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Abstract. We describe the limit laws, as t → ∞, of a Bessel process (Rs, s ≤ t) of dimension d ∈ (0, 2)
penalized by an integrable function of its local time Lt at 0, thus extending our previous work of this
kind, relative to Brownian motion.
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1 Introduction

1) Let (Ω, (Xt)t≥0, (Ft)t≥0,F∞, P0) denote the canonical real-valued Brownian motion, starting from
0. We denote by (Lt)t≥0 its local time at 0.

Let h : R+ → R+ be a Borel function such that :

∫ ∞

0

h(x)dx = 1.

Define

H(x) =

∫ x

0

h(y)dy , x ≥ 0 , (1.1)

the primitive of h such that H(0) = 0 .

For any t ≥ 0 , we introduce the probability P
(t)
0 on Ft , which is defined by :

P
(t)
0 (Λt) =

E0(1Λth(Lt))

E0[h(Lt)]
, Λt ∈ Ft. (1.2)

We have shown, in [19] that the limit, as t → ∞ , of P
(t)
0 (Λs) , for Λs ∈ Fs , and s fixed, exists :

Q
(h)
0 (Λs) := lim

t→∞
P

(t)
0 (Λs) (s ≥ 0, Λs ∈ Fs). (1.3)
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This is a kind of “Brownian Gibbs measure”, which induces a probability on (Ω,F∞); in [19], we

described precisely the process (Xt)t≥0 under Q
(h)
0 ; the pair (Xt, Lt)t≥0 is Markov under Q

(h)
0 , while

(Xt)t≥0 is not, in general, Markov on its own.

2) The aim of the present work is to extend the above result for a d-dimensional Bessel process,

0 < d < 2. Denote by ν = d
2 − 1 the index of this Bessel process, and let α = −ν = 1 − d

2
∈]0, 1[.

More precisely, let
(
Ω+, (Rt)t≥0, (Ft)t≥0,F∞, (P

(−α)
r )r≥0

)
denote the canonical Bessel process of di-

mension d, or index ν = −α, with α ∈]0, 1[. Ω+ denotes the set of continuous functions from R+ to
R+, (Rt, t ≥ 0) is the coordinate process on Ω+, and (Ft, t ≥ 0) its natural filtration.
Finally, we denote : F∞ = ∨s≥0Fs.

The probability P
(−α)
r makes the coordinate process (Rt, t ≥ 0) a Bessel process with index (−α),

starting from r. We denote by (Lx
t ; t ≥ 0, x ∈ R+) the jointly continuous family of local times of the

process (Rt, t ≥ 0). We choose the normalization of this family such that (R2α
t − L0

t , t ≥ 0) is a
martingale.
We note simply (Lt)t≥0 for (L0

t )t≥0, and we consider a probability density h : R+ → R+. Similarly as
in (1.3), we are interested in the limit, as t → ∞, of :

P
(t)
0 (Λs) =

E
(−α)
0 (1Λs

h(Lt))

E
(−α)
0 (h(Lt))

, Λs ∈ Fs ; s fixed. (1.4)

Since, throughout this paper, the process of reference shall be the d-dimensional Bessel process with in-

dex (−α), we shall almost never again mention (−α) in our symbols, e.g., we shall write E0 for E
(−α)
0 .

We shall prove :

Theorem 1.1 Let h as in 1).

1. For every s ≥ 0, and Λs ∈ Fs,

Q
(h)
0 (Λs) := lim

t→∞
E0(1Λs

h(Lt))

E0(h(Lt))
exists. (1.5)

2. Q
(h)
0 satisfies :

Q
(h)
0 (Λs) = E0(1ΛsM

h
s ), (1.6)

with

Mh
s := h(Ls)R

2α
s + 1 − H(Ls). (1.7)

The process (Mh
s )s≥0 is a ((Fs), P0) positive martingale, which converges to 0, as s → ∞. In

particular, it is not a uniformly integrable martingale.

3. The formula (1.6) induces a probability Q
(h)
0 on (Ω+,F∞). Under Q

(h)
0 , the canonical process

(Rt, t ≥ 0) satisfies :

(a) The random variable L∞ is finite a.s., and it admits h as its probability density.

(b) Let g = sup{t ≥ 0 : Rt = 0}. Then, Q
(h)
0 (0 < g < ∞) = 1.

(c) i. The two processes (Rt, t ≤ g) and (Rg+t, t ≥ 0) are independent;

ii. The process (Rg+t, t ≥ 0) is a Bessel process with dimension (4− d), starting from 0;

iii. Conditionally on L∞ = l, the process (Rt, t ≤ g) is a Bessel process of dimension d,
starting from 0, stopped at τl := inf{t > 0 : Lt > l}.
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4. Let :

At := 4α2

∫ t

0

R2(2α−1)
s ds t ≥ 0 , (1.8)

and denote its inverse by :

ρ(u) := inf{t ≥ 0 : At > u}. (1.9)

Then, under Q
(h)
0 , the process (R2α

ρu
+ Lρu

, u ≥ 0) is a 3-dimensional Bessel process, starting
from 0, which is independent from the random variable L∞.

Remark 1.2 1. We now remark that, for d = 1, i.e : α = 1/2, part 4. of Theorem 1.1 may be
presented as follows :

(Rt + Lt, t ≥ 0) is a 3-dimensional Bessel process, independent from L∞. (1.10)

2. Via Lévy’s theorem
(
: if (Bt, t ≥ 0) denotes a Brownian motion, starting from 0, and if :

SB
t = sup

s≤t
Bs, then the two processes (SB

t − Bt, S
B
t ; t ≥ 0) and (|Bt|, Lt; t ≥ 0) have the same

law
)
, the result (1.10) has already been obtained in [20] : thus, point 4. of Theorem 1.1 appears

as a generalization of Pitman’s theorem which asserts that :

(2SB
t − Bt; t ≥ 0)

(d)≡ (|Bt| + Lt, t ≥ 0). (1.11)

is a 3-dimensional Bessel process.

3) Just as we did in [18] concerning the 1-dimensional case, the above Theorem 1.1 invites to study
the penalization with a function of the local time, not for the Bessel process itself, but for its “long
bridges”.
Precisely, we shall be interested to show the existence of the limit, as t → ∞, of :

P0(Λs|Lt = y), y ≥ 0, Λs ∈ Fs, (1.12)

and even of :

P0(Λs|Rt = a, Lt = y), a ≥ 0, y ≥ 0,Λs ∈ Fs. (1.13)

We obtain the following :

Theorem 1.3 1. The limit

Q
(y)
0 (Λs) := lim

t→∞
P0(Λs|Lt = y) (1.14)

(with Λs ∈ Fs) exists and satisfies :

Q
(y)
0 (Λs) = pLs

(y)E0[1Λs
R2α

s |Ls = y] + E0[1Λs
1(Ls<y)] (1.15)

where pLs is the density of Ls.

2. The preceding formula (1.15) induces a probability Q
(y)
0 on (Ω,F∞). The probability Q

(h)
0 defined

in Theorem 1.1 admits the following disintegration :

Q
(h)
0 (·) =

∫ ∞

0

h(y)Q
(y)
0 (·)dy. (1.16)

Consequently, for any Λ ∈ F∞ :

Q
(h)
0 (Λ|L∞ = y) = Q

(y)
0 (Λ). (1.17)

Thus, the conditional law of Q
(h)
0 given L∞ = y does not depend on h.
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3. For every s ≥ 0,Λs ∈ Fs and every x, y ≥ 0,

Q
(x,y)
0 (Λs) := lim

t→∞
P0(Λs|Rt = x, Lt = y) (1.18)

exists, and satisfies :

Q
(x,y)
0 (Λs) =

x

x + yx1−2α
pLs(y)E0(1ΛsR

2α
s |Ls = y)

+
1

x + yx1−2α
E0

[
1Λs1(Ls<y)

{
x + (y − Ls + R2α

s )x1−2α
}]

. (1.19)

4. For every x, y ≥ 0,

Q
(x,y)
0 (·) =

x

x + yx1−2α
Q

(y)
0 (·) +

x1−2α

x + yx1−2α

∫ y

0

Q
(z)
0 (·)dz. (1.20)

Note that formula (1.20) simplifies, in the case α = 1/2, to yield formula (1.13) of Theorem 1.3 in [18]
(via Lévy’s Theorem) :

Q
(x,y)
0 (·) =

x

x + y
Q

(y)
0 (·) +

1

x + y

∫ y

0

Q
(z)
0 (·)dz. (1.21)

4) As a Corollary of Theorem 1.3, we now present Theorem 1.4, which describes the penalization of
“long Bessel bridges” by an integrable function of their local times at 0 (see formula (1.23) below).

Theorem 1.4 Let
(
Ω+, (Rt)t≥0, (Ft)t≥0,F∞, P0

)
denote the canonical Bessel process starting from 0,

with dimension d = 2(1 − α), 0 < α < 1.

1. Let h : R+ → R+ be a Borel function such that

∫ ∞

0

h(y)dy = 1. Denote, for x > 0,

hx :=

∫ ∞

0

h(y)(x + yx1−2α)dy, (1.22)

assumed to be finite, and h∗
x = 1/hx.

Then, for every s > 0, and Λs ∈ Fs ,

lim
t→∞

E0(
[
1Λsh(Lt)|Rt = x

]

E0

[
h(Lt)|Rt = x

] exists and is equal to Q
(hx)
0 (Λs), (1.23)

where :

hx(y) = h∗
x{xh(y) + x1−2α(1 − H(y))} (y ≥ 0). (1.24)

2. Let f : R+ × R+ → R+ be a Borel function such that :

f :=

∫

R+×R+

f(x, y)(x + yx1−2α)dx dy < ∞. (1.25)

Then, for every s ≥ 0 , and Λs ∈ Fs,

lim
t→∞

E0

[
1Λsf(Rt, Lt)

]

E0

[
f(Rt, Lt)

] exists and is equal to Q
˜(f)

0 (Λs), (1.26)

with :

f̃(y) := f∗
{∫ ∞

0

xf(x, y)dx +

∫ ∞

0

x1−2αdx

∫ ∞

y

f(x, z)dz
}

(1.27)

and f∗ = 1/f .
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Note that, for both points 1. and 2. of Theorem 1.4, the main properties of the canonical process

(Rt)t≥0 under the limit probabilities Q
(hx)
0 and Q

(f̃)
0 are given by Theorem 1.1 : it suffices, in this

Theorem 1.1, to replace h resp. by ha and f̃
(
and to note that :

∫ ∞

0

ha(y)dy =

∫ ∞

0

f̃(y)dy = 1
)
.

5) Point 2. of Theorem 1.5 invites to study the penalization of (Rt)t≥0 by a function of Lt and Rt

which is not integrable, i.e. which does not satisfy (1.25). This led us to the following :

Theorem 1.5 Let λ > 0, and h : R+ → R+ a Borel function such that :

∫ ∞

0

h(y)dy < ∞ and

∫ ∞

0

h(y)e−σλydy = 1 , (1.28)

with

σλ :=

(
λ

2

)2α
Γ(1 − α)

Γ(1 + α)
. (1.29)

1. For every s ≥ 0 , and Λs ∈ Fs,

lim
t→∞

E0 [1Λs
h(Lt) exp(λRt)]

E0 [h(Lt) exp(λRt)]
exists (1.30)

and is equal to :

Q
(λ,h̃)
0 (Λs) := E0

[
1Λs

Mλ,h̃
s

]
(1.31)

with

Mλ,h̃
s := e−λ2s/2Rα

s

[
h̃(Ls)

(
2

λ

)α

Γ(1 + α)Iα (λRs)

+
(
1 − H̃(Ls)

) (
2

λ

)−α

Γ(1 − α)I−α (λRs)
]
, (1.32)

where Iν denotes the modified Bessel function with index ν (cf [9]), and

h̃(y) := h(y) − σλeσλy

∫ ∞

y

h(z)e−σλzdz, (1.33)

1 − H̃(y) := eσλy

∫ ∞

y

h(z)e−σλzdz =

∫ ∞

y

h̃(z)dz. (1.34)

2. (Mλ,h̃
s , s ≥ 0) is a positive martingale, which tends to 0 a.s. as s → ∞.

3. Formula (1.31) induces a probability Q
(λ,h̃)
0 on the canonical space (Ω+,F∞), with respect to

which the canonical process (Rt, t ≥ 0) satisfies :

(a) L∞ is finite a.s. and its distribution function is :

Q
(λ,h̃)
0 (L∞ < c) = 1 −

(
1 − H̃(c)

)
e−cσλ (1.35)

with σλ given by (1.29).

