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Introduction

1) The range concerning one-dimensional Markov chains or random walks has been already investigated by [START_REF] Glynn | On the range of a regenerative sequence[END_REF] and [START_REF] Feller | The asymptotic distribution of the range of sums of independent random variables[END_REF]. See for instance [START_REF] Vallois | The range of a simple random walk on Z[END_REF] for a short survey. The aim of this paper is to study the range of a Brownian motion with drift ; this process being the prototype of transient diffusions. The range (R (X) (t) ; t ≥ 0) associated with a continuous process (X t ; t ≥ 0) is the process :

R (X) (t) = sup 0≤u,v≤t (X v -X u ) = sup 0≤u≤t X u -inf 0≤u≤t X u .
(1.1)

When (X t ) is a one-dimensional Brownian motion started at 0, Feller [START_REF] Feller | The asymptotic distribution of the range of sums of independent random variables[END_REF] has computed the density function of R (X) (t), using the fact that the joint distribution of sup 0≤u≤t X u and inf 0≤u≤t X u is explicitly known. Unfortunately the result is expressed as the sum of a series, and the result cannot be generalized to diffusions since the joint distribution of the maximum and the minimum is in general unknown.

To go further we observe that t → R (X) (t) is a non-decreasing, continuous function starting at 0. Therefore we can define its right continuous inverse : θ (X) (a) = inf t ≥ 0; R (X) (t) > a .

(1.2)

Formally it is equivalent to deal with (θ (X) (a) ; a ≥ 0) either (R (X) (t) ; t ≥ 0), since we have R (X) (t) < a = θ (X) (a) > t .

(1.

3)

It is actually more convenient to work with (θ (X) (a) ; a ≥ 0). For instance, if (X t ) is a Brownian motion, then for any a > 0, the Laplace transform of the r.v. θ (X) (a) can be computed, see [START_REF] Imhof | On the range of Brownain motion and its inverse process[END_REF], [START_REF] Vallois | Diffusion arrêtée au premier instant où l'amplitude atteint un niveau donné[END_REF]. Moreover (θ (X) (a) ; a ≥ 0) has independent increments.

Assume that (X t ) is a diffusion process and for simplicity X 0 = 0. It is proved (Theorem 4, [START_REF] Vallois | Diffusion arrêtée au premier instant où l'amplitude atteint un niveau donné[END_REF]) that the process (X t ; 0 ≤ t ≤ θ (X) (U a)) is distributed as (X t ; 0 ≤ t ≤ T (X) (aU )∧T (X) (a(U -1)), where a > 0, T (X) (c) is the first hitting time of level c, and U denotes a r.v. uniformly distributed on [0, 1], independent of the underlying process (X t ). This property has been generalized by [START_REF] Salminen | On first range times of linear diffusions[END_REF].

The Laplace transform of T (X) (c) ∧ T (X) (d) can be expressed besides through eigenfunctions associated with the generator of (X t ). Consequently previous result gives an analytic expression for the Laplace transform of θ (X) (a).

2) Let (B(t) ; t ≥ 0) be a one-dimensional Brownian motion started at 0, and (S t ; t ≥ 0) its unilateral maximum : S t = sup 0≤u≤t B(u). The process (S t ; t ≥ 0) gives rise to an excursion theory. More precisely it can be proved (see for instance [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF], Chap. XII, section 2.) that the family of processes

x -B(T (B) (x -) + t) ; 0 ≤ t ≤ T (B) (x) -T (B) (x -) ; x > 0 is Poisson point process whose characteristic measure is explicit.

It seems natural to ask for a similar question replacing the one-sided maximum by the range. Results in this direction has been obtained in [START_REF] Hsu | Brownian excursions from extremes[END_REF], [START_REF] Imhof | A construction of the Brownian path from BES 3 pieces. Stochastic Process[END_REF] and [START_REF] Vallois | Decomposing the Brownian path via the range process[END_REF]. In these decompositions, the fact that the Brownian motion is recurrent plays a crucial role. We shall be a little bit more precise below. This leads naturally to investigate the case of transient diffusions. To obtain explicit results, we restrict our attention to the case of Brownian motion with drift.

Let (B δ (t) ; t ≥ 0) be the Brownian motion with drift δ : B δ (t) = B(t) + δ t. For simplicity, we note (R δ (t) ; t ≥ 0) the range of (B δ (t)) instead of (R (B δ ) (t) ; t ≥ 0) :

R δ (t) = sup 0≤s,u≤t (B δ (s) -B δ (u)) = sup 0≤s≤t B δ (s) -inf 0≤s≤t B δ (s).
(1.4)

The right continuous inverse of (R δ (t) ; t ≥ 0) is noted (θ δ (a) ; a ≥ 0) :

θ δ (a) = inf {t ≥ 0 ; R δ (t) > a} .
(1.5)

3) Let us explain why the transient case is drastically different from the recurrent case. Let Σ δ be the random set :

Σ δ = {a ≥ 0 ; B δ (θ δ (a))B δ (θ δ (a-)) < 0} (1.6)
where θ δ (a-) is the left limit of θ δ at a.

When δ = 0, for any a > 0, the two sets Σ 0 ∩ (0, a] and Σ 0 ∩ [a, +∞) are infinite. This generates a difficulty to enumerate the points in Σ 0 . However a decomposition of the Brownian path (B 0 (t) ; t ≥ 0) has been given [START_REF] Imhof | A construction of the Brownian path from BES 3 pieces. Stochastic Process[END_REF][START_REF] Vallois | Decomposing the Brownian path via the range process[END_REF] through Σ 0 , and three dimensional Bessel processes.

