (1.32).
From (1.33) and (1.34), the function h can be written as a linear combination of 4 and 1 — H :

) = (w) + oxe [ T h(2)e N dz = ) + ox(1 - B ().

Consequently :

where :

Given the relations (see [9] p3 and p108) :

T 1 T

Mrl—a)=—F—=—= , K,(r)

sin(ra) T(a) (La(r) = I-a(r)) (5.15)



then the definition (1.29) of oy implies :

€ = (;)a T(1 - a)I.(AR,) + (;)a I'(1—a) (Ia(ARy) — I_o(ARy))

(’;)a L(1 = a)l-a(AR;).

This proves M = MS’\J’.
The local behavior of Ig(z),z — 0 is known (see [9] formula (5.7.1) p108) :

1 z\ P
— il B+2
1) =t (3) +0E) -0, (5.16)
In particular :
. . A\
hn%rafa()\r) =0, and hm0 (2) (1 —a)r*l_o(Ar)=1. (5.17)

This implies :
lin% R2IL(ARs) =0, liH(l) RY¢s = 1.

It is clear that (1.28) and (1.34] imply that H(0) = 0. As a result : Mo)"ﬁ =1
This ends the proof of point 1. of Theorem 1.5.

3) We verify that (M)", s > 0) is a martingale.
We shall show that (Mt)‘ > 0) is a local martingale. It will suffice to assume that h is of class C
to prove that (M;"") is a martingale (cf. point 2) of the proof of Theorem 1.1).

It is clear that (M;*") can be decomposed as follows :

it = (3) raraizon e+ (3) Ta- @0 - HL)EER)} (519

where ¥y, Uy : Ry — R, are defined by :
Uy (r) :i=r%I8(Ar)  Wo(r) :=r*I_4(Ar). (5.19)

3. a) In a first step, we prove that (¥;(R;)), ¢ = 1,2 are two semimartingales, and we determine their

decompositions.
Using [9] p110, we have :

” 1. OZQ
Y (r)+-Y (r)={1+—5)Y(), (5.20)
r r
where Y (r) denotes either I, (r) or K, (r).
Then,
/\2
LU(r) = 5 Wilr)  (i=1,2), (5.21)

where £ denotes the infinitesimal generator of (R, ¢t > 0) (cf. (2.1)).
We deduce from property (5.16) (with § = —«) and the definition (2.2) of the domain D of £ that
Uy € D, and :

t
Ua(R) = ROT_o(ARY) = / LU5(R)ds + Ma(?)
0
A2t
= 5[ BeLaOR)ds + M), (5.22)
0
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where (Ma(t),t > 0) is a Py local martingale.
As Uy ¢ D, we write :

t
Relation (5.16) implies that W, € D. Moreover L¥; = LV, then (Vq(R;) —/ LV (R,)ds) is a local
0

martingale.
Since from (2.3), (R?* — Ly, t > 0) is a martingale, then, with the help of (5.21), we get :

A\ ¢ 1 A2t
Uy (Ry) = RMIL(\Ry) = <2) mLt—i—? i ROIL(AR,)ds + My (t), (5.24)

where (M;(t),t > 0) is a Py local martingale.

3. b) We are now able to prove that (M;"") is a Py local martingale.
With the help of (1.34), (5.18),(5.22) and (5.24), we deduce, from It6’s formula, that :

A )\2 A t 2 * ~
dMM = —zMﬁ’hdthe—*?{(A) D(1+ )k (L) Wy (Ry)dL,

+ (i)a P(1+ a)h(Ly)| (;)a ﬁdh + /\;R?Ia()\Rt)dt] }

Lot (;)a (- a){ — W(Li)Wo(Ry))dL, + (1 — fI(Lt))R?Ia(ARt)dt}
+dMs(t), (5.25)

where (M3(t)) is a local martingale.
It is clear that (5.17) implies that :

2\ 1
U, (0) =0, Ws(0) = <A> Fia) (5.26)
Using moreover (5.14), it is easy to verify that, in (5.25), both the terms in (dt) and those in (dL;)
are equal to 0. i

Note that the relations (5.26) and (5.18) force Mé\’h =1.

4) We now prove point 3. (a) of Theorem 1.5.