(b) Let g = inf {t ≥ 0 : Lt = L∞} = sup {t ≥ 0 : Rt = 0}. Then :

Q
(λ,h̃)
0 (0 < g < ∞) = 1. (1.36)
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(c) i. The processes (Rt, t < g) and (Rg+t, t ≥ 0) are independent.

ii. The process (Rg+t, t ≥ 0) is a diffusion process starting from 0, whose infinitesimal
generator L↑ satisfies :

L↑f(r) =
1

2
f ′′(r) +

{
1 − 2α

2r
+ λ

Iα−1(λr)

Iα(λr)

}
f ′(r). (1.37)

iii. Conditionally on L∞ = l, the process (Rt, t ≤ g) is a diffusion process starting from
0, whose infinitesimal generator L↓ satisfies :

L↓f(r) =
1

2
f ′′(r) +

{
1 − 2α

2r
− λ

Kα−1(λr)

Kα(λr)

}
f ′(r) (1.38)

stopped when its local time at 0 reaches level l.

Remark 1.6 1. Let h0 : R+ → R+ a Borel function such that

∫ ∞

0

h0(y)dy < ∞. Note that

h = h0/c verifies (1.28) where c =

∫ ∞

0

h(y)e−σλydy.

2. It is not difficult to check that, as λ → 0, Theorem 1.5 yields precisely Theorem 1.1, because

Iν(z) ∼
z→0

1

Γ(ν + 1)

(z

2

)ν

and Kν(z) ∼
z→0

1

2
Γ(ν)

(z

2

)−ν

(cf [9]).

3. Recall that the diffusions whose infinitesimal generators L↑ and L↓ are given in (1.37) and (1.38)
are the Bessel processes with dimension d = 2(1 − α), and drift λ ↑ and λ ↓ respectively. These
processes have been studied by Watanabe [21] and Pitman-Yor [14]. They play an important role
in Matsumoto-Yor ([12], [13]).

5) Organization of the paper.

• In Section 2, we define precisely the normalization of the continuous family of the local times
(Lx

t ; t ≥ 0; x ≥ 0) of the Bessel process (Rt, t ≥ 0) of dimension d ∈]0, 2[, which we use through-
out this paper.

• In Section 3, we prove Theorem 1.1.

• In Section 4 we prove Theorem 1.3, and we deduce Theorem 1.4 from Theorem 1.3 .

• Finally, Section 5 is devoted to the proof of Theorem 1.5.

6) An overview of some penalization results. In our paper [17], we propose a survey-without
proofs- of most of the results obtained in our previous works [18], [19], [20] on the subject.

Acknowledgment : We thank the referee for a detailed list of suggestions which helped us to improve
our paper.

2 Definition and properties of the local time at 0

1) The Bessel process (Rt, t ≥ 0), with dimension d = 2(1 − α) ∈ (0, 2) which is being considered
throughout this paper, is an R+-valued diffusion whose infinitesimal generator L is defined as :

Lf(r) =
1

2

d2f

dr2
+

1 − 2α

2r

df

dr
, (2.1)

on the domain

D =
{

f : R+ → R ; Lf ∈ Cb(R+); lim
r→0

r1−2αf ′(r) = 0
}

(2.2)
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2) The normalization we shall use for the local time at 0 , (Lt, t ≥ 0) of (Rt, t ≥ 0) is such that :

(Nt := R2α
t − Lt , t ≥ 0) is a martingale (2.3)

We note that the bracket of (Nt) equals :

At :=< N >t= 4α2

∫ t

0

R2(2α−1)
s ds, (2.4)

and that there exists a reflecting Brownian motion (γu, u ≥ 0) such that

R2α
t = γAt ; Lt = ℓAt , (2.5)

where (ℓu, u ≥ 0) is the local time at 0 of γ, chosen such that :

(γu − ℓu, u ≥ 0) is a (Fγ
u := σ{γs, s ≤ u}, u ≥ 0) martingale. (2.6)

Note that the finiteness of At, especially for α < 1/2, follows from :

E0

[
R2(2α−1)

s

]
=

2α

Γ(1 − α)
sα−1

∫ ∞

0

x2α−1e−
x2

2s dx =
22α−1Γ(α)

Γ(1 − α)
s2α−1,

which implies that E0[At] < ∞.
3) With this normalization of (Lt, t ≥ 0) (cf [3]) , the occupation density formula writes :

∫ t

0

g(Rs)ds =
1

α

∫ ∞

0

g(x)Lx
t x1−2αdx , (2.7)

for every Borel function g : R+ → R+, and {Lx
t } a jointly continuous family of local times, such that

L0
t = Lt.

4) Under P0,

the variable Lt is distributed as tαL1, (2.8)

and the law of L1 is the Mittag-Leffler distribution of index α (see for instance [2]; for details see [3]
and [10], p. 142), with density pL1 :

pL1(l) =
1

παl

∞∑

k=1

(−1)k+1Γ(αk + 1)

k!

(Γ(1 − α)

Γ(1 + α)
2−α l

)k

sin(kπα) (l ≥ 0). (2.9)

In particular it satisfies :

pL1(0) = lim
l→0

pL1(l) =
2−α

Γ(1 + α)
. (2.10)

5) Define the right continuous inverse of L :

τl := inf {t ≥ 0 : Lt > l} . (2.11)

Then, (τl, l ≥ 0) is a stable subordinator with index α; more precisely, its Laplace transform is given
by :

E [exp(−λτl)] = exp
(
− l

Γ(1 − α)

Γ(1 + α)
2−αλα

)
λ, l ≥ 0. (2.12)

6) Let T0 = inf {t ≥ 0 : Rt = 0} denote the first hitting time of 0 for the process (Rt, t ≥ 0).
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Then, T0 is, under Pr, distributed as :

T0
(d)
= r2/2γα , (2.13)

where γα is a standard gamma variable with index α.
Consequently,

Pr(T0 ∈ dt) =
2−α

Γ(α)
t−α−1r2α exp(−r2

2t
) 1[0,∞[(t)dt, (2.14)

Er

[
e−

λ2

2 T0
]

=
2

Γ(α)

(
λr

2

)α

Kα(λr). (2.15)

Identity (2.15) is found in [8], see also Proposition (2.3) in [14]. For (2.14), which also extends to
α = 1 (that is : d = 0, when (Rt) is the 0-dimensional Bessel process), see [4], and e.g ([16], ex 4.16,
p321). In [3], the reader will find a more detailed discussion of the various normalisations of the local
time process (Lt) at level 0 for a Bessel process of dimension d ∈ (0, 2) which have been used in the
literature. The results presented in this section may be considered as standard knowledge; see, e.g.
Borodin-Salminen [1] for a more general presentation of diffusion local times.
7) In Section 5, the role of the following martingale will be crucial :

M
λ2

2 ↓
t := Rα

t Kα(λRt) exp
(
σλLt −

λ2t

2

)
, t ≥ 0, (2.16)

where σλ is defined in (1.29).
That this process is indeed a martingale follows from the computation relative to a general diffusion
(Rt), its local time (Lt), and inverse local time (τl) :

E0

[
e−µτl

∣∣Ft

]
= e−µtf(Rt, l − Lt), on {t < τl} = {Lt < l}, (2.17)

where f(r, λ) = Er

[
A(λ)

]
, with A(λ) = e−µτλ .

Using the strong Markov property we obtain :

f(r, λ) = Er

[
e−µT0(R)

]
e−λψ(µ),

where ψ(µ) denotes the Lévy exponent for (τl).

Using the Laplace transform given in (2.15), for µ = λ2/2, and the fact that : ψ
(λ2

2

)
= σλ in this

particular case (cf (2.12) above), we get :

Rα
t Kα(λRt) exp

(
σλLt −

λ2t

2

)
= CλeσλlE0

[
e−µτl

∣∣Ft

]
, on {t < τl}, (2.18)

where Cλ is a positive constant.
Now property (2.16) is a direct consequence of (2.18) together with the following calculations :

E0

[
M

λ2

2 ↓
t 1Λs

]
= lim

l→∞
E0

[
M

λ2

2 ↓
t 1Λs1{s<τl}

]
= lim

l→∞
E0

[
CλeσλlE0

[
e−µτl

∣∣Fs

]
1Λs1{s<τl}

]

= lim
l→∞

E0

[
M

λ2

2 ↓
s 1Λs1{s<τl}

]
= E0

[
M

λ2

2 ↓
s 1Λs

]
,

for any s ≤ t and Λs ∈ Fs.
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3 Proof of Theorem 1.1

Proof of Theorem 1.1
The proof of Theorem 1.1 will be divided into eleven steps.

1) We prove the existence of : lim
t→∞

P
(t)
0 (Λs).

Let s ≥ 0, and Λs ∈ Fs. By conditioning h(Lt) with respect to Fs, we get :

E0

[
1Λs

h(Lt)
]

E0[h(Lt)]
=

E0

[
1Λs

θ(Rs, Ls, t − s)
]

θ(0, 0, t)
, (3.1)

with

θ(r, y, u) := Er[h(y + Lu)], r, y, u ≥ 0. (3.2)

Thus we are led to estimate θ(r, y, u) when u tends to +∞.
We denote by T0 the first hitting time of 0 by the process (Rt, t ≥ 0) :

T0 := inf{t ≥ 0, Rt = 0}. (3.3)

Thus, we obtain :

θ(r, y, t) = θ1(r, y, t) + θ2(r, y, t), (3.4)

with :

θ1(r, y, t) = h(y)Pr(T0 > t), θ2(r, y, t) = Er

[
1{T0<t} h(y + LT0+(t−T0))

]
. (3.5)

We examine separately the two terms θ1(r, y, t) and θ2(r, y, t) featured in (3.5).
From (2.13), the first term θ1(r, y, t) is equal to :

θ1(r, y, t) = h(y)P
(
γα <

r2

2t

)

=
h(y)

Γ(α)

∫ r2

2t

0

xα−1e−xdx ∼
t→∞

h(y)

Γ(α + 1)

(
r2

2t

)α

. (3.6)

As to the second term θ2(r, y, t), we find it to be equal, thanks to the scaling property (2.8), and after
conditioning with respect to FT0

, to :

θ2(r, y, t) = Er[1{T0<t}θ3(y, t − T0)],

with θ3(y, u) = E0

[
h(y + uαL1))

]
.

Hence, denoting by pL1
the density of L1, under P0 :

θ2(r, y, t) =

∫ ∞

0

Er

[
1{T0<t} h(y + (t − T0)

αx)
]
pL1(x)dx,

so that, after making the change of variable : (t − T0)
αx = z, we get :

θ2(r, y, t) = Er

[
1{T0<t}

1

(t − T0)α

∫ ∞

0

h(y + z)pL1

( z

(t − T0)α

)
dz

]
. (3.7)

Consequently (2.10) implies :

θ2(r, y, t) ∼
t→∞

pL1
(0)

tα

∫ ∞

0

h(y + z)dz =
2−α

tαΓ(1 + α)
[1 − H(y)]. (3.8)
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Bringing together (3.6), (3.8) and (3.4), we get :

θ(r, y, t) ∼
t→∞

1

tα
2−α

Γ(α + 1)

(
h(y)r2α + 1 − H(y)

)
. (3.9)

We then deduce from (3.1) and (3.9) :

lim
t→∞

E0

[
1Λsh(Lt)

]

E0[h(Lt)]
= E0

[
1Λs

(
h(Ls)R

2α
s + 1 − H(Ls)

)]
. (3.10)

We note that, in (3.10), exchanging the order of taking either the limit or the expectation does not
make any problem, since it is justified by Lebesgue’s dominated convergence theorem, once it has been
noted that, with the help of (3.6) and (3.7) :

tαθ(r, y, t) ≤ C[h(y) + 1]r2α.

2) We now show that (Mh
s := h(Ls)R

2α
s + 1 − H(Ls), s ≥ 0) is a martingale.

For h in C1, it easily follows from Itô’s formula using (2.3), that (Mh
s , s ≥ 0) is a local martingale.

Moreover it writes :

Mh
s = 1 +

∫ s

0

h(Lu)dNu, s ≥ 0.