Suppose δ > 0. Since B δ (t) drifts to infinity, as t → +∞, for any a > 0 the random set Σ δ ∩ [a, +∞) is finite and enables an explicit description of Σ δ . Let us first introduce the minimum -S 1 of (B δ (t) ; t ≥ 0), and ρ 1 the last time such that B δ (ρ 1 ) = -S 1 . Secondly let S 2 be the maximum of B δ (t), t running over [0, ρ 1 ], and ρ 2 be the last time in [0, ρ 1 ] such that B δ (ρ 2 ) = S 2 , and so on, see (2.1) for details. Then

Σ δ = {A n ; n ≥ 1} (1.7)
where

A n = S n + S n+1 .
We compute the density function of (S 1 , • • • , S n ) in Proposition 2.1. We also obtain an enlighted description of the law of (A 1 , • • • , A n ) (cf Theorem 2.2). Let ψ : R → (-∞, 1) be the function :

ψ(x) = e x -1 -x e x -1 if x = 0, and ψ(0) = 0. (1.8)
Then ψ is one-to-one from R to (-∞, 1) and :

ψ(2δA 1 ), ψ(-2δA 2 ) ψ(-2δA 1 ) , . . . , ψ((-1) n+1 2δA n ) ψ((-1) n+1 2δA n-1 ) d = (U 1 , U 2 , . . . , U n ) (1.9)
where U We are also able to determine the law of the sequence of processes (|B

δ (t + ρ n ) -B δ (ρ n )| ; 0 ≤ t ≤ ρ n-1 -ρ n ) n≥2 .
The result being technical, we do not state it in the Introduction. A complete formulation can be found in Theorem 2.4. We would like to note that three dimensional Bessel processes coming from the decomposition of the Brownian motion have to be replaced by non negative diffusions distributed as the process Z (δ) where

Z (δ) (t) = B t + δ t 0 coth(δZ (δ) (s)) ds.
(1.10)

Heuristically, (Z (δ) (t) ; t ≥ 0) is the process (B δ (t) ; t ≥ 0) conditioned to be positive, see [START_REF] Williams | Path decomposition and continuity of local time for onedimensional diffusions[END_REF]. Taking formally the limit δ → 0 in (1.10), we recover the three-dimensional Bessel process started at 0.

4)

In Section 4, we focus on the law of R δ (t) (resp. θ δ (a)) where t > 0 (resp. a > 0) is fixed. We compute the two distribution functions of R δ (t) and θ δ (a). We partially recover the result of [START_REF] Chong | The ruin problem and cover times of asymmetric random walks and Brownian motions[END_REF]. A path decomposition of (B δ (t) ; 0 ≤ t ≤ θ δ (a)) (Proposition 4.1) allows us to determine the Laplace transform of θ δ (a). Then, by a straightforward approach, it is easy to obtain the asymptotic behaviour of θ δ (a), a → +∞. We prove two limit results : the first one looks like a Law of Large Numbers and the second one is similar to the Central Limit Theorem. More precisely :

θ δ (a) a a.s. -→ a→∞ 1 δ , (1.11) 
√ a θ δ (a) a - 1 δ d -→ a→∞ N 0, 1/δ 3 , (1.12) 
where N 0, 1/δ 3 denote the Gaussian distribution with 0-mean and variance 1/δ 3 .

Notations and main results

We keep the notations introduced in the Introduction. In particular (B ±δ (t) ; t ≥ 0) is a Brownian motion with constant drift ±δ starting at 0. Throughout this paper, we suppose that δ > 0.

Let -S 1 denote the absolute (random) minimum of (B δ (t) ; t ≥ 0) and ρ 1 the last (random) time when it is reached. The decomposition of the Brownian path t → B δ (t) may be continued by induction on k ≥ 2, as follows :

   S k = sup t∈[0,ρ k-1 ] (-1) k B δ (t), ρ k = sup{t ∈ [0, ρ k-1 ] , B δ (t) = (-1) k S k }. (2.1) 
Note that if we set ρ 0 = ∞, then relations (2.1) are still valid for k = 1.

Since B δ (t) goes to +∞, as t → ∞, and t → B δ (t) is a continuous function, then the random times (ρ k ) k≥1 are well defined. This does not mean that {t ∈ [0, ρ k-1 ]; B δ (t) = (-1)

k S k } is reduced to the singleton {ρ k }. We actually prove that this property holds.

We start with the law of (S 1 ,

• • • , S k ) ; k ≥ 1.
Proposition 2.1 Suppose δ > 0. Let (S k ; k ≥ 1) be defined by (2.1). Then 1. The law of S 1 is exponential of parameter 2δ (i.e. with density function 2δe -2δx 1 {x≥0} ).

2. Conditionally to {S 1 = x 1 }, S 2 has density function :

δe δx1 sh(δx 1 ) 1 sh 2 (δ(x + x 1 )) 1 {x≥0} . (2.2) 3. For every k ≥ 3, conditionally to {S 1 = x 1 , . . . , S k-1 = x k-1 }, S k has density function : δ sh δx k-1 sh δ(x k-1 + x k-2 ) sh δx k-2 1 sh 2 δ(x k-1 + x) 1 {0≤x≤x k-2 } .
Proof The proof of Proposition 2.1 is postponed in Section 3.

Note that x k + x k-1 appears in the conditional density function of S k . This leads us to introduce

A k = S k + S k+1 ; k ≥ 1.
(2.3) (A k ) k≥1 is the sequence of maximal ranges associated with (B δ (t) ; t ≥ 0).