Indeed, for every t and ¢ > 0, one has :

DMLy > ¢) = QM (1o < t) = Eo[Lir, ey M.

~ 2 ~
Using successively Doob’s optional stopping theorem and the property : Méjh = e’%“(l — H(c)),
we obtain :

Ak i ~ a2
MLy > €) = Bo[Liroay MM = (1= H(€)) Eo[1(r,<tye” = ™].
Letting ¢ — oo in the expression above and using (2.12) and (1.29) leads to :

O (L > ) = (1— H(e) Bo[e 5] = (1 - H(e)) e,

In order to end the proof of Theorem 1.5 (i.e. points 3. (b) and (c)), we shall use the technique
of progressive enlargement of filtrations, with respect to ¢ = sup{t > 0: R; = 0}. Thus, we define
(Gt,t > 0) to be the smallest filtration which contains (F,¢ > 0) and which makes g a (G;),~, stopping
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time. In order to use the enlargement formulae (see for instance [6] or [22]), it is necessary (cf (5.50))

to compute the ((F), é)"h)) supermartingale :
Zy = Q™" (g > t|F). (5.27)
We determine Z; in the next Lemma 5.1.

Lemma 5.1 We have :

Z= 2 (1= H (L)) (\R)*Ka(AR)) ! (5.28)
t — F(a) t t @ t MtAij .
QM (g < 00) = 1. (5.29)

Proof of Lemma 5.1 1) For any I'; € F; we compute :
EQ[(JA,M [1Ft1{g>t}] = EQg,ﬁ [1Ft1{dt<oo}] = Eo I:]'Ft]'{dt<°o}M(2;h]’

where d; = inf{s > ¢; Ry = 0} is the first time of visit of 0 after time ¢.
~ 2
Since My, = (1 — H(Lt))e’%df, then according to Doob’s optional stopping theorem we have :

~ 2
Eqpm [1r,1(g>3] = Bo[lr,1 (g, <00y (1 — H(Le))e =]

Applying the Markov property at time ¢, we get :

By [1r (o] = e E, {1n (1— H(L,))Eg, [e—én]]
= e_ATZtEQgA,E) {1Ft (1 - ﬁ<Lt))ERt [e_gTﬂ ;} : (530)

Formula (5.28) now follows immediately from (2.15).
2) Taking I'y = Q in (5.30), we have :

A2 Az,

(())";L)(g >t) = e*kTQtEO[(l — ﬁ(Lt))ERt [e*TTO]] < e TP,

Thus, QéA’h)(g < o0) = 1; and it is clear that Qg"ﬁ(g > 0) = 1, since the probabilities Q(())"h) and Py
are equivalent on each o-algebra F;.
|

To obtain the laws of (R;,t < g) and (Rg4+,t > 0), the following lemma constitutes a main step.

Lemma 5.2 There exists a ((Qt,t > 0), é/\’h)) Brownian motion (Wy,t > 0), starting from 0, such

that :

Ko t I
“L(ARy)ds+2a) | R2e1eL

t tAg
R} =20 / RN AW+ Ly —2a / R!
0 0 Ka tAg Ia

(AR,)ds. (5.31)

Proof of Lemma 5.2 We proceed in 4 steps.
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i) In order to simplify our notation, we define :

Ay = (2)ar(1 + ) 1 (AR) Ag = <A>ar(1 )W (AR,)

A 2
2\“ A\ ¢
Az = <)\> (14 o)l (ARs) Ay = <2) (1 —a)l_o(ARs)
(5.32)
217(1 41 21704
A5 = — A" K, s Ag = *Ko(ARs
5 I‘(a)/\ 1(ARs) 6 F(a))\ (AR;)
h = h(L,) H:= H(L,).
Hence, with the help of these notation :
MMY = =22 RO (Agh + As(1 — H)), (5.33)
A(1 — H) (5.34)

T Agh+ As(1—H)

ii) With the help of (2.3), we know that there exists a ((F:)¢>0, Po) Brownian motion (By,t > 0) such
that :

t
R = 2a / R* Y4B, + L;. (5.35)
0

This leads us to write the following function Wy (r) as a function of 2% :

Uy (r) i= I, (W) = U (r*¥), >0, (5.36)
where :