Now, to obtain the general case, it remains to apply the monotone class theorem. We might also have
used a balayage argument, see e.g. [16], Chap. VI. Thus, in particular,

Mh
t = 1 +

∫ t

0

h(Ls)dNs, t ≥ 0, (3.11)

where (Nt, t ≥ 0) is the martingale defined by (2.3) is a local martingale.
Since Mh

t ≥ 0, for any t ≥ 0, (Mh
t ) is a positive supermartingale. In order to prove that (Mh

t , t ≥ 0)
is a martingale, it suffices to show :

E0(M
h
t ) = 1, for every t ≥ 0. (3.12)

Now, for n ∈ N, let hn(x) = (h(x) ∧ n)1(x≤n). It is clear that (Mhn
t ) is a martingale, therefore (3.12)

implies that : E0

[
Mhn

t

]
= 1. Then, with the help of Beppo-Levi’s Theorem, we obtain :

1 = lim
n→∞

(
E0

[
hn(Lt)R

2α
t + (1 − Hn(Lt)

])
= E0

[
h(Lt)R

2α
t + 1 − H(Lt)

]
= E0[M

h
t ].

3) We now prove that : Mh
t → 0 as t → ∞.

Since (Mh
t , t ≥ 0) is a positive martingale, it converges a.s. as t → ∞. Let τl = inf {s > 0 : Ls > l}

denote the inverse local time. Then :

Mh
τl

= h(Lτl
)R2α

τl
+ 1 − H(Lτl

) = 1 − H(l) → 0, as l → ∞. (3.13)

Hence Mh
t →

t→∞
0 a.s. In particular, the martingale (Mh

t , t ≥ 0) is not uniformly integrable.

4) We now establish that Q
(h)
0 (L∞ ∈ dl) = h(l)dl .

Indeed, for every t ≥ 0, using (1.6), Doob’s optional stopping theorem and (3.13), we have :

Q
(h)
0 (Lt > c) = Q

(h)
0 (t > τc) = E0[1{τc<t}M

h
t ] = E0[1{τc<t}M

h
τc

] =
(
1 − H(c)

)
P0(t > τc).

Consequently, letting t → +∞, we obtain :

Q
(h)
0 (L∞ > c) = 1 − H(c).

5) An auxiliary result.
In the sequel, we shall use a general result about continuous positive martingales, which is stated and
proven in [19], and which we shall then apply to M = Mh. Thus, we present this result without proof.
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Proposition 3.1 (Theorem 4.2 in [19])
Let

(
Ω, (Ft)t≥0,F∞, P

)
denote a given filtered probability space, and consider a strictly positive con-

tinuous martingale (Mt), with respect to
(
(Ft)t≥0, P

)
, such that M0 = 1 and M∞ = 0 a.s. We then

define the probability Q on (Ω,F∞) via :

Q(Λt) = E
[
1Λt

Mt

]
t ≥ 0,Λt ∈ Ft. (3.14)

We also define :

M t = inf
s≤t

Ms. (3.15)

Then, under Q, the following holds :

1. M ∞ is uniformly distributed on [0, 1].

2. Let g := sup {t ≥ 0,Mt = M ∞}. Then,

Q(0 < g < ∞) = 1. (3.16)

3. Let :

Zt = Q(g > t|Ft). (3.17)

Then :

(a) Zt = M t/Mt.

(b) (Zt, t ≥ 0) is a
(
(Ft)t≥0, Q

)
positive supermartingale with additive decomposition :

Zt = 1 −
∫ t

0

Mu

M2
u

dM̃u + ln(M t). (3.18)

where M̃t := Mt −
∫ t

0

d < M >u

Mu
is the martingale part of (Mt) under Q, from Girsanov’s

theorem.

6) We now remark that :

M h
t = 1 − H(Lt). (3.19)

Indeed,
Mh

s = h(Ls)R
2α
s + 1 − H(Ls) ≥ 1 − H(Ls) ≥ 1 − H(Lt), for any 0 ≤ s ≤ t.

Moreover Mh
gt

= 1 − H(Lt) where gt = sup{s ≤ t;Rs = 0}. This implies (3.19).
We also note that (3.19), together with point 1. of Proposition 3.1, allows to rediscover the fact,

obtained in 4), that Q
(h)
0 (L∞ ∈ dl) = h(l)dl. Indeed, we get :

Q
(h)
0 (L∞ < c) = Q

(h)
0

(
H(L∞) < H(c)

)
= Q

(h)
0

(
1 − H(L∞) > 1 − H(c)

)

= Q
(h)
0

(
Mh

∞ > 1 − H(c)
)

= H(c).

7) Another definition of g.

Let g be defined as in point 2. of Proposition 3.1, but we now replace M by Mh, ie :

g = sup
{
t ≥ 0; Mh

t = M h
∞

}
. (3.20)

Then, under Q
(h)
0 :

g = sup {s ≥ 0, Rs = 0} = inf {s ≥ 0, Ls = L∞} . (3.21)
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Indeed, (3.21) follows from (3.19) and the fact that M h
t = 1 − H(Lt) is constant after g (hence, so is

Lt).
8) A preliminary step to prove point 3. (c) of Theorem 1.1.
We shall use the technique of progressive enlargement of filtrations (see [6], [22], [7] and[11]). We
denote by (Gt, t ≥ 0) the smallest filtration which contains (Ft, t ≥ 0), and which makes g, defined by
(3.21), a (Gt, t ≥ 0) stopping time.
a) Recall that (Nt) is the

(
(Ft)t≥0, P0

)
martingale defined by (2.3), whose bracket is given by (2.4).

Hence, from Girsanov’s theorem, and (3.11), the process :

Ñt := Nt −
∫ t

0

h(Lu)

Mh
u

d < N >u (3.22)

is a
(
(Ft)t≥0, Q

(h)
0 ) martingale, so that :

R2α
t = Lt + Ñt +

∫ t

0

h(Lu)

Mh
u

d < N >u . (3.23)

b) From Proposition 3.1, 3. (b), we have :

Zt = Q
(h)
0 (g > t|Ft) = 1 −

∫ t

0

M h
u

(Mh
u )2

dM̃h
u + ln(M h

t ), (3.24)

with

M̃h
t = Mh

t −
∫ t

0

d < Mh >u

Mh
u

. (3.25)

a
(
(Ft)t≥0, Q

(h)
0 ) martingale.

Due to (3.22), (3.25) and (3.11) we have :

< Ñ,

∫ ·

0

M h
u

(Mh
u )2

dM̃h
u >t=< N,

∫ ·

0

M h
u

(Mh
u )2

dMh
u >t=

∫ t

0

M h
u

(Mh
u )2

h(Lu)d < N >u .

We deduce, after Jeulin [6] and Yor [23], that in the filtration (Gt)t≥0, under Q
(h)
0 :

Ñt = Ñ
(2)
t −

∫ t∧g

0

1

Zu

Mh
u

(Mh
u )2

h(Lu)d < N >u +

∫ t

t∧g

1

1 − Zu

M h
u

(Mh
u )2

h(Lu)d < N >u . (3.26)

where (Ñ
(2)
t , t ≥ 0) is a

(
(Gt)t≥0, Q

(h)
0 ) local martingale.

Plugging (3.26) in (3.23), we obtain :

R2α
t = Lt +

∫ t

0

h(Lu)

Mh
u

d < N >u +Ñ
(2)
t −

∫ t∧g

0

1

Zu

M h
u

(Mh
u )2

h(Lu)d < N >u

+

∫ t

t∧g

1

1 − Zu

M h
u

(Mh
u )2

h(Lu)d < N >u . (3.27)

Using 3. (a) of Proposition 3.1 the relation (3.27) simplifies, and becomes :

R2α
t = Lt + Ñ

(2)
t +

∫ t

t∧g

1

Mh
u − M h

u

h(Lu)d < N >u . (3.28)

But, since, from (3.19), we have :

Mh
u − M h

u = h(Lu)R2α
u + 1 − H(Lu) − (1 − H(Lu)) = h(Lu)R2α

u ,
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then (2.4) implies :

R2α
t = Lt + Ñ

(2)
t + 4α2

∫ t

t∧g

R2(α−1)
u du. (3.29)

We note that, despite the different changes of probability, or of filtration, which we have made, the
brackets of N and Ñ (2) are equal, hence :

< Ñ (2) >t = 4α2

∫ t

0

R2(2α−1)
u du. (3.30)

9) Description of the Q
(h)
0 process, after g.

From (3.29) and because Rg = 0 and Lt+g = 0, t ≥ 0, we have :

R2α
g+t = Ñ

(3)
t + 4α2

∫ t

0

R
2(α−1)
g+s ds, (3.31)

where

Ñ
(3)
t = Ñ

(2)
g+t − Ñ (2)

g , t ≥ 0. (3.32)

Note that g is a (Gt)t≥0 stopping time, therefore (Ñ
(3)
t ) is a

(
(Gg+t)t≥0, Q

(h)
0

)
continuous local mar-

tingale.
We then apply Itô’s formula to compute f(R2α

g+t), with f(x) := x1/2α; we get, from (3.30) :

Rg+t =
1

2α

∫ t

0

R1−2α
g+s dÑ (3)

s + 2α

∫ t

0

R1−2α
g+s R

2(α−1)
g+s ds +

1 − 2α

2

∫ t

0

R1−4α
g+s R

2(2α−1)
g+s ds

=
1

2α

∫ t

0

R1−2α
g+s dÑ (3)

s +
1 + 2α

2

∫ t

0

ds

Rg+s
. (3.33)

But, from (3.30), the
(
(Gg+t)t≥0, Q

(h)
0

)
local martingale

(
Bt :=

1

2α

∫ t

0

R1−2α
g+s dÑ (3)

s , t ≥ 0
)

admits as

bracket :

1

4α2

∫ t

0

R
2(1−2α)
g+s (4α2)R

2(2α−1)
g+s ds = t.

This implies that (Bt, t ≥ 0) is a
(
(Gg+t)t≥0, Q

(h)
0

)
Brownian motion and is therefore independent from

Gg.
Finally (Rg+t) solves :

Rg+t = Bt +
1 + 2α

2

∫ t

0

ds

Rg+s
. (3.34)

This proves that (Rg+t, t ≥ 0) is a Bessel process starting from 0, with dimension δ = 2 + 2α = 4− d.
The solution of (3.34) being strong, the processes (Rt, t ≤ g) and (Rg+t, t ≥ 0) are independent under

Q
(h)
0 .

10) Description of the Q
(h)
0 process before g.

Before g, we have, from (3.29) and (3.30) :

R2α
t∧g = Lt∧g + Ñ

(2)
t∧g, with < Ñ (2) >t= 4α2

∫ t

0

R2(2α−1)
s ds. (3.35)

Let us introduce :

βt :=
1

2α

∫ t

0

1

R2α−1
u

dÑ (2)
u , t ≥ 0.
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It is clear that (3.35) implies that (βt, t ≥ 0) is a
(
(Gt)t≥0, Q

(h)
0

)
Brownian motion and :

R2α
t∧g = Lt∧g + 2α

∫ t∧g

0

R2α−1
s dβs. (3.36)

Then applying Itô’s formula to (3.36), to compute R2
t∧g = (R2α

t∧g)
1/α, we obtain (since 1/α > 1) :

R2
t∧g =

∫ t∧g

0

1

α
R2(1−α)

s 2αR2α−1
s dβs +

1 − α

2α2

∫ t∧g

0

R2(1−2α)
s (4α2)R2(2α−1)

s ds.

(note that, because 1
α > 1, the term in dLs disappears) hence :

R2
t∧g = 2

∫ t∧g

0

√
R2

sdβs + 2(1 − α)(t ∧ g). (3.37)

which proves that R2
t∧g is the square of a Bessel process with dimension d = 2(1−α) stopped at time

g = inf{t ≥ 0; Lt = L∞}.
11) We now prove point 4. of Theorem 1.1.

We first show that (R2α
ρ(u) +Lρ(u), u ≥ 0) is a 3-dimensional Bessel process, starting from 0 (recall that

ρ(u) is defined by (1.9)).
a) Let us start by studying the process (Rt) before g.
It is clear that (3.36) implies :

R2α
ρ(u) = Lρ(u) − Wu, u ≤ Ag, (3.38)

where
(
Wu := −2α

∫ ρ(u)

0

R2α−1
s dβs, u ≥ 0

)
is

(
(Gρ(u))u≥0, Q

(h)
0

)
Brownian motion.

From Skorokhod’s reflection lemma ([16], Chap. VI) we have : Lρ(u) = sup
s≤u

Ws, u ≥ 0.