Theorem 2.2 Suppose δ > 0. Then 1. (A 1 , • • • , A n ) has a density function given by δ n 2 n-1 k=1 e (-1) k δa k sh(δa k ) e (-1) n 2δan -1 + (-1) n+1 2δa n sh 2 δa n 1 {0≤an≤•••≤a1} . (2.4)
2. Let : ψ : R → (-∞, 1)

ψ(x) = e x -1 -x e x -1 ; x = 0 and ψ(0) = 0.
ψ is one-to-one from R to (-∞, 1) and we have

ψ(2δA 1 ), ψ(-2δA 2 ) ψ(-2δA 1 ) , . . . , ψ((-1) n+1 2δA n ) ψ((-1) n+1 2δA n-1 ) d = (U 1 , U 2 , . . . , U n ) (2.5) where U 1 , • • • , U n are i.i.d. r.v.'s, uniformly distributed on [0, 1].
Proof The proof is postponed in Section 3 Remark 2.3 1) Recall that Σ δ is defined by (1.6). In [START_REF] Vallois | Decomposing the Brownian path via the range process[END_REF], it is proved that if δ = 0, then Σ 0 is a one-dimensional Poisson point process (P.p.p.) with characteristic measure ν(da) = 1 a 1 {a>0} da. Concerning P.p.p. we refer to [START_REF] Revuz | Continuous martingales and Brownian motion, volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences[END_REF] (chapter XII).

If δ > 0, we claim that Σ δ is not a P.p.p.. Using (2.5), by tedious calculations we prove

E   n≥1 f (A n )   = δ 2 ∞ 0 f (x) x sh 2 (δx) dx, (2.6) 
for any positive Borel function f . Suppose that Σ δ is a P.p.p. with characteristic measure ν δ , (2.6) implies that :

ν δ (dx) = δ 2 x sh 2 (δx) 1 {x>0} dx.
(2.7)

A straightforward calculation gives :

ν δ ([b, +∞)) = δb coth(δb) -log(sh(δb)) -log 2 , b > 0.
(2.8)

Consequently, N = n≥1 1 {An≥b} is a Poisson random variable with parameter ν δ ([b, +∞)).
But n → A n is a decreasing sequence, then

P(N = 0) = P(A 1 < b) = Ψ(2δb).
This generates a contradiction since

P(N = 0) = exp(-ν δ ([b, +∞))) = Ψ(2δb).
2) Due to (2.4), it is easy to check that (A 2n-1 , A 2n ; n ≥ 1) is a Markov chain, which takes its values in (x, y) ∈ R 2 ; 0 < y < x , with transition probability density function :

P ((u, v); (x, y)) = 4δ 2 Ψ(2δv) 1 e 2δx -1 e 2δy e 2δy -1 Ψ(2δy)1 {0<y<x<v} . (2.9) 
Note that this quantity does not depend on u.

3) If we set

X n = ψ (-1) n+1 A n ; n ≥ 1, then (X n ; n ≥ 1
) is a Markov chain on (-∞, 1), with initial distribution the uniform distribution on [0, 1], with transition probability kernel :

K(x, f ) = E f (U ψ(-ψ -1 (x))) (2.10)
where U denotes a r.v. uniformly distributed in [0, 1].

We now give the law of the sequence of processes ((

B δ (t + ρ k ) -B δ (ρ k ) ; t ∈ [0, ρ k-1 -ρ k ])) k≥1 .
The result makes use of the process Z (δ) defined by (1.10).

Theorem 2.4 Let δ > 0 and k ≥ 2. Conditionally to S 1 = x 1 , . . . , S k = x k , 1) (B δ (t) ; 0 ≤ t ≤ ρ k ), (B δ (t + ρ 1 ) -B δ (ρ 1 ) ; t ≥ 0), (B δ (t + ρ 2 ) -B δ (ρ 2 ) ; 0 ≤ t ≤ ρ 1 -ρ 2 ), ..., (B δ (t + ρ k ) -B δ (ρ k ) ; 0 ≤ t ≤ ρ k-1 -ρ k ) are independent ; 2) (B δ (t) ; 0 ≤ t ≤ ρ k )
has the law of Brownian motion with drift (-1) k δ stopped at the first hitting time of level (-1) k x k , and conditioned not to hit

(-1) k+1 x k-1 ; 3) For any 2 ≤ l ≤ k, (|B δ (t + ρ l ) -B δ (ρ l )| ; 0 ≤ t ≤ ρ l-1 -ρ l
) is a process with the same law as Z (δ) stopped at the first moment it reaches the level

x l + x l-1 .
3 Proofs of Theorems 2.2, 2.4 and Proposition 2.1

We keep the notations introduced in Sections 1 and 2.

3.1 Proof of Theorem 2.2

1) Formula (2.4) is a direct consequence of Proposition 2.1. Indeed, let F be a test function. We have :

E [F (A 1 , . . . , A n )] = E [F (S 1 + S 2 , . . . , S n + S n+1 )] = R n+1 F (x 1 + x 2 , . . . , x n + x n+1 )2δ n+1 e -δx1 sh δx n n-1 k=1 sh δ(x k+1 + x k ) × 1 sh 2 δ(x n+1 +x n ) 1 {x1≥x3≥•••≥0} 1 {x2≥x4≥•••≥0} dx 1 . . . dx n+1 .
We use the following change of variables :

       x 1 = x 1 a 1 = x 1 + x 2 . . . a n = x n + x n+1 . (3.1)
Then,

x k -x k+2 = a k -a k+1 ; 1 ≤ k ≤ n -1 x n = α + (-1) n+1 x 1 x n+1 = a n -(α + (-1) n+1 x 1 ) where α = a n-1 -a n-2 + • • • + (-1) n a 1 .
Consequently,

E [F (A 1 , . . . , A n )] = R n F (a 1 , . . . , a n ) 2δ n n-1 k=1 sh(δa k ) sh 2 δa n ×1 {0 ≤ a n ≤ a n-1 ≤ • • • ≤ a 1 } I(α)da 1 . . . da n ,
where

I(α) = ∞ 0 δe -δx1 sh δ(α + (-1) n+1 x 1 )1 {0≤α+(-1) n+1 x1≤an} dx 1 .
Suppose for instance that n is even. Setting y = α -x 1 in order to obtain Then (2.4) follows immediately.