U, (z) = Val,(Az?=), = >0, (5.37)
Using the first formula of (5.7.9) in ([9], p.110) :

aly(r) +rIl(r) = rly_1(r), (5.38)
it is easy to prove that :

—_ )\ 11—«
T, (z) = 5ot In_i(Az3s), > 0. (5.39)

Similarly, introducing :

Uy(r) = r* Lo (Ar) = Wa(r®®), >0, (5.40)
and using the second identity of (5.7.9) in ([9], p.110) :
al_o(r)+rI_ (r)=rL_(r), (5.41)

we get :

1—

U, (z) = %x?ﬁl_a(/\xﬁ), x> 0. (5.42)

Recall that (Mt)‘ﬁ) is a ((Fi)t>0, Po) martingale and is given by (5.18). Using the above notation, we

have :
=% ((3) ra+ i+ (2) T -0 - D)
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then It6’s formula and (5.35) imply :

7 25 2 @ ~
dMM = e*%[A <A> I'(14 a)h(Ls) RS Io—1(AR,)

2A(3) ra-a0- AR,

= e TRC (AlferAg(lfﬁ)) dB,. (5.43)

Next, we consider Ny, the numerator of Z,, in (5.28), i.e :

N, = il(;;e—*i‘* (1— H(L,)) (\Rs)® Ka(ARy) = ¢~ 2 (1 — H)R As. (5.44)
Since
aKa(r) + 1K, (r) = —rKy_1(r), (5.45)

reasoning as previously, we can prove that, under Py, (N, s > 0) is a semi-martingale, whose martin-
gale (M(N),) part satisfies :

I—a ~ A2s
dM(N), = —i(a)A(l—H(LS))e_ = (ARy)® Ku_1(AR)dB,
— —(1- H)e > R AsdB,. (5.46)

Thus, denoting (M(Z)s) the martingale part of the semi-martingale (Zs,s > 0) under Py, and
using (5.33), (5.46), (5.44) and (5.43), we get :

MM AM(N) s — NodMMh

(21)?

As(Ash + As(1— H)) + Mg (Arh + As(1 — H))
(Ash + Ay(1 — H))?

dM(Z), =

dB,. (5.47)

~(1-H)

iii) According to Girsanov’s Theorem , we deduce from (5.43), (5.33), the existence of a ((F;):>0, Q(()A’E))
Brownian motion (Et, t> 0) such that :

- r
Bt:BtJr/\/ Ah+ (- H) o (5.48)
o Ash+ As(1— H)

Consequently, from (5.47), under Qé)"ﬁ), the martingale part (MQ(Z)t) of (Z;) is given by :

dM®(Z), = —(1 — H) As(Ash + A4((1A—;Ii); (/\1A6 (;;)1)24- Asy(1-H)) 4. (5.49)
3 4 -

iv) In this last step, we now use the technique of progressive enlargement of filtrations (see for instance
[6], [7], [11] or [22]) under the probability Q™.

With respect to (G), the smallest filtration containing (%) and such that g is a (G:) stopping time,
there exists a ((Gy), (())"h)) Brownian motion (Wy,t > 0) starting from 0, such that :

- tAg 1 - t 1 -
B, =W, —d< Z,B >, — d< Z,B>,. 5.50
t t+/0 Z. /Mglzu (5.50)
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It is clear that < Z, B >=< M(Z), B >. Consequently ,relations (5.48) and (5.49) imply that :

As (Ash + As(1 = H)) + Mg (Arh + A>(1 — H))