According to Pitman’s theorem (cf [15]), the process
(
2 sup

u≤t
Wu −Wt, t ≥ 0

)
is a 3-dimensional Bessel

process, started at 0.
Finally

(
R2α

ρ(u) + Lρ(u), u ≤ Ag

)
is a three dimensional Bessel process, started at 0, stopped at the

stopping time Ag.
b) We consider now (Rg+t).
We first observe :

R̃2α
u := R2α

ρ(u+Ag) = R2α
g+ρ̃(u), u ≥ 0,

where (ρ̃(u))u≥0 is the right-inverse of :

Ãt = Ag+t − Ag = 4α2

∫ t

0

R
2(2α−1)
s+g ds, t ≥ 0,

(recall that (At)t≥0 is the process defined by (1.8)).
Then (3.31) may be written as :

R̃2α
u = Ñ

(3)
ρ̃(u) +

∫ ρ̃(u)

0

dÃs

R2α
s+g

.

Since
(
W ′

u := Ñ
(3)
ρ̃(u), u ≥ 0

)
is a

(
(Gρ̃(u))u≥0, Q

(h)
0

)
martingale, with bracket Ãρ̃(u) = u, we obtain

after making the change of variables Ãs = v :

R̃2α
t = W ′

t +

∫ t

0

dv

R̃2α
v

.
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Note that Lρ(t+Ag) = Lg+ρ̃(t) = Lg is a Gρ̃(0) measurable r.v. Consequently,
(
R̃2α

t + Lρ(t+Ag), t ≥ 0
)

is a 3-dimensional Bessel process, starting from Lg.
This result, together with point a) proves that (R2α

ρ(t)+Lρ(t)t ≥ 0) is a three-dimensional Bessel process
started at 0.
The independence of L∞ and of (R2α

ρ(u) + Lρ(u) ; u ≥ 0) follows from the fact that the law of (R2α
ρ(u) +

Lρ(u) ; u ≥ 0), conditionally on L∞ = y, does not depend on y.

Remark 3.2 1. Replacing in step 4) of the above proof , the event {Lt > c} by {Lt1 > c1, . . . , Ltn
>

cn} with t1 > . . . > tn > 0 and c1 ≥ . . . ≥ cn > 0, proves that the law of the process (Lt, t ≥ 0)

under Q
(h)
0 is the same as that of the process

(
Lt ∧ ξ, t ≥ 0

)
under P0, where ξ is a random

variable of density h and independent from (Lt, t ≥ 0) (under P0).

2. We now present a heuristic method to obtain the distribution of L∞ under Q
(h)
0 . We write, for

every function g, bounded and continuous :

E0

[
g(Lt)h(Lt)

]

E0[h(Lt)]
=

E0

[
g(tαL1)h(tαL1)

]

E0[h(tαL1)]
(by scaling)

=

∫ ∞

0

(gh)(tαx)pL1
(x)dx

∫ ∞

0

h(tαx)pL1
(x)dx

=

∫ ∞

0

gh(y)pL1(
y

tα
)dy

∫ ∞

0

h(y)pL1(
y

tα
)dy

.

Property (2.10) implies :

lim
t→∞

E0

[
g(Lt)h(Lt)

]

E0[h(Lt)]
=

pL1(0)

∫ ∞

0

(gh)(y)dy

pL1(0)

∫ ∞

0

h(y)dy

=

∫ ∞

0

g(y)h(y)dy.

However, this computation is not, at least without any further justification, ”licit”. The correct

manner to obtain the law of L∞ under Q
(h)
0 is to first study

E0(g(Ls)h(Lt))

E0(h(Lt))
for a fixed s < t,

then to first let t tend to +∞, and finally to let s tend to ∞.

4 Proofs of Theorems 1.3 and 1.4

Recall that under P0, (Rt) is a d-dimensional Bessel process started at 0, with d = 2(1 − α) and
α ∈]0, 1[.
To prove Theorems 1.3 and 1.4, it is convenient to introduce the following notation :

1. pL,t(l) is the density function of Lt, under P0,

2. pR,L,t(r, l) is the density function of the couple (Rt, Lt), under P0,

3. {Πt} denotes the semigroup of (Rt, Lt),

4. p
(µ)
t (x, y) denotes the density of the transition semigroup of the Bessel process with index µ, at

time t > 0.
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4.1 Proof of Theorem 1.3

We begin the proof of Theorem 1.3 with two preliminary results : Lemma 4.1 and 4.2 below, in which
we compute the conditional expectation of an event Λs in Fs, given Lt, resp. given Xt, Lt with t > s.

Lemma 4.1 For every s and t such that 0 ≤ s ≤ t, Λs ∈ Fs, and y ≥ 0, one has :

E0[1Λs |Lt = y] =
pL,s(y)

pL,t(y)
E0[1Λs ϕ1(t − s,Rs)|Ls = y]

+
1

pL,t(y)
E0

[
1Λs1(Ls<y)ϕ2(t − s,Rs, y − Ls)

]
, (4.1)

with

ϕ1(u, r) := Pr(T0 > u), r, u ≥ 0, (4.2)

ϕ2(u, r, l) := Er

[
1{T0<u}pL,u−T0(l)

]
, r, l, u ≥ 0, (4.3)

and T0 := inf{s ≥ 0, Rs = 0}.

Proof. Let f : R+ → R+ be a positive, Borel function. We compute in two different manners the
quantity E0[1Λsf(Lt)].
On one hand, by conditioning with respect to Lt = y, we obtain :

E0(1Λs
f(Lt)) =

∫ ∞

0

E0(1Λs
|Lt = y)f(y)pL,t(y)dy. (4.4)

On the other hand, by conditioning with respect to Fs, we obtain :

E0

[
1Λsf(Lt)

]
= E0

[
1ΛsE(f(Lt)|Fs)

]
= E0

[
1ΛsΠt−sf(Rs, Ls)

]
. (4.5)

Let us introduce :

ψ(t, l) = E0[f(l + Lt)] =

∫ ∞

0

f(y)1{y>l}pL,t(y − l)dy. (4.6)

Then, using the strong Markov property at time T0, we get :

Πuf(r, l) = Er[f(l + Lu)] = f(l)Pr(T0 > u) + Er

[
1{T0<u}ψ(u − T0, l)

]

= f(l)ϕ1(u, r) +

∫ ∞

0

f(y)ϕ2(u, r, y − l)1{y>l}dy. (4.7)

Now, plugging (4.7) into (4.5), and then comparing (4.4) and (4.5), for an arbitrary function f , yields
Lemma 4.1.

Lemma 4.2 For every a, y ≥ 0, s ≥ 0, Λs ∈ Fs, and t ≥ s,

E0(1Λs |Rt = x, Lt = y) =
pL,s(y)x−2α

pR,L,t(x, y)
E0

[
1ΛsR

2α
s p

(α)
t−s(Rs, x)|Ls = y

]

+
1

pR,L,t(x, y)
E0

[
1Λsϕ3(t − s,Rs, x, y − Ls)1{y>Ls}

]
(4.8)

with

ϕ3(u, r, x, y) := Er

[
1{T0<u}pR,L,u−T0

(x, y)
]
, r, u, x, y ≥ 0, (4.9)
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Proof. Let g : R+ × R+ be a positive Borel function. We shall compute in two different manners
the quantity E0[1Λs

g(Rt, Lt)]. First, by conditioning with respect to Rt = x and Lt = y, we obtain :

E0[1Λs
g(Rt, Lt)] =

∫

R
2
+

E0[1Λs
|Rt = x, Lt = y]g(x, y)pR,L,t(x, y)dxdy. (4.10)

Secondly, by conditioning with respect to Fs, we obtain :

E0

[
1Λsg(Rt, Lt)

]
= E0

[
1ΛsΠt−sg(Rs, Ls)

]
. (4.11)

We note that :

Πug(r, l) = Er[g(Ru, Lu + l)). (4.12)

We proceed as in the proof of Lemma 4.1, decomposing the right-hand side of (4.12) in two parts A1,
resp. A2 depending upon whether u is smaller, or greater than T0 = inf{s ≥ 0; Rs = 0}. Thus, we
obtain :

Πug(r, l) = A1 + A2, (4.13)

where :

A1 := Er[g(Ru, l)1(T0>u)], A2 := Er[g(Ru, Lu + l)1(T0<u)]. (4.14)

We shall study successively A1 and A2.

a) Recall the absolute continuity relationship between : P−α
r |Fu∩{u<T0} and P

(+α)
r |Fu

(see, [16], Chap. XI or [5], section 1.2):

P−α
r |Fu∩{u<T0} =

( r

Ru

)2α

Pα
r |Fu

. (4.15)

Consequently :

A1 = E(α)
r

[ r2α

R2α
u

g(Ru, l)
]

= r2α

∫ ∞

0

g(x, l)

x2α
p(α)

u (r, x)dx. (4.16)

b) Next we compute A2. Conditioning with respect to FT0
, we get :

A2 = Er

[
1{T0<u}ψ2(u − T0, l)

]
,

with

ψ2(v, l) = E0

[
g(Rv, Lv + l)

]
=

∫

R
2
+

g(x, y)pR,L,v(x, y − l)1{y>l}dxdy.

Using (4.9) we have :

A2 =

∫

R
2
+

g(x, y)ϕ3(u, r, x, y − l)1{y>l}dxdy. (4.17)

Combining (4.13), (4.14), (4.16) and (4.17), we get :

E0

[
1Λs

g(Rt, Lt)
]

= E0

[
1Λs

R2α
s

∫ ∞

0

g(x, Ls)

x2α
p
(α)
t−s(Rs, x)dx

]

+

∫

R
2
+

g(x, y)E0

[
1Λs

ϕ3(t − s, Rs, x, y − Ls)1{y>Ls}
]
dxdy.

It is then easy to conclude since the function g is arbitrary.
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To prove the existence of the limit (1.14) (resp. (1.18)) of Theorem 1.3, we need to obtain an asymptotic
estimate of pL,t(y) (resp. pR,L,t(x, y)) as t → ∞. The first result may be obtained directly. As for
pR,L,t(x, y), we first prove in Lemma 4.3 below that this function can be written as a convolution of
two functions, having a decay rate of the type Ct−(1+α) (t → ∞). Then Lemma 4.4 allows to prove
in Lemma 4.5 that t 7→ pR,L,t(x, y) enjoys an analogous polynomial decay.

Lemma 4.3 Let γ1 denote the density of τ1.

1. For every x, y, q ≥ 0 there is the identity :

∫ ∞

0

e−qtpR,L,t(x, y)dt =
2−α

Γ(1 + α)

(∫ ∞

0

e−qt− x2

2t
x

t1+α
dt

)(∫ ∞

0

e−qtγ1

( t

y1/α

) dt

y1/α

)
. (4.18)

2. Let β1, β2 :]0,∞[×]0,∞[→ R be the two functions :

β1(x, t) :=
2−α

Γ(1 + α)

x

tα+1
e−

x2

2t , x, t > 0, (4.19)

and

β2(y, t) :=
1

y1/α
γ1

(
t

y1/α

)
, y, t > 0. (4.20)

Then :

pR,L,t(x, y) = (β1(x, ·) ∗ β2(y, ·)) (t). (4.21)

Proof. Let Θ denote an exponential variable with parameter q > 0, independent from (Rt, t ≥ 0).
Let χΘ denote the last zero of (Rt, t ≥ 0) before Θ. It is well known, from the last exit decomposition
results, that (Rt, t ≤ χΘ) and (RχΘ+u, u ≤ Θ − χΘ) are two independent processes. Since RXΘ

= 0,
and LΘ = LχΘ , it follows that RΘ and LΘ are independent. As a consequence, we obtain, for every
pair f , g of R+ valued Borel functions :

E0 [f(RΘ)g(LΘ)] =

∫

R
3
+

qe−qtf(λ)g(y)pR,L,t(λ, y)dλdydt = E0 [f(RΘ)]E0 [g(LΘ)] . (4.22)

a) We first compute E0 [f(RΘ)].
Recall :

p
(−α)
t (λ) =

2α

Γ(1 − α)
tα−1λ1−2αe−

λ2

2t 1{λ>0}, (4.23)

then :

E0 [f(RΘ)] =

∫ ∞

0

qe−qtdt

∫ ∞

0

f(λ)p
(−α)
t (λ)dλ

= q

∫ ∞

0

dt

∫ ∞

0

f(λ)
2α

Γ(1 − α)
tα−1λ1−2α exp

{
− λ2

2t
− qt

}
dλ

=
2αq

Γ(1 − α)

∫ ∞

0

f(λ)λ1−2αdλ

∫ ∞

0

tα−1 exp
{
− λ2

2t
− qt

}
dt. (4.24)

Setting t = λ2/(2qs) we obtain :

E0[f(RΘ)] =
q1−α

Γ(1 − α)

∫ ∞

0

f(λ)dλ

∫ ∞

0

λ

sα+1
exp

{
− λ2

2s
− qs

}
ds (4.25)

=
21+α/2q1−α/2

Γ(1 − α)

∫ ∞

0

f(λ)K−α(λ
√

2q)
dλ

λα
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b) As for the computation of E0 [g(LΘ)] , we observe that LΘ is exponentially distributed with para-

meter
Γ(1 − α)

Γ(1 + α)

(q

2

)α

, since from (2.12) we have :

P0(LΘ > l) = P0(Θ > τl) = E0(e
−qτl) = exp

{
− l

Γ(1 − α)

Γ(1 + α)

(q

2

)α}
, l > 0.