I(α) = e -
2) The density function

h 1 of A 1 is h 1 (x) = δ 2 sh 2 δx e -2δx -1 + 2δx . (3.2) Let H 1 denote the distribution function of A 1 H 1 (x) = x 0 h 1 (y) dy. (3.3)
We have

x

0 e 2y -1 -2y sh 2 y dy = e x sh x e -2x -1 + 2x . (3.4) Consequently H 1 (x) = ψ(2δx). (3.5) So A 1 d = 1 2δ ψ -1 (U 1 ), (3.6) 
where U 1 is a uniform random variable on [0, 1].

We compute now the density h

(x) 2 of A 2 conditionally to A 1 = x. h (x) 2 (y) = δ 2 2 e 2δy -1 -2δy sh 2 δy e -δx sh δx 1 {0≤y≤x} 2 sh 2 δx δ 1 e -2δx -1 + 2δx = δ e -δx sh δx e -2δx -1 + 2δx e 2δy -1 -2δy sh 2 δy 1 {0≤y≤x} . (3.7) Let H (x) 2
denote the associated distribution function

H (x) 2 (y) = e -δx sh δx e -2δx -1 + 2δx δ y 0 e 2δt -1 -2δt sh 2 δt dt. (3.8) 
Relation (3.4) implies that :

H (x) 2 (y) = e -δx sh δx e -2δx -1 + 2δx e δy sh δy e -2δy -1 + 2δy = ψ(-2δy) ψ(-2δx) .
So, we have proved that ψ(2δA 1 ),

ψ(-2δA 2 ) ψ(-2δA 1 ) is distributed as (U 1 , U 2 ),
where

U 1 and U 2 are two independent r.v.'s, uniformly distributed on [0, 1].
Reasoning by induction, identity (2.5) can be proved by the same way via (2.4).

Proofs of Theorem 2.4 and Proposition 2.1

In our approach, Theorem 2.4 and Proposition 2.1 are a direct consequence of Proposition 3.2 stated below. Therefore, we first focus on this key result, and we prove Theorem 2.4 and Proposition 2.1 at the end of this subsection.

The description of the laws of (B δ (t) ; 0 ≤ t ≤ ρ 1 ) and (B δ (t) -B δ (ρ 1 ) ; t ≥ ρ 1 ) is given by the well-known theorem of Williams [START_REF] Williams | Path decomposition and continuity of local time for onedimensional diffusions[END_REF].

Proposition 3.1 ([17])
1) The law of S 1 is exponential with parameter 2δ (i.e. its density function is

2δe -2δx 1 {x≥0} ). 2) Conditionally to S 1 = x 1 , a. (B δ (t) ; t ≤ ρ 1 ) and (B δ (t+ρ 1 )-B δ (ρ 1 ) ; t ≥ 0) are independent processes b. (B δ (t) ; t ≤ ρ 1
) is a process with the same law as a B -δ stopped at its first hitting time of -x

1 c. (B δ (t + ρ 1 ) -B δ (ρ 1 ) ; t ≥ 0) is a (positive) process distributed as Z (δ) .
To obtain the decomposition of the Brownian motion with drift given in Theorem 2.4, Proposition 3.1 leads us to study (B -δ (t) ; 0

≤ t ≤ T -δ -a ) conditionally to max 0≤t≤T -δ -a B -δ (t) where : T -δ -a = inf {t ≥ 0 , B -δ (t) < -a} , a > 0. (3.9) 
Since (-B -δ (t) ; 0 ≤ t ≤ T -δ -a ) and (B δ (t) ; 0 ≤ t ≤ T δ a ) have the same law, it is equivalent to determine the distribution of (B δ (t) ; 0 ≤ t ≤ T δ a ) conditionally to

S = -inf t∈[0,T δ a ] B δ (t), (3.10) 
T δ a being the first hitting time of level a :

T δ a = inf {t ≥ 0 , B δ (t) > a} , a > 0. Let ρ be the random time :

ρ = sup{t ∈ [0, T δ a ], B δ (t) = -S}. (3.11)
Time ρ plays a central role in our approach, as shows the following proposition. (3.12)

2) Conditionally to S = b, a. (B δ (t) ; 0 ≤ t ≤ ρ) and (B δ (t + ρ) -B δ (ρ) ; 0 ≤ t ≤ T δ a -ρ) are inde- pendent, b. (B δ (t) ; 0 ≤ t ≤ ρ
) is a process with the same law as a Brownian motion with drift -δ, stopped at its first hitting time of level -b and conditioned to stay less than a, c. (B δ (t + ρ) -B δ (ρ) ; 0 ≤ t ≤ T δ a -ρ) is a (positive) process distributed as the process Z (δ) , stopped at its first hitting time of level a + b Before starting the proof of Proposition 3.2, we would like to explain our approach.

Let (F t ) be the natural filtration generated by (B(t) ; t ≥ 0). Unfortunately the random time ρ is not stopping time. However ρ is a last exit time :

ρ = sup{t ∈ [0, T δ a ]; B δ (t) = sup 0≤u≤t B δ (u)}.
This leads us to apply the theory of enlargement of filtrations (See Protter [START_REF] Ph | Stochastic integration and differential equations[END_REF] Ch. VI).