d<Z,B>,=—(1-H) ' ds. (5.51)
(Ash+ As(1 — H))
Combining (5.35), (5.48) and (5.50), we get :
¢ Ath+ Ax(1 —
R -1, + 2a/ R2=1aw, + 2a/\/ th + Ay )R‘M U ds
0 Ash+ Ay(1— H)
N9 As (Azh + Ag(1 — Mg (A1h + As(1 — H
[ A D) A )
0 Ag(A3h+A4(1 — ))
t _ _
" 2@/ (1— i) As (A3h+A4(1 ))+)\A6(A1h+A2(1 )) ga_ld
tAg (Ash + Ag(1 — H)) (Ash + As(1 — H)) — Ag(1 — H))
where we have used (5.34) and :
- Ash + As(1 — H)
1_Zs Agh+A4(1—ﬁ)—A6(1—H)
Hence :
t tAg t
R¥ =L + 2a/ R2=YdW, + Qa/ R27 1y, (s)ds) + 2a/ R 1p,(s)ds, (5.52)
0 0 tAg
with :
or(s) = Alh + Ay(1— H) As(Ash+ As(1 — H)) + Mg(A1h + Ay (1 — H))
' Mah+ A1 = ) A (Ash + As(1 — H))
o A5 o a—l()\Rs)
= A Ka(\R.) (5.53)
and :
Ayh+ Ay(1— H ~ As(Ash+ Ay(1— H)) + Mg(Ath + Ay (1— H
oo(s) = AP 2(1 — H) - ) 5(As (1 - H)) 6(A1 2(1-H))
Ash + Ay(1 — H) (Ash + Asy(1 — H))(Ash + Ag(1 — H)) — Ag(1 — H)
_ Mh + (1 — H)(\ s + As) (5.54)
Agh + (As = Ag)(1 - H)
Using (5.15) we have :
Ai— o= (2) T =) aOR) = 2 e k0B = (2) T = a)La(\RY)
4 6 — 2 a)l_q s F( ) - 2 a)lq s).
Similarly :
)\ o 11—« atl
)\AQ + A5 = A <2> F(]. - a)Il,a()\Rs) + F(a) A Kafl()\Rs)
¢ A
~ a2 (1= a)la_1(AR,) = A(Ay — Ag) ==
2 As’
Hence :
M h+ (1 — H)\(Ag — Ag) 4L
oo(s) = 1 ( ) (Ayg G)A _ AA; _ )\Ia_l(/\Rs)' (5.55)
Agh =+ (A4 — AG)( — H) AS Ia()\Rs)
It is clear that plugging (5.53) and (5.55) in (5.52) proves Lemma 5.2.
|
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4) Proof of point 3. (c) of Theorem 1.5.
4. a) First, we study (R:,t < g) under Q(())"h).
Let f: R, — R, be a function of class C2, whose support does not contain 0. We apply Ité’s formula

to (5.31) and with the function g(z) = f(2'/?%).
We compute the two first derivatives of g in terms of those of f :

1 —2a
gl@) = [P

1 —2a 1-2 —da
g”(x) _ f//(x1/2a)4a2x% 4a2af/(xl/2a)$122 .

Consequently, we get, for ¢t < ¢ :
)\Kafl

«

1) = o) = [ o e v, - 20e r.jas)|

1

¢ 1 1-2a
- " Rs 7R2(1—204)
+ /0 [f (Bs) 35 1 +

402

: f(Ry) R 402 22D as

1 -2« _ )\Ka,1
2R, K,

= [ rwgaw.s [ 5o+ o (AR.)) Jds.

This proves that the process (R, t < g) admits the infinitesimal generator :

1 1-2a MK ,—
! Y . a—1 /
L) = 510+ (5 = T On) £,
4. b) In this last step we focus on (Ryy,t > 0).

It can be proved analogously, that the infinitesimal generator of this process is £! (this operator is
defined by (1.37)). The independence of the processes (R;,t < g) and (Rg4+,t > 0) follows from the
fact that the stochastic differential equation :

~ 1 -2 Mo_1,. =
Rt:Wt—f—/ [ oy I(ARS)]ds
0 2R, I,

admits a unique strong solution.
Note that from (5.16) :

1 -2« I,_1 1 14 2a
o + A I ()\T)T:O?T(172a+4a)f T

Then, the process (Ry4+,t > 0) behaves, near 0, as a Bessel process with dimension : § = 2(1 + a) =
4—d. In particular, starting from the origin, it immediately leaves 0, and never comes back to it (since
a > 0, hence § > 2).

Remark 5.3 We note that, most likely, the description we have just given of the Qé)"h) -process may
be reproduced for a "general” diffusion. The role of the functions r*Io(Ar) and r*I_,(\r) being then
played by two linearly independent eigenfunctions of the infinitesimal generator. (See, e.g, [14] for a
general framework).
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