Hence :

E0[g(LΘ)] =
Γ(1 − α)

Γ(1 + α)

(q

2

)α
∫ ∞

0

g(l) exp
{
− l

Γ(1 − α)

Γ(1 + α)

(q

2

)α }
dl. (4.26)

Applying (2.12) with (l, λ) changed into (1, ql1/α) yields to :

exp
{
− l

Γ(1 − α)

Γ(1 + α)

(q

2

)α }
= E[e−ql1/ατ1 ] =

∫ ∞

0

e−ql1/αsγ1(s)ds =

∫ ∞

0

e−qtγ1

( t

l1/α

) dt

l1/α
.

Consequently :

E0[g(LΘ)] =
Γ(1 − α)

Γ(1 + α)

(q

2

)α
∫ ∞

0

g(l)dl

∫ ∞

0

e−qtγ1

( t

l1/α

) dt

l1/α
. (4.27)

c) Since f and g are arbitrary, it is clear that (4.22), (4.25) and (4.27) imply (4.18).
d) (4.21) follows directly from (4.18).

Lemma 4.4 Let β0
1 and β0

2 be two integrable functions from R+ to R+, such that :

β0
1(t) ∼

t→∞
k1

t1+α
, β0

2(t) ∼
t→∞

k2

t1+α
. (4.28)

Then :

β0
1 ∗ β0

2(t) ∼
t→∞

1

t1+α

{
k1

∫ ∞

0

β0
2(u)du + k2

∫ ∞

0

β0
1(u)du

}
. (4.29)

Proof. Let us write :

β0
1 ∗ β0

2(t) =

∫ t

0

β0
1(u)β0

2(t − u)du

=

∫ εt

0

β0
1(u)β0

2(t − u)du +

∫ (1−ε)t

εt

· · · du +

∫ t

(1−ε)t

· · · du

= I1 + I2 + I3.

For t large enough, one has :

I2 = t

∫ 1−ε

ε

β0
1(tu)β0

2(t(1 − u))du

≤ k′
1k

′
2

t1+2α

∫ 1−ε

ε

1

u1+α

1

(1 − u)1+α
dv.

This implies that I2 = o
( 1

t1+α

)
, t → ∞ and this term does not contribute to the limit.

On the other hand, for any 0 < δ < k2, there exists r0 > 0 such that :

k2 − δ

r1+α
≤ β0

2(r) ≤ k2 + δ

r1+α
, r ≥ r0.
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Let 0 < ε < 1/2 and t ≥ 2r0. For any u ≤ εt we have : t ≥ t − u ≥ t(1 − ε) ≥ t/2 ≥ r0. Therefore
replacing r by t − u in the previous inequality we get :

k2 − δ

t1+α
≤ β0

2(t − u) ≤ k2 + δ

t1+α

1

(1 − ε)1+α
, t ≥ 2r0. (4.30)

Integrating (4.30) over [0, εt] with respect to β0
1(u)du, we obtain :

(k2 − δ)

∫ εt

0

β0
1(u)du ≤ t1+αI1 ≤ k2 + δ

(1 − ε)1+α

∫ ∞

0

β0
1(u)du.

Taking the limit t → ∞ we have :

(k2 − δ)

∫ ∞

0

β0
1(u)du ≤ lim inf

t→∞

(
t1+αI1

)
≤ lim sup

t→∞

(
t1+αI1

)
≤ k2 + δ

(1 − ε)1+α

∫ ∞

0

β0
1(u)du.

Taking the limit δ, ε → 0 implies that I1 ∼
t→∞

k2

t(1+α)

∫ ∞

0

β0
1(u)du.

Since

I3 =

∫ t

(1−ε)t

β0
1(u)β0

2(t − u)du =

∫ εt

0

β0
2(u)β0

1(t − u)du,

we can apply the previous result, with β0
1 and β0

2 interchanged, to obtain :

I3 ∼
t→∞

k1

t(1+α)

∫ ∞

0

β0
2(u)du.

Thanks to Lemmas 4.3 and 4.4, we are able to determine the asymptotic behavior of pR,L,t(x, y) as
t → ∞. Observe that we may not deduce it from (4.18), since we do not know that t 7→ pR,L,t(x, y) is
monotone, hence the Tauberian theorem may not be applied.

Lemma 4.5 The following equivalence holds :

pR,L,t(x, y) ∼
t→∞

2−α

Γ(1 + α)

x + yx1−2α

t1+α
, x, y > 0. (4.31)

Proof. Recall that β1 and β2 are defined resp. in (4.19), (4.20).
a) It is clear that :

β1(x, t) ∼
t→∞

2−α

Γ(1 + α)

x

tα+1
. (4.32)

Recall that from (2.12), we have :

E0(e
−q τ1) = exp−

(
Γ(1 − α)

Γ(1 + α)

(q

2

)α
)

, q ≥ 0.

Then we deduce, by differentiating both sides of this identity with respect to q and using the Tauberian
theorem that :

γ1(t) ∼
t→∞

α2−α

Γ(1 + α)

1

t1+α
.

Hence :

β2(y, t) ∼
t→∞

α2−α

Γ(1 + α)

y

t1+α
. (4.33)
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b) We have :

∫ ∞

0

β1(x, t)dt =
x1−2α

Γ(1 + α)
Γ(α) =

x1−2α

α
(4.34)

∫ ∞

0

β2(y, t)dt = 1. (4.35)

Finally, Lemma 4.5 follows from Lemma 4.4, together with (4.32)-(4.35).

Proof of Theorem 1.3
1) a) We first prove points 1. and 2. of Theorem 1.3.
We claim that the proofs of (1.14) and (1.15) follow immediately from Lemma 4.1.
From (2.13), we have :

Pr(T0 > t − s) = P (γα <
r2

2(t − s)
) ∼

t→∞
1

Γ(1 + α)

(
r2

2t

)α

. (4.36)

Relations (2.8) and (2.10) imply :

pLt(y) =
1

tα
pL1(

y

tα
) ∼

t→∞
1

tα
pL1(0) =

1

tα
2−α

Γ(1 + α)
. (4.37)

Taking the limit t → ∞ in (4.1), using (4.2), (4.3) and the two estimates (4.36), (4.37) above demon-
strate point 1. of Theorem 1.3.
b) We now prove (1.16).

Let h : R+ → R+ as in Theorem 1.1 and Λs ∈ Fs. Thanks to the definition (1.15) of Q
(y)
0 we have :

∫ ∞

0

Q
(y)
0 (Λs)h(y)dy =

∫ ∞

0

pLs
(y)E0

[
1Λs

R2α
s |Ls = y

]
h(y)dy +

∫ ∞

0

E0

[
1Λs

1{Ls<y}
]
h(y)dy

=

∫ ∞

0

E0

[
1Λs

h(Ls)R
2α
s |Ls = y

]
pLs

(y)dy + E0

[
1Λs

∫ ∞

0

h(y)1{Ls<y}dy
]

= E0

[
1Λs

{
h(Ls)R

2α
s + 1 − H(Ls)

}]
= E0[1ΛsM

h
s ]

= Q
(h)
0 (Λs) =

∫ ∞

0

Q
(h)
0 (Λs|L∞ = y)h(y)dy,

the latter relation following from the fact that L∞ admits h as its probability density.

Therefore the two probability measures on (Ω,F∞),

∫ ∞

0

Q
(y)
0 (·)h(y)dy and Q

(h)
0 coincide on Fs, for

any s ≥ 0, hence they are equal :

Q
(h)
0 (·) =

∫ ∞

0

Q
(y)
0 (·)h(y)dy.

On the other hand, from the definition (1.15) of Q
(y)
0 , we easily deduce that Q

(y)
0 is carried by L∞ = y.

Indeed, for every ε > 0,

Q
(y)
0 (L∞ ≤ y − ε) = lim

s→∞
Q

(y)
0 (Ls ≤ y − ε)

= lim
s→∞

{
pLs(y)E0

[
1{Ls≤y−ε}R

2α
s |Ls = y

]
+ P0(Ls ≤ y − ε)

}

= lim
s→∞

P0(Ls ≤ y − ε)

= 0 since L∞ = ∞, P0 a.s.
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A similar computation shows that Q
(y)
0 (L∞ ≥ y + ε) = 0.

Consequently :

Q
(h)
0 (·|L∞ = y) = Q

(y)
0 (·).

2) Proof of point 3. of Theorem 1.3.
To prove that the limit in (1.18) exists, we start with Lemma 4.2 :

E0 (Λs|Rt = x, Lt = y) = Θ1 + Θ2, Λ ∈ Fs, t > s,

where

Θ1 =
pLs

(y)x−2α

pR,L,t(x, y)
E0

[
1ΛsR

2α
s p

(α)
t−s(Rs, x)|Ls = y

]

Θ2 =
1

pR,L,t(x, y)
E0

[
1Λs

ϕ3(t − s,Rs, x, y − Ls)1{y>Ls}
]
, (4.38)

the function ϕ3 being defined by (4.9).
We study successively the limits of Θ1, Θ2, as t → ∞.
a) From ([16], Chap. 10), we have :

p
(α)
t (r, a) =

a

t

(a

r

)α

Iα

(ar

t

)
exp−a2 + r2

2t
.

Since Iα(z) ∼
z→0

1

Γ(α + 1)

(z

2

)α

an equivalent for p
(α)
t (r, a) as t → ∞ is easily deduced :

p
(α)
t (r, a) ∼

t→∞
2−α

Γ(α + 1)

a1+2α

t1+α
. (4.39)

Consequently using moreover Lemma 4.5, we obtain :

lim
t→∞

Θ1 =
pLs(y)x

x + yx1−2α
E0

(
1Λs

R2α
s |Ls = y

)
. (4.40)

b) Next we study the limit of Θ2, as t → ∞.
It is clear that (4.9) may be interpreted as :

ϕ3(u, r, x, y) =
(
µ(r, ·) ⋆ pR,L,·(x, y)

)
(u), (4.41)

where µ is the density function of T0 under Pr.
Thanks to (2.14), we have :

µ(r, t) ∼
t→∞

α2−α

Γ(1 + α)

r2α

t1+α
.

Taking q = 0 in (4.18) we have :

∫ ∞

0

pR,L,t(x, y)dt =
x1−2α

α
.

Hence, applying (4.41) together with Lemmas 4.5 and 4.4 leads to :

ϕ3(u, r, x, y) ∼
u→∞

[
α2−αr2α

Γ(1 + α)

x1−2α

α
+

2−α

Γ(1 + α)

(
x + yx1−2α

)] 1

u1+α

∼
u→∞

2−α

Γ(1 + α)

[
x + (r2α + y)x1−2α

] 1

u1+α
. (4.42)
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Plugging this expression in (4.38), and using again (4.31), we deduce that :

lim
t→∞

Θ2 =
1

x + yx1−2α
E0

[
1Λs

1(Ls<y)

(
x +

(
R2α

s + y − Ls

)
a1−2α

])
.

This result together with (4.40), proves that the limit in (1.18) exists and has the form given in (1.19).
3) We end the proof of Theorem 1.3, by showing point 4.

Following the definitions (1.19) and (1.15), of resp. Q
(x,y)
0 and Q

(y)
0 , we have :

(
x + yx1−2α

)
Q

(x,y)
0 (Λs) = x

(
Q

(y)
0 (Λs) − E0

[
1Λs

1{Ls<y}
])

+E0

[
1Λs

1{Ls<y}
(
x + (y − Ls + R2α

s )x1−2α
)]

= xQ
(y)
0 (Λs) + x1−2αE0

[
1Λs

1{Ls<y}(y − Ls + R2α
s )

]
. (4.43)

For a given y > 0, let hy be the function : hy(x) =
1

y
1[0,y](x), x ≥ 0, and Hy the primitive of hy,

vanishing at 0; hence :

1 − Hy(x) =

∫ ∞

x

hy(z)dz = 1{x≤y}
(
1 − x

y

)
. (4.44)

Thanks to (1.16), (1.7) and (1.6), we have :
∫ ∞

0

Q
(z)
0 (Λs)h

y(z)dz = E0

[
1Λs

Mhy

s

]

= E0

[
1Λs

(
hy(Ls)R

2α
s + 1{Ls<y}(1 − Ls

y
)
)]

=
1

y
E0

[
1Λs

(
R2α

s + y − Ls

)
1{Ls<y}

]
. (4.45)

Plugging (4.45) in (4.43), we get :

Q
(x,y)
0 (Λs) =

x

x + yx1−2α
Q(y)(Λs) +

x1−2α

x + yx1−2α

∫ y

0

Q
(z)
0 (Λs)dz.