Let (F ρ t ) be the smallest right-continuous filtration containing (F t ) (i.e. F t ⊂ F ρ t , for any t ≥ 0) such that ρ is a (F ρ t )-stopping time. Let :

Y ρ t = P (ρ ≤ t|F t ) , (3.13) 
(Y ρ t ; t ≥ 0) is the optional projection of 1 {ρ≤t} ; t ≥ 0 (cf [9] p 371).
It is easy to check that (Y ρ t ; t ≥ 0) is a (F t )-submartingale. Let :

Y ρ t = M ρ t + A ρ t , (3.14) 
be its Doob-Meyer decomposition, where (M ρ t ; t ≥ 0) denotes the martingale part, (A ρ t ; t ≥ 0) is a non-decreasing and adapted process such that A ρ 0 = 0. The processes (Y ρ t ; t ≥ 0) and (A ρ t ; t ≥ 0) will be given in Lemma 3.3. To determine the law of B δ (s); s ≤ ρ , we need the following result. Let (U t ; t ≥ 0) be a non-negative and (F t )-adapted process then ( [START_REF] Ph | Stochastic integration and differential equations[END_REF] p 371) :

E[U ρ ] = E ∞ 0 U t dA ρ t . (3.15) 
Note that S = -

min 0≤s≤ρ B δ (s). Taking U t = F (B δ (s); s ≤ t) f (-min 0≤s≤t B δ (s)),
where F and f are measurable and non negative, we get :

E [F (B δ (s); s ≤ ρ) f (S)] = E ∞ 0 F (B δ (s); s ≤ t) f (-min 0≤s≤t B δ (s))dA ρ t .
Since (A ρ t ; t ≥ 0) is explicitly known, previous identity allows us to determine the law of B δ (s); s ≤ ρ conditionally to S, see Lemma 3.5.

To obtain the law of (B δ (t + ρ) -B δ (ρ) ; 0 ≤ t ≤ T δ a -ρ), we use ([9] Theorem 18, p 375) the following property :

B(t) = B(t) -χ(t) is a (F ρ t ) -Brownian motion (3.16)
where :

χ(t) = - t∧ρ 0 1 1 -Y ρ s d B, M ρ s + t 0 1 {ρ<s} 1 Y ρ s d B, M ρ s . (3.17) 
This allows us to prove that (B δ (t + ρ) -B δ (ρ) ; 0 ≤ t ≤ T δ a -ρ) solves a stochastic differential equation of type (1.10).

Lemma 3.3 Let (Y ρ t ) t≥0 be the process defined by (3.13). 1. We have :

Y ρ t = e 2δB δ (t∧T δ a ) -e -2δB δ (t∧T δ a )
e 2δB δ (t∧T δ a ) -e -2δa

; t ≥ 0, (3.18)

where B δ (t) = -inf s≤t B δ (s).
2. (Y ρ t ) t≥0 is a (F t ) sub-martingale with Doob-Meyer decomposition (3.14) and

A ρ t = ln e 2δB δ (t∧T δ a ) -e -2δa 1 -e -2δa
(3.19)

M ρ t = 2δ t∧T δ a 0 1 e 2δB δ (s) -e -2δa
e -2δB δ (s) dB(s). b) Let t > 0 fixed. We have :

1 {ρ≤t} = 1 {ρ≤t≤T δ a } + 1 {T δ a ≤t} . (3.22) 
If t ≤ T δ a , ρ ≤ t means that after the time t, B δ hits a before -B δ (t). Consequently :

P(ρ ≤ t ≤ T δ a |F t ) = e 2δB δ (t) -e -2δB δ (t) e 2δB δ (t) -e -2δa 1 {t≤T δ a } . (3.23) 
Y ρ denotes the process :

Y ρ t = e 2δB δ (t) -e -2δB δ (t) e 2δB δ (t) -e -2δa for t ≥ 0. (3.24) Note that Y ρ T δ a = 1, therefore : Y ρ t = Y ρ t∧T δ a .
c) We know that e -2δB δ (t) = e -2δB(t)-2δ 2 t is a martingale. So using the classical rules of stochastic calculus we get :

d Y ρ t = 1 e 2δB δ (t) -e -2δa
e -2δB δ (t) 2δdB(t) + e -2δB δ (t) -e -2δa e 2δB δ (t) -e -2δa 2 2δe 2δB δ (t) dB δ (t).

(3.25)

Since the support of the random measure dB δ is included in {t ≥ 0 ; B δ (t) = -B δ (t)}, then (3.19) and (3.20) follow immediately.

The following result will be useful in the proof of Lemma 3.5 below.

Proposition 3.4 Let x > 0 and y > 0.

Then (B δ (t) ; 0 ≤ t ≤ T δ x ) condi- tioned by {T δ x < T δ -y } is distributed as (B -δ (t) ; 0 ≤ t ≤ T -δ x ) conditioned by {T -δ x < T -δ -y }.
Proof Let F be a test function. We have :

A = E F B(t) + δt ; 0 ≤ t ≤ T δ x |T δ x < T δ -y = E F B(t) + δt ; , 0 ≤ t ≤ T δ x 1 {T δ x <T δ -y } 1 P(T δ x < T δ -y ) . The r.v. F B(t) + δt ; 0 ≤ t ≤ T δ x 1 {T δ x <T δ -y } being F T δ
x measurable, and T δ x < ∞ a.s., Girsanov's theorem and (3.21) imply :

A = E F B(t), 0 ≤ t ≤ T 0 x 1 {T 0 x <T 0 -y } exp(δB(T 0 x ) - δ 2 2 T 0 x ) e -2δx -e 2δy 1 -e 2δy , = E F B(t), 0 ≤ t ≤ T 0 x 1 {T 0 x <T 0 -y } exp(- δ 2 2 T 0 x ) e -δx -e 2δy+δx
1 -e 2δy .