This ends the proof of Theorem 1.3.

Remark 4.6 Suppose that α = 1/2 (i.e : d = 1).

1. Several of the above computations become easier, in particular, that of the function ϕ3 introduced
in (4.9). From Lévy’s theorem :

((St − Xt, St) , t ≥ 0)
(d)
= ((Rt, Lt) , t ≥ 0) (4.46)

where, on the left-hand side (Xt) is a standard Brownian motion started at 0, (St) its unilateral
maximum, i.e. St = max

u≤t
Xu, and the right-hand side (Rt, t ≥ 0) is a reflected Brownian motion

(i.e. a Bessel process with index (−1/2)), and (Lt) its local time at level 0, and ([16] section
III.3 p105), we have :

pR,L,t(x, y) =

√
2

πt3
(x + y)e−

(x+y)2

2t

(
= 2

P0

(
Tx+y(X) ∈ dt

)

dt

)
, x, y > 0, (4.47)

since :

P0(Tr(X) ∈ dt) =

√
1

2πt3
re−

r2

2t 1{t>0}dt, r > 0,
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where Tr(X) denotes the first hitting time of level r for the Brownian motion (Xt).

Since under Pr, T0 is distributed as Tr(X) and Tr(X)+ T̂r′(X) is distributed as Tr+r′(X), where

T̂r′(X) is independent from Tr(X) and T̂r′(X)
(d)
= Tr′(X), then using (4.41), we have :

ϕ3(u, r, x, y) = 2
P (Tx+y+r(X) ∈ du)

du
.

This implies that

ϕ3(u, r, x, y) ∼
u→∞

√
2

πu3

(
x + y + r

)
.

We recover (4.42).

2. We keep the notation relative to Brownian motion introduced above. We have proven in ( [18],
Theorems 1.2, 1.3 and the proof of Theorem 1.3) that, for a < y, y ≥ 0 and Λu ∈ Fu :

lim
t→∞

E
[
1Λu |Xt = a, St = y

]

=
y − a

2y − a
pSu

(y)E
[
1Λu

(y−Xu)|Su = y
]
+

1

2y − a
E

[
1Λu

1{Su<y}(2y−a−Xu)
]
,

where pSu
denotes the density function of Su.

Obviously, this result is equivalent to :

lim
t→∞

E
[
1Λu |Xt = y − x, St = y

]

=
x

x + y
pSu

(y)E
[
1Λu

(y − Xu)|Su = y
]
+

1

x + y
E

[
1Λu

1{Su<y}(x + y − Xu)
]
.

Therefore, from Lévy’s theorem (4.46), we obtain :

lim
t→∞

E0

[
1Λu |Rt = x, Lt = y

]

=
x

x + y
pLu(y)E0

[
1ΛuRu|Lu = y

]
+

1

x + y
E0

[
1Λu1{Lu<y}(x+ y−Lu +Ru)

]
.

which is indeed (1.19) of our Theorem 1.3 for α = 1/2.

4.2 Proof of Theorem 1.4

Let h : R+ → R+ be a probability density. Recall that h̄x =

∫ ∞

0

h(y)(x + yx1−2α)dy < ∞ where

x > 0. Define H(z) =

∫ z

0

h(y)dy, z ≥ 0.

1) We first prove (1.23).
It is clear that :

P0(Lt ∈ dy|Rt = x) =
pR,L,t(x, y)

p
(−α)
t (0, x)

dy = 2−αΓ(1 − α)
ex2/2t

x1−2α

1

tα−1
pR,L,t(x, y)dy.

Applying Lemma 4.5, formula (4.31), we obtain :

P0(Lt ∈ dy|Rt = x)

dy
∼

t→∞
2−2αΓ(1 − α)

Γ(1 + α)

x + yx1−2α

x1−2α

1

t2α
. (4.48)

Since

E0

[
1Λs

h(Lt)|Rt = x
]

E0

[
h(Lt)|Rt = x

] =

∫ ∞

0

E0 [1Λs
|Rt = a, Lt = y] h(y)P0(Lt ∈ dy|Rt = x)
∫ ∞

0

h(y)P0(Lt ∈ dy|Rt = x)

,
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we deduce from (4.48) and point 3. of Theorem 1.3 that :

lim
t→∞

E0

[
1Λsh(Lt)|Rt = x

]

E0

[
h(Lt)|Rt = x

] = h∗
x

∫ ∞

0

Q
(x,y)
0 (Λs)h(y)(x + yx1−2α)dy,

where h∗
x = 1/h̄x.

According to (1.20), we may write the right-hand side as follows :

h∗
x

{∫ ∞

0

Q
(y)
0 (Λs)xh(y)dy +

∫ ∞

0

x1−2αh(y)dy

∫ y

0

Q
(z)
0 (Λs)dz

}
.

Applying Fubini’s theorem, the previous term equals :

h∗
x

{∫ ∞

0

Q
(y)
0 (Λs)

(
xh(y) + x1−2α(1 − H(y))

)
dy

}
= Qhx(Λs).

This proves (1.23).
2) Next we prove point 2. of Theorem 1.4.
Let f : R+ × R+ → R+ be Borel and such that (1.25) holds.
We proceed as above. Using Lemma 4.5 and point 3. of Theorem 1.3 we have :

E0

[
1Λsf(Rt, Lt)

]

E0

[
f(Rt, Lt)

] =

∫

R+×R+

E0

[
1Λs

|Rt = x, Lt = y
]
f(x, y)pR,L,t(x, y)dxdy

∫

R+×R+

f(x, y)pR,L,t(x, y)dxdy

.

Consequently :

lim
t→∞

E0

[
1Λs

f(Rt, Lt)
]

E0

[
f(Rt, Lt)

] = f∗
∫

R+×R+

Q
(x,y)
0 (Λs)(x + yx1−2α)f(x, y) dy.

E0

[
1Λs

f(Rt, Lt)
]

E0

[
f(Rt, Lt)

] =

∫

R+×R+

E0

[
1Λs |Rt = x, Lt = y

]
f(x, y)pR,L,t(x, y)dxdy

∫

R+×R+

f(x, y)pR,L,t(x, y)dxdy

.

lim
t→∞

E0

[
1Λsf(Rt, Lt)

]

E0

[
f(Rt, Lt)

] = f∗
∫

R+×R+

Q
(x,y)
0 (Λs)(x + yx1−2α)f(x, y) dy.

Hence, from (1.20) and Fubini’s theorem, this limit equals :

f∗
{∫

R+×R+

(
xQ

(y)
0 (Λs) + x1−2α

∫ y

0

Q
(z)
0 (Λs)dz

)
f(x, y) dxdy

}

= f∗
∫ ∞

0

Q
(y)
0 (Λs)dy

{∫ ∞

0

xf(x, y)dx +

∫ ∞

0

x1−2αdx

∫ ∞

y

f(x, z) dz

}

=

∫ ∞

0

Q
(y)
0 (Λs)f̃(y)dy = Q

(f̃)
0 (Λs).

This ends the proof of Theorem 1.4.
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5 Proof of Theorem 1.5

Let h : R+ → R+ satisfy (1.28).
1) We first prove point 1. of Theorem 1.5.
Let t > s ≥ 0 and Λs ∈ Fs.
The Markov property at time s allows to write :

E0

[
1Λs

h(Lt)e
λRt

]

E0 [h(Lt)eλRt ]
=

N(s, t)

D(t)
, (5.1)

where :

D(t) = E0

[
h(Lt)e

λRt
]

=

∫

R+×R+

h(y)eλxpR,L,t(x, y)dxdy, (5.2)

N(s, t) = E0

[
1Λsh(Lt)e

λRt
]

= E0 [1ΛsN1(Rs, Ls, t − s)] , (5.3)

N1(x, y, u) = Ex

[
h(y + Lu)eλRu

]
, x, y, u ≥ 0. (5.4)

Recall that pR,L,t(x, y) denotes the density function of (Rt, Lt) under P0.
We study successively the asymptotic behaviors of D(t) and of N1(x, y, t) as t → ∞. Note that we
cannot apply Lemma 4.5 since f(x, y) = h(y)eλx does not satisfy (1.25).
1.a) Let us determine the rate of decay of D(t), as t → ∞.
Since pR,L,t satisfies (4.21), then

D(t) =
2−α

Γ(1 + α)

∫ t

0

du

(t − u)α+1

∫ ∞

0

dyh(y)β2(y, u)

∫ ∞

0

xeλx− x2

2(t−u) dx.

Setting x = λ(t − u) + z
√

t − u in the integral with respect to dx, we obtain :

∫ ∞

0

xeλx− x2

2(t−u) dx = (t − u)3/2e
λ2(t−u)

2

∫ ∞

−λ
√

t−u

( z√
t − u

+ λ
)
e−z2/2dz ∼

t→∞
λ
√

2π(t − u)3/2e
λ2(t−u)

2 .

Consequently :

D(t) ∼
t→∞

2−αλ
√

2π

Γ(1 + α)

∫ t

0

e
λ2(t−u)

2

(t − u)α−1/2
du

∫ ∞

0

h(y)β2(y, u)dy

∼
t→∞

2−αλ
√

2π

Γ(1 + α)
t

1
2−αe

λ2t
2

∫ t

0

e−
λ2u
2 du

∫ ∞

0

h(y)β2(y, u)dy.

Next, using the definition (4.20) of β2, we get :

D(t) ∼
t→∞

2−αλ
√

2π

Γ(1 + α)
t

1
2−αe

λ2t
2

∫ ∞

0

h(y)

y1/α
dy

∫ t

0

e−
λ2u
2 γ1

( u

y1/α

)
du

∼
t→∞

2−αλ
√

2π

Γ(1 + α)
t

1
2−αe

λ2t
2

∫ ∞

0

h(y)dy

∫ t/y1/α

0

γ1(v)e−
λ2y1/α

2 vdv.

∼
t→∞

2−αλ
√

2π

Γ(1 + α)
t

1
2−αe

λ2t
2

∫ ∞

0

h(y)dy

∫ ∞

0

γ1(v)e−
λ2y1/α

2 vdv.

γ1 being the density function of τ1, applying identity (2.12) (with l = 1 and λ replaced by
λ2y1/α

2
)

leads to :

D(t) ∼
t→∞

2−αλ
√

2π

Γ(1 + α)

(∫ ∞

0

h(y)e−σλydy
)
t

1
2−αe

λ2t
2 , (5.5)
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since σλ is defined by (1.29).

We now consider the function N1(x, y, u) defined by (5.4), where x, y ≥ 0 are fixed and u → ∞.
We decompose N1(x, y, u) as the sum of two terms :

N1(x, y, u) = N1,1(x, y, u) + N1,2(x, y, u), (5.6)

where :

N1,1(x, y, u) = Ex[h(y + Lu)eλRu1{u<T0}] = h(y)Ex[eλRu1{u<T0}]

N1,2(x, y, u) = Ex[h(y + Lu)eλRu1{u≥T0}]. (5.7)

1. b) We look for an equivalent of N1,1(x, y, u), as u → ∞.

From the absolute continuity relationship between Bessel laws (cf ex 1.22, chap XI in [16])) we get :

N1,1(x, y, u) = h(y)E(α)
x

[
x2α

R2α
u

eλRu

]
,

where as in the Introduction, under P
(α)
x , the process (Rt) is a Bessel process with index α, starting

at x.
Since (cf for instance section 1. p446 of [16]) :

P (α)
x (Ru ∈ da) =

a

u

(a

x

)α

Iα

(ax

u

)
exp−x2 + a2

2u
da, (5.8)

we get :

N1,1(x, y, u) = h(y)
xα

u
e−

x2

2u + λ2u
2

∫ ∞

0

a1−αIα

(ax

u

)
e−

1
2u (a−λu)2da.