Replacing δ by -δ, we obtain similarly

à = E F B(t) -δt, 0 ≤ t ≤ T -δ x |T -δ x < T -δ -y , = E F B(t), 0 ≤ t ≤ T 0 x 1 {T 0 x <T 0 -y } exp(-δB(T 0 x ) - δ 2 2 T 0 x ) × e 2δx -e -2δy 1 -e -2δy , = E F B(t), 0 ≤ t ≤ T 0 x 1 {T 0 x <T 0 -y } exp(- δ 2 2 T 0 x )
e δx -e -2δy-δx 1 -e -2δy .

We are now able to describe the law of (B δ (t); 0 ≤ t ≤ ρ) conditionally to S.

Lemma 3.5 1) The r.v. S has a density function ϕ given by (3.12).

2) Conditionally to S = b, (B δ (t) ; 0 ≤ t ≤ ρ) is a process with the same law as a Brownian motion with drift -δ, stopped at its first hitting time of level -b and conditioned to stay less than a.

Proof of Lemma 3.5 1) Let f and F be two non-negative test functions and

∆ = E [f (S)F (B δ (s), 0 ≤ s ≤ ρ)].
We have :

∆ = E f (B δ (ρ))F (B δ (s), 0 ≤ s ≤ ρ) . Setting U t = f (B δ (t))F (B δ (s), 0 ≤ s ≤ t), we have : ∆ = E [U ρ ]. Since (U t , t ≥ 0
) is a predictable process, property (3.15) implies that :

∆ = E ∞ 0 U t dA ρ t .
Using (3.19), we obtain

∆ = 2δE T δ a 0 f (B δ (t))F (B δ (s), 0 ≤ s ≤ t) e 2δB δ (t) e 2δB δ (t) -e -2δa
dB δ (t) .

In particular, if F = 1, the change of variable : "x = B δ (t)" yields to :

E [f (S)] = 2δE S 0 f (x) e 2δx e 2δx -e -2δa dx , = 2δE ∞ 0 f (x)
e 2δx e 2δx -e -2δa P(S ≥ x) dx . 

Φ(x) = ∞ x ϕ(s) ds = 1 -e -2δa e 2δx -e -2δa .
(3.28)

This implies (3.12).

2) We now study the law of (B δ (t) ; 0 ≤ t ≤ ρ). (T δ -x ; x ≥ 0) being the right continuous inverse of (B δ (t) ; t ≥ 0), then

∆ = 2δ ∞ 0 f (x)E F (B δ (s), 0 ≤ s ≤ T δ -x )1 {T δ -x <T δ a }
e 2δx e 2δx -e -2δa dx,

= 2δ ∞ 0 f (x)E F (B δ (s), 0 ≤ s ≤ T δ -x )|T δ -x < T δ a × e 2δx e 2δx -e -2δa P(T δ -x < T δ a ) dx, = ∞ 0 f (x)E F (B δ (s), 0 ≤ s ≤ T δ -x )|T δ -x < T δ a ϕ(x) dx.
We now use the result of Proposition 3.4 to obtain the law of (B δ (t) ; 0 ≤ t ≤ ρ) conditionally to S.

Proof of Proposition 3.2

It remains to determine the law of (B δ (t + ρ) -B δ (ρ), 0 ≤ t ≤ T δ a -ρ) and to prove that this process is independent of (B δ (t); 0 ≤ t ≤ ρ).

Let (F ρ t ) t≥0 denote the smallest filtration including (F t ) t≥0 for which ρ is a stopping time. ρ is an honest time since, for any t > 0, on {ρ < t}, ρ coincides with a F t -measurable r.v. (see [START_REF] Ph | Stochastic integration and differential equations[END_REF] p 370) That allows to use (3.16). Combining (3.17), (3.20) with (3.18), we obtain χ(t) = -t∧ρ 0 (e 2δB δ (s) -e -2δa )2δe -2δB δ (s) (e -2δB δ (s) -e -2δa )(e 2δB δ (s) -e -2δa ) ds

+ t∧T δ a 0 1 {ρ<s}
(e 2δB δ (s) -e -2δa )2δe -2δB δ (s) (e 2δB δ (s) -e -2δB δ (s) )(e 2δB δ (s) -e -2δa ) ds,

χ(t) = - t∧ρ 0 2δe -2δB δ (s) e -2δB δ (s) -e -2δa ds + t∧T δ a 0 1 {ρ<s} 2δe -2δB δ (s) e 2δB δ (s) -e -2δB δ (s)
ds.

Since B δ (s) = S, then for any ρ ≤ s ≤ T δ a , we have

χ(t + ρ) -χ(ρ) = 2δ (t+ρ)∧T δ a ρ e -2δB δ (s) e 2δS -e -2δB δ (s) ds; 0 ≤ t ≤ T δ a -ρ.
Let (W (t)) and Z(t) be the processes

W (t) = B(t+ρ)-B(ρ) ; t ≥ 0, Z(t) = B δ (ρ+t)-B δ (ρ) = B δ (ρ+t)+S ; 0 ≤ t ≤ T δ a -ρ.
According to (3.16), for any t ∈ [0, T δ a -ρ] we have :

Z(t) = W (t) + δt + 2δ t 0 e -2δB δ (s+ρ) e 2δS -e -2δB δ (s+ρ) ds. = W (t) + δ t 0 coth(δ Z(s))ds. We know that B(t) is a F ρ ρ+t -Brownian motion. Therefore (W (t)) is in- dependent of F ρ ρ . Since S = -B δ (ρ) and (B δ (t); 0 ≤ t ≤ ρ) are F ρ ρ -measurable, then (W (t)) is independent of S and (B δ (t); 0 ≤ t ≤ ρ). Furthermore, T δ a -ρ = inf{t ≥ 0 ; Z(t) = a + b}, with b = S.
To conclude the proof of Proposition 3.2 (part 1 and 3), we use the fact that stochastic differential equation (1.10) admits a unique non negative strong solution. We can prove this property with a similar method as for a Bessel process (we apply Yamada Watanabe Theorem to the square of Z (δ) ).

Remark 3.6 Conditionally to {S ≤ z}, the density of S is :

δ sh δa sh δ(z + a) sh δz 1 sh 2 δ(x + a) 1 {0≤x≤z} .
(3.29) Formula (3.29) is really a direct consequence of (3.28).

Proofs of Theorem 2.4 and Proposition 2.1

The processes (-B δ (t) ; t ≥ 0) and (B -δ (t) ; t ≥ 0) have the same law. Consequently Proposition 3.2 admits a version where (B δ (t) ; 0

≤ t ≤ T δ a ) (resp. S) is replaced by (B -δ (t) ; 0 ≤ t ≤ T -δ -a ) (resp. sup 0≤t≤T -δ -a
B -δ (t)). Then Theorem 2.4

and Proposition 2.1 can be proved by induction on k.

4 First range time, range at a fixed time, asymptotic results

In this section, we focus on B δ stopped at its first range time θ δ (a) defined by (1.5). The first result concerns the law of (B δ (t) ; 0 ≤ t ≤ θ δ (a)). We determine the joint law of (B δ (t) ; 0 ≤ t ≤ θδ (a)) and (B δ (t + θδ (a))

-B δ ( θδ (a)) ; 0 ≤ θ δ (a) -θδ (a)) where θδ (a) =        sup{t ≤ θ δ (a) ; B δ (t) = inf 0≤u≤θ δ (a) B δ (u)} if B δ (θ δ (a)) > 0 sup{t ≤ θ δ (a) ; B δ (t) = sup 0≤u≤θ δ (a)
B δ (u)} otherwise . A similar result was obtained by Vallois [START_REF] Vallois | Diffusion arrêtée au premier instant où l'amplitude atteint un niveau donné[END_REF] when δ = 0.

f (u) = 2δ (1 -e -2δa ) 2 (e 2δu -e -2δa )1 {-a≤u<0} + 2δ (e 2δa
As for the proof of Proposition 3.2, a straightforward approach may be developed using enlargement of filtrations, since θδ (a) is an honest time. More precisely, the optional projection of 1 { θδ (a)≤t} ; t ≥ 0 can be decomposed as :

P θδ (a) ≤ t|F t = M t + A t ,
where (M t ; t ≥ 0) is a martingale and :

A t = 2δe -δa e δa -e -δa B δ (t ∧ θ(a)) - 2δe δa e δa -e -δa B δ (t ∧ θ(a)). (4.3) 
The details are left to the reader. Proposition 4.1 allows us to determine the Laplace transform of θ δ (a). Let σ δ (a) be the stopping time

σ δ (a) = inf s ≥ 0 , Z (δ) (s) > a . (4.4) 
Proposition 4.2 The Laplace transforms of θδ (a), σ δ (a) and θ δ (a) are given by :

E e -λ θδ (a) = δ λ 2λ + δ 2 coth(a 2λ + δ 2 ) coth(δa) -δ - √ 2λ + δ 2 sh(a √ 2λ + δ 2 ) sh(δa) , (4.5 
)

E e -λσ δ (a) = √ 2λ + δ 2 δ sh(δa) sh(a √ 2λ + δ 2 ) , (4.6 
)

E e -λθ(a) = √ 2λ + δ 2 λ √ 2λ + δ 2 ch(a √ 2λ + δ 2 ) ch(δa) sh 2 (a √ 2λ + δ 2 ) - δ sh(δa) sh(a √ 2λ + δ 2 ) - √ 2λ + δ 2 sh 2 (a √ 2λ + δ 2 ) (4.7)
where λ ≥ 0.

Remark 4.3 1) In [START_REF] Vallois | Range reliability in random walks[END_REF], using approximation by random walks, it is proved :

E [θ δ (a)] = a 2 2 f (δa), (4.8) 
where

f (x) = 1 x 2 (x -x coth x + 1)(x + x coth x -1) ; x > 0. (4.9)
Moreover f is decreasing, in particular :

E [θ δ (a)] ≤ E [θ 0 (a)] = a 2 2 . (4.10) 
The variance of θ δ (a) is computed :

Var [θ δ (a)] = a 4 12 g 1 (δa)g 2 (δa), (4.11) 
with

g 1 (x) = 3 sh 2 x -x 2 x 2 sh 2 x ; g 2 (x) = x 2 coth 2 x + 4x coth x -5 -x 2 x 2 ; x > 0.
Moreover,

Var (θ δ (a)) ≤ Var (θ 0 (a)) = a 4 12 . 
2) It is possible to prove Propositions 4.1 and 4.2 using Theorems 2.2, 2.4 and the identity : Ω = ∪ n≥0 ρ n+1 ≤ θδ (a) < ρ n , where the sequence (ρ n ) n≥0 is defined at the beginning of Section 2. It is however easier and shorter to prove directly Propositions 4.1 and 4.2.

Proof of Proposition 4.2

We only give the main ideas of the proof, the details being left to the reader.