Setting a = λu +
√

ub, we get :

N1,1(x, y, u) = h(y)xαu
1
2−αe−

x2

2u + λ2u
2

∫ ∞

−λ
√

u

(
λ +

b√
u

)1−α
Iα

(
(λ +

b√
u

)x
)
e−b2/2db

∼
u→∞

h(y)xαλ1−αIα(λx)
√

2π u
1
2−αe

λ2u
2 . (5.9)

1. c) We now find an equivalent of N1,2(x, y, u), u → ∞.
Conditioning with respect to T0, we get :

N1,2(x, y, u) = Ex

[
ψ(u − T0)1{u≥T0}

]
,

where :
ψ(v) = E0

[
h(y + Lv)eλRv

]
.

Applying (5.5), we have :

ψ(v) ∼
v→∞

2−α
√

2πλ

Γ(1 + α)

( ∫ ∞

0

h(y + z)e−σλzdz
)
v

1
2−αe

λ2v
2 .

Consequently :

N1,2(x, y, u) ∼
u→∞

2−α
√

2πλeσλy

Γ(1 + α)

( ∫ ∞

y

h(z)e−σλzdz
)
Ex

[
e−

λ2

2 T0
]

u
1
2−αe

λ2u
2 . (5.10)

Using (2.15), we get finally :
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N1,2(x, y, u) ∼
u→∞

√
2π

21−2αλα+1

Γ(α)Γ(α + 1)
xαKα(λx)e

λ2u
2 u

1
2−α(1 − H̃(y)), (5.11)

where we denoted :

1 − H̃(y) := eyσλ

∫ ∞

y

h(z)e−σλzdz.

1. d) We now compute : lim
t→∞

E0

[
1Λs

h(Lt)e
λRt

]

E0 [h(Lt)eλRt ]
.

From (5.5), (5.6), (5.7), (5.9) and (5.11), we have :

E0

[
1Λsh(Lt)e

λRt
]

E0 [h(Lt)eλRt ]
∼

t→∞
At

Bt

where :

At := E0

(
1Λs

[√
2π h(Ls)R

α
s λ1−αIα(λRs)(t − s)

1
2−αe

λ2

2 (t−s)

+

√
2π21−2α

Γ(α)Γ(1 + α)
λα+1Rα

s Kα(λRs)e
λ2

2 (t−s)(t − s)
1
2−α

])
,

Bt =
2−α

√
2π

Γ(1 + α)
λe

λ2t
2 t

1
2−α

∫ ∞

0

h(ℓ)e−ℓσλdℓ. (5.12)

Hence :

lim
t→∞

E0

[
1Λs

h(Lt)e
λRt

]

E0 [h(Lt)eλRt ]
= E0[1ΛsMs], (5.13)

with

Ms = e−
λ2s
2 Rα

s

{(
2

λ

)α

Γ(1 + α)h(Ls)Iα(λRs) +

(
λ

2

)α
2

Γ(α)
(1 − H̃(Ls))Kα(λRs)

}
. (5.14)

2) We now prove that Ms = Mλ,h̃
s , s ≥ 0, where (Mλ,h̃

s ) is the process defined by (1.32).

From (1.33) and (1.34), the function h can be written as a linear combination of h̃ and 1 − H̃ :

h(y) = h̃(y) + σλeσλy

∫ ∞

y

h(z)e−σλzdz = h̃(y) + σλ

(
1 − H̃(y)

)
.

Consequently :

Ms = e−
λ2s
2 Rα

s

{(
2

λ

)α

Γ(1 + α)h̃(Ls)Iα(λRs) +
(
1 − H̃(Ls)

)
ξs

}
,

where :

ξs =

(
2

λ

)α

Γ(1 + α)σλIα(λRs) +

(
λ

2

)α
2

Γ(α)
Kα(λRs).

Given the relations (see [9] p3 and p108) :

Γ(1 − α) =
π

sin(πα)

1

Γ(α)
, Kα(r) =

π

2 sin(πα)
(Iα(r) − I−α(r)) (5.15)

28



then the definition (1.29) of σλ implies :

ξs =

(
λ

2

)α

Γ(1 − α)Iα(λRs) +

(
λ

2

)α

Γ(1 − α) (Iα(λRs) − I−α(λRs))

=

(
λ

2

)α

Γ(1 − α)I−α(λRs).

This proves Ms = Mλ,h̃
s .

The local behavior of Iβ(z), z → 0 is known (see [9] formula (5.7.1) p108) :

Iβ(z) =
1

Γ(1 + β)

(z

2

)β

+ 0(zβ+2) (z → 0), (5.16)

In particular :

lim
r→0

rαIα(λr) = 0, and lim
r→0

(
λ

2

)α

Γ(1 − α)rαI−α(λr) = 1. (5.17)

This implies :
lim
s→0

Rα
s Iα(λRs) = 0, lim

s→0
Rα

s ξs = 1.

It is clear that (1.28) and (1.34] imply that H̃(0) = 0. As a result : Mλ,h̃
0 = 1.

This ends the proof of point 1. of Theorem 1.5.

3) We verify that (Mλ,h̃
s , s ≥ 0) is a martingale.

We shall show that (Mλ,h̃
t , t ≥ 0) is a local martingale. It will suffice to assume that h̃ is of class C1

to prove that (Mλ,h̃
t ) is a martingale (cf. point 2) of the proof of Theorem 1.1).

It is clear that (Mλ,h̃
t ) can be decomposed as follows :

Mλ,h̃
t = e−

λ2t
2

{(
2

λ

)α

Γ(1 + α)h̃(Lt)Ψ1(Rt) +

(
λ

2

)α

Γ(1 − α)
(
1 − H̃(Lt)

)
Ψ2(Rt)

}
, (5.18)

where Ψ1, Ψ2 : R+ → R+ are defined by :

Ψ1(r) := rαIα(λr) Ψ2(r) := rαI−α(λr). (5.19)

3. a) In a first step, we prove that (Ψi(Rt)), i = 1, 2 are two semimartingales, and we determine their
decompositions.
Using [9] p110, we have :

Y
′′

(r) +
1

r
Y

′

(r) =

(
1 +

α2

r2

)
Y (r), (5.20)

where Y (r) denotes either Iα(r) or Kα(r).
Then,

LΨi(r) =
λ2

2
Ψi(r) (i = 1, 2), (5.21)

where L denotes the infinitesimal generator of (Rt, t ≥ 0) (cf. (2.1)).
We deduce from property (5.16) (with β = −α) and the definition (2.2) of the domain D of L that
Ψ2 ∈ D, and :

Ψ2(Rt) = Rα
t I−α(λRt) =

∫ t

0

LΨ2(Rs)ds + M2(t)

=
λ2

2

∫ t

0

Rα
s I−α(λRs)ds + M2(t), (5.22)
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where (M2(t), t ≥ 0) is a P0 local martingale.
As Ψ1 6∈ D, we write :

Ψ1(r) = rαIα(λr) =

(
λ

2

)α
1

Γ(1 + α)
r2α + Ψ̃1(r), r > 0. (5.23)

Relation (5.16) implies that Ψ̃1 ∈ D. Moreover LΨ1 = LΨ̃1, then
(
Ψ̃1(Rt)−

∫ t

0

LΨ1(Rs)ds
)

is a local

martingale.
Since from (2.3), (R2α

t − Lt, t ≥ 0) is a martingale, then, with the help of (5.21), we get :

Ψ1(Rt) = Rα
t Iα(λRt) =

(
λ

2

)α
1

Γ(1 + α)
Lt +

λ2

2

∫ t

0

Rα
s Iα(λRs)ds + M1(t), (5.24)

where (M1(t), t ≥ 0) is a P0 local martingale.

3. b) We are now able to prove that (Mλ,h̃
t ) is a P0 local martingale.

With the help of (1.34), (5.18),(5.22) and (5.24), we deduce, from Itô’s formula, that :

dMλ,h̃
t = −λ2

2
Mλ,h̃

t dt + e−
λ2t
2

{(
2

λ

)α

Γ(1 + α)h̃′(Lt)Ψ1(Rt)dLt

+

(
2

λ

)α

Γ(1 + α)h̃(Lt)
[ (

λ

2

)α
1

Γ(1 + α)
dLt +

λ2

2
Rα

t Iα(λRt)dt
]}

+ e−
λ2t
2

(
λ

2

)α

Γ(1 − α)

{
− h̃(Lt)Ψ2(Rt))dLt +

(
1 − H̃(Lt)

)
Rα

t I−α(λRt)dt

}

+dM3(t), (5.25)

where (M3(t)) is a local martingale.
It is clear that (5.17) implies that :

Ψ1(0) = 0, Ψ2(0) =

(
2

λ

)α
1

Γ(1 − α)
. (5.26)

Using moreover (5.14), it is easy to verify that, in (5.25), both the terms in (dt) and those in (dLt)
are equal to 0.

Note that the relations (5.26) and (5.18) force Mλ,h̃
0 = 1.

4) We now prove point 3. (a) of Theorem 1.5.
Indeed, for every t and c > 0, one has :

Q
(λ,h̃)
0 (Lt > c) = Q

(λ,h̃)
0 (τc < t) = E0

[
1(τc<t)M

λ,h̃
t

]
.

Using successively Doob’s optional stopping theorem and the property : Mλ,h̃
τc

= e−
λ2

2 τc(1 − H̃(c)),
we obtain :

Q
(λ,h̃)
0 (Lt > c) = E0

[
1(τc<t)M

λ,h̃
τc

]
=

(
1 − H̃(c)

)
E0

[
1(τc<t)e

−λ2

2 τc
]
.

Letting t → ∞ in the expression above and using (2.12) and (1.29) leads to :

Q
(λ,h̃)
0 (L∞ > c) =

(
1 − H̃(c)

)
E0

[
e−

λ2

2 τc
]

=
(
1 − H̃(c)

)
e−cσλ .

In order to end the proof of Theorem 1.5 (i.e. points 3. (b) and (c)), we shall use the technique
of progressive enlargement of filtrations, with respect to g = sup {t ≥ 0 : Rt = 0}. Thus, we define
(Gt, t ≥ 0) to be the smallest filtration which contains (Ft, t ≥ 0) and which makes g a (Gt)t≥0 stopping
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time. In order to use the enlargement formulae (see for instance [6] or [22]), it is necessary (cf (5.50))

to compute the
(
(Ft), Q

(λ,h̃)
0

)
supermartingale :

Zt := Q
(λ,h̃)
0 (g > t|Ft). (5.27)

We determine Zt in the next Lemma 5.1.

Lemma 5.1 We have :

Zt =
21−α

Γ(α)
e−

λ2t
2

(
1 − H̃(Lt)

)
(λRt)

αKα(λRt)
1

Mλ,h̃
t

, (5.28)

Q
(λ,h̃)
0 (g < ∞) = 1. (5.29)

Proof of Lemma 5.1 1) For any Γt ∈ Ft we compute :

E
Q

(λ,h̃)
0

[
1Γt1{g>t}

]
= E

Qλ,h̃
0

[
1Γt1{dt<∞}

]
= E0

[
1Γt1{dt<∞}M

λ,h̃
dt

]
,

where dt = inf{s > t; Rs = 0} is the first time of visit of 0 after time t.

Since Mdt
=

(
1 − H̃(Lt)

)
e−

λ2

2 dt , then according to Doob’s optional stopping theorem we have :

E
Q

(λ,h̃)
0

[
1Γt1{g>t}

]
= E0

[
1Γt1{dt<∞}

(
1 − H̃(Lt)

)
e−

λ2

2 dt
]
.

Applying the Markov property at time t, we get :

E
Q

(λ,h̃)
0

[
1Γt

1{g>t}
]

= e−
λ2t
2 E0

[
1Γt

(
1 − H̃(Lt)

)
ERt

[
e−

λ2

2 T0
]]

= e−
λ2t
2 E

Q
(λ,h̃)
0

[
1Γt

(
1 − H̃(Lt)

)
ERt

[
e−

λ2

2 T0
] 1

Mλ,h̃
t

]
. (5.30)

Formula (5.28) now follows immediately from (2.15).
2) Taking Γt = Ω in (5.30), we have :

Q
(λ,h̃)
0 (g > t) = e−

λ2t
2 E0

[(
1 − H̃(Lt)

)
ERt

[
e−

λ2

2 T0
]]

≤ e−
λ2

2 t.

Thus, Q
(λ,h̃)
0 (g < ∞) = 1; and it is clear that Qλ,h̃

0 (g > 0) = 1, since the probabilities Q
(λ,h̃)
0 and P0

are equivalent on each σ-algebra Ft.

To obtain the laws of (Rt, t ≤ g) and (Rg+t, t ≥ 0), the following lemma constitutes a main step.