Let f λ be the function :

f λ (x) = δ √ 2λ + δ 2 sh(x √ 2λ + δ 2 ) sh(δx) ; x > 0. (4.12)
It is easy to check that f λ is an eigenfunction of the infinitesimal generator associated with Z (δ) :

1 2 f λ (x) + δ coth(δx)f λ (x) = λf λ (x) ; x > 0. (4.13)
The function f λ being locally bounded on [0, +∞), then

E 0 [exp(-λσ δ (a))] = f λ (0) f λ (a) . (4.14) 
This proves (4.6).

Recall (cf formulas 2.1.4 and 2.2.4 p. 295 of [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF])

E e -λT δ u |T δ u < T δ u+a = sh((a + u) √ 2λ + δ 2 ) sh(a √ 2λ + δ 2 ) sh(δa) sh(δ(a + u)) , (4.15 
)

E e -λT δ u |T δ u < T δ u-a = sh((a -u) √ 2λ + δ 2 ) sh(a √ 2λ + δ 2 )
sh(δa) sh(δ(a -u))

. By inversion of the Laplace transform of θ δ (a), the authors in [START_REF] Chong | The ruin problem and cover times of asymmetric random walks and Brownian motions[END_REF] have computed the probability density function of this r.v.

We develop an alternative approach based on the knowledge (c.f. [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF], formula 1.15.8 (1) p. 271) of the joint distribution of (B δ (t), R δ (t)). By tedious calculations (see Section 5), we determine the probability distribution function of R δ (t).

Relation (1.3) allows us to obtain the probability distribution function of θ δ (a) and the rate of decay of P(θ δ (a) > t), as t → ∞. Proposition 4.4 Let a > 0, t > 0 and C k = k 2 π 2 + a 2 δ 2 , k ∈ N. Then :

P (R δ (t) < a) = ∞ k=1 4k 2 π 2 C 2 k exp - C k t 2a 2 1 -(-1) k ch(δa) × 1 + k 2 π 2 t a 2 - 4a 2 δ 2 C k -(-1
) k aδ sh(δa) .

(4.17)

P (θ δ (a) > t) ∼ t→∞ 4π 4 (1 + ch(δa)) a 2 (π 2 + a 2 δ 2 ) t exp - π 2 + a 2 δ 2 2a 2 t . (4.18)
Remark 4.5 1) Formula (4.17) has been obtained in [START_REF] Siebenaler | Hitting times of the range of a birth and death random walk[END_REF], the approach being different.

2) Taking the a-derivative in (4.17) gives the density function of R δ (t).

3) Relation (1.3) implies that : 

P (θ δ (a) > t) = ∞ k=1 4k 2 π 2 C 2 k exp - C k t 2a 2 1 -(-1) k ch(δa) × 1 + k 2 π 2 t a 2 - 4a 2 δ 2 C k -(-1) k aδ sh(δa) . ( 4 
θ δ (a) a a.s. -→ a→∞ 1 δ , (4.20) 
R δ (t) t a.s. -→ t→∞ δ, (4.21) 
δ 3/2 √ a θ δ (a) a - 1 δ d -→ a→∞ N (0, 1) , (4.22) 
√ t R δ (t) t -δ d -→ t→∞ N (0, 1). ( 4 

.23)

Proof 1) We first examine (4.20). By (4.7), we have :

E e -λ a θ δ (a) = 2λ a + δ 2 λ a 2λ a + δ 2 ch(a 2λ a + δ 2 ) ch(δa) sh 2 (a 2λ a + δ 2 ) - δ sh(δa) sh(a 2λ a + δ 2 ) - 2λ a + δ 2 sh 2 (a 2λ a + δ 2 ) . E e -λθ δ (a) a = a δ + λ δa + o 1 a λ δ + λ δa + o 1 a ch(δa + λ δ + o(1)) ch(δa) sh 2 (δa + λ δ + o(1)) - δ sh(δa) sh(δa + λ δ + o(1)) + δ + λ δa + o 1 a sh 2 (δa + λ δ + o(1))
.

The limit of the two first terms in the bracket is easy to determine : sh(δa) sh(δa + As for the third term, it may be neglected (being equivalent to 4δ exp(-2δa)).

Hence θ δ (a)/a converges in distribution to the constant 1/δ. This implies that θ δ (a)/a converges in probability to 1/δ. Since (R δ (t) ; t ≥ 0) is the right continuous inverse of (θ δ (a) ; a ≥ 0), R δ (t)/t converges in probability to δ.

(R δ (t) ; t ≥ 0) is a subadditive process (cf [START_REF] Durrett | Probability : theory and examples[END_REF], example 6.2 p.320, in the discrete case). The subadditive ergodic theorem implies that R δ (t)/t converges a.s., as t → ∞. As a result, R δ (t)/t converges a.s. towards δ when t → ∞.

2) To prove (4.22), we use the characteristic function of θ δ (a). This function can be explicitly determined through (4.7) and analytic continuation argument. In the discrete case (cf proof of Theorem 20 of [START_REF] Vallois | The range of a simple random walk on Z[END_REF]) a detailed approach is developed.

3

) We claim that R δ (t) t -δ √ t converges in distribution to N (0, 1) when t → +∞.
Let a > 0 and t > 0 such that a √ t + δt > 0. We have :

p = P R δ (t) t -δ √ t < a = P (R δ (t) < s) ,
where s = a √ t + δt.

Property (1.3) implies that

p = P (θ δ (s) > t) = P θ δ (s) s - 1 δ √ s > u(t) ,
where

u(t) = t s - 1 δ √ s = - a δ δ + a √ t .
Since t → +∞ implies s → +∞, and u(t) ∼ t→∞ -a δ 3/2 , (4.23) follows immediately.

of [START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF] : We decompose C i (δ) + C i (-δ), 1 ≤ i ≤ 3