Lemma 5.2 There exists a
(
(Gt, t ≥ 0), Q

(λ,h̃)
0

)
Brownian motion (Wt, t ≥ 0), starting from 0, such

that :

R2α
t = 2α

∫ t

0

R2α−1
s dWs+Lt−2αλ

∫ t∧g

0

R2α−1
s

Kα−1

Kα
(λRs)ds+2αλ

∫ t

t∧g

R2α−1
s

Iα−1

Iα
(λRs)ds. (5.31)

Proof of Lemma 5.2 We proceed in 4 steps.
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i) In order to simplify our notation, we define :

A1 :=

(
2

λ

)α

Γ(1 + α)Iα−1(λRs) A2 :=

(
λ

2

)α

Γ(1 − α)I1−α(λRs)

A3 :=

(
2

λ

)α

Γ(1 + α)Iα(λRs) A4 :=

(
λ

2

)α

Γ(1 − α)I−α(λRs)

A5 :=
21−α

Γ(α)
λα+1Kα−1(λRs) A6 :=

21−α

Γ(α)
λαKα(λRs)

h̃ := h̃(Ls) H̃ := H̃(Ls).

(5.32)

Hence, with the help of these notation :

Mλ,h̃
s = e−

λ2s
2 Rα

s

(
A3h̃ + A4(1 − H̃)

)
, (5.33)

Zs =
A6(1 − H̃)

A3h̃ + A4(1 − H̃)
. (5.34)

ii) With the help of (2.3), we know that there exists a ((Ft)t≥0, P0) Brownian motion (Bt, t ≥ 0) such
that :

R2α
t = 2α

∫ t

0

R2α−1
s dBs + Lt. (5.35)

This leads us to write the following function Ψ1(r) as a function of r2α :

Ψ1(r) := rαIα(λr) = Ψ1(r
2α), r > 0, (5.36)

where :

Ψ1(x) =
√

xIα(λx
1
2α ), x > 0, (5.37)

Using the first formula of (5.7.9) in ([9], p.110) :

αIα(r) + rI ′α(r) = rIα−1(r), (5.38)

it is easy to prove that :

Ψ
′
1(x) =

λ

2α
x

1−α
2α Iα−1(λx

1
2α ), x > 0. (5.39)

Similarly, introducing :

Ψ2(r) = rαI−α(λr) = Ψ2(r
2α), r > 0, (5.40)

and using the second identity of (5.7.9) in ([9], p.110) :

αI−α(r) + rI ′−α(r) = rI1−α(r), (5.41)

we get :

Ψ
′
2(x) =

λ

2α
x

1−α
2α I1−α(λx

1
2α ), x > 0. (5.42)

Recall that (Mλ,h̃
t ) is a ((Ft)t≥0, P0) martingale and is given by (5.18). Using the above notation, we

have :

Mλ,h̃
s = e−

λ2s
2

(( 2

λ

)α

Γ(1 + α)h̃Ψ1(R
2α
s ) +

( 2

λ

)−α

Γ(1 − α)(1 − H̃)Ψ2(R
2α
s )

)
,
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then Itô’s formula and (5.35) imply :

dMλ,h̃
s = e−

λ2s
2

[
λ

(
2

λ

)α

Γ(1 + α)h̃(Ls)R
α
s Iα−1(λRs)

+ λ

(
2

λ

)−α

Γ(1 − α)(1 − H̃(Ls))R
α
s I1−α(λRs)

]
dBs

= λe−
λ2s
2 Rα

s

(
A1h̃ + A2(1 − H̃)

)
dBs. (5.43)

Next, we consider Ns, the numerator of Zs, in (5.28), i.e :

Ns :=
21−α

Γ(α)
e−

λ2s
2 (1 − H̃(Ls)) (λRs)

α
Kα(λRs) = e−

λ2s
2 (1 − H̃)Rα

s A6. (5.44)

Since

αKα(r) + rK ′
α(r) = −rKα−1(r), (5.45)

reasoning as previously, we can prove that, under P0, (Ns, s ≥ 0) is a semi-martingale, whose martin-
gale (M(N )s) part satisfies :

dM(N )s = −21−α

Γ(α)
λ(1 − H̃(Ls))e

−λ2s
2 (λRs)

α
Kα−1(λRs)dBs

= −(1 − H̃)e−
λ2s
2 Rα

s A5dBs. (5.46)

Thus, denoting (M(Z)s) the martingale part of the semi-martingale (Zs, s ≥ 0) under P0, and
using (5.33), (5.46), (5.44) and (5.43), we get :

dM(Z)s =
Mλ,h̃

s dM(N )s −NsdMλ,h̃
s(

Mλ,h̃
s

)2

= −(1 − H̃)
A5

(
A3h̃ + A4(1 − H̃)

)
+ λA6

(
A1h̃ + A2(1 − H̃)

)
(
A3h̃ + A4(1 − H̃)

)2 dBs. (5.47)

iii) According to Girsanov’s Theorem , we deduce from (5.43), (5.33), the existence of a
(
(Ft)t≥0, Q

(λ,h̃)
0

)

Brownian motion
(
B̃t, t ≥ 0

)
such that :

Bt = B̃t + λ

∫ t

0

A1h̃ + A2(1 − H̃)

A3h̃ + A4(1 − H̃)
ds. (5.48)

Consequently, from (5.47), under Q
(λ,h̃)
0 , the martingale part

(
MQ(Z)t

)
of (Zt) is given by :

dMQ(Z)s = −(1 − H̃)
A5

(
A3h̃ + A4(1 − H̃)

)
+ λA6

(
A1h̃ + A2(1 − H̃)

)
(
A3h̃ + A4(1 − H̃)

)2 dB̃s. (5.49)

iv) In this last step, we now use the technique of progressive enlargement of filtrations (see for instance

[6], [7], [11] or [22]) under the probability Q
(λ,h̃)
0 .

With respect to (Gt), the smallest filtration containing (Ft) and such that g is a (Gt) stopping time,

there exists a
(
(Gt), Q

(λ,h̃)
0

)
Brownian motion (Wt, t ≥ 0) starting from 0, such that :

B̃t = Wt +

∫ t∧g

0

1

Zu
d < Z, B̃ >u −

∫ t

t∧g

1

1 − Zu
d < Z, B̃ >u . (5.50)
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It is clear that < Z, B̃ >=< M(Z), B̃ >. Consequently ,relations (5.48) and (5.49) imply that :

d < Z, B̃ >s= −(1 − H̃)
A5

(
A3h̃ + A4(1 − H̃)

)
+ λA6

(
A1h̃ + A2(1 − H̃)

)
(
A3h̃ + A4(1 − H̃)

)2 ds. (5.51)

Combining (5.35), (5.48) and (5.50), we get :

R2α
t = Lt + 2α

∫ t

0

R2α−1
s dWs + 2αλ

∫ t

0

A1h̃ + A2(1 − H̃)

A3h̃ + A4(1 − H̃)
R2α−1

s ds

− 2α

∫ t∧g

0

A5

(
A3h̃ + A4(1 − H̃)

)
+ λA6

(
A1h̃ + A2(1 − H̃)

)

A6(A3h̃ + A4(1 − H̃))
R2α−1

s ds

+ 2α

∫ t

t∧g

(1 − H̃)
A5(A3h̃ + A4(1 − H̃)) + λA6(A1h̃ + A2(1 − H̃))(

A3h̃ + A4(1 − H̃)
)(

A3h̃ + A4(1 − H̃)) − A6(1 − H̃)
)R2α−1

s ds,

where we have used (5.34) and :

1

1 − Zs
=

A3h̃ + A4(1 − H̃)

A3h̃ + A4(1 − H̃) − A6(1 − H̃)
.

Hence :

R2α
t = Lt + 2α

∫ t

0

R2α−1
s dWs + 2α

∫ t∧g

0

R2α−1
s ϕ1(s)ds) + 2α

∫ t

t∧g

R2α−1
s ϕ2(s)ds, (5.52)

with :

ϕ1(s) = λ
A1h̃ + A2(1 − H̃)

A3h̃ + A4(1 − H̃)
− A5

(
A3h̃ + A4(1 − H̃)

)
+ λA6

(
A1h̃ + A2(1 − H̃)

)

A6

(
A3h̃ + A4(1 − H̃)

)

= −A5

A6
= −λ

Kα−1(λRs)

Kα(λRs)
, (5.53)

and :

ϕ2(s) = λ
A1h̃ + A2(1 − H̃)

A3h̃ + A4(1 − H̃)
+ (1 − H̃)

A5(A3h̃ + A4(1 − H̃)) + λA6(A1h̃ + A2(1 − H̃))

(A3h̃ + A4(1 − H̃))(A3h̃ + A4(1 − H̃)) − A6(1 − H̃)

=
λA1h̃ + (1 − H̃)(λA2 + A5)

A3h̃ + (A4 − A6)(1 − H̃)
. (5.54)

Using (5.15) we have :

A4 − A6 =

(
λ

2

)α

Γ(1 − α)I−α(λRs) −
21−α

Γ(α)
λαKα(λRs) =

(
λ

2

)α

Γ(1 − α)Iα(λRs).

Similarly :

λA2 + A5 = λ

(
λ

2

)α

Γ(1 − α)I1−α(λRs) +
21−α

Γ(α)
λα+1Kα−1(λRs)

= λ

(
λ

2

)α

Γ(1 − α)Iα−1(λRs) = λ(A4 − A6)
A1

A3
.

Hence :

ϕ2(s) =
λA1h̃ + (1 − H̃)λ(A4 − A6)

A1

A3

A3h̃ + (A4 − A6)(1 − H̃)
=

λA1

A3
= λ

Iα−1(λRs)

Iα(λRs)
. (5.55)

It is clear that plugging (5.53) and (5.55) in (5.52) proves Lemma 5.2.
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4) Proof of point 3. (c) of Theorem 1.5.

4. a) First, we study (Rt, t ≤ g) under Q
(λ,h)
0 .

Let f : R+ → R+ be a function of class C2, whose support does not contain 0. We apply Itô’s formula
to (5.31) and with the function g(x) = f(x1/2α).
We compute the two first derivatives of g in terms of those of f :

g′(x) = f ′(x1/2α)
1

2α
x

1−2α
2α

g′′(x) = f ′′(x1/2α)
1

4α2
x

2(1−2α)
2α +

1 − 2α

4α2
f ′(x1/2α)x

1−4α
2α .

Consequently, we get, for t < g :

f(Rt) = g(R2α
t ) =

∫ t

0

f ′(Rs)
1

2α
R1−2α

s

[
2αR2α−1

s

(
dWs −

λKα−1

Kα
(λRs)ds

)]

+
1

2

∫ t

0

[
f ′′(Rs)

1

4α2
R2(1−2α)

s +
1 − 2α

4α2
f ′(Rs)R

1−4α
s

]
4α2R2(2α−1)

s ds

=

∫ t

0

f ′(Rs)dWs +

∫ t

0

[1

2
f ′′(Rs) + f ′(Rs)

(1 − 2α

2Rs
− λKα−1

Kα
(λRs)

)]
ds.

This proves that the process (Rt, t ≤ g) admits the infinitesimal generator :

L↓f(r) =
1

2
f ′′(r) +

(1 − 2α

2r
− λKα−1

Kα
(λr)

)
f ′(r).

4. b) In this last step we focus on (Rg+t, t ≥ 0).

It can be proved analogously, that the infinitesimal generator of this process is L↑ (this operator is
defined by (1.37)). The independence of the processes (Rt, t ≤ g) and (Rg+t, t ≥ 0) follows from the
fact that the stochastic differential equation :

R̃t = Wt +

∫ t

0

[
1 − 2α

2R̃s

+
λIα−1

Iα
(λR̃s)

]
ds

admits a unique strong solution.
Note that from (5.16) :

1 − 2α

2r
+ λ

Iα−1

Iα
(λr) ∼

r→0

1

2r
(1 − 2α + 4α) =

1 + 2α

2r
.

Then, the process (Rg+t, t ≥ 0) behaves, near 0, as a Bessel process with dimension : δ = 2(1 + α) =
4−d. In particular, starting from the origin, it immediately leaves 0, and never comes back to it (since
α > 0, hence δ > 2).

Remark 5.3 We note that, most likely, the description we have just given of the Q
(λ,h)
0 -process may

be reproduced for a ”general” diffusion. The role of the functions rαIα(λr) and rαI−α(λr) being then
played by two linearly independent eigenfunctions of the infinitesimal generator. (See, e.g, [14] for a
general framework).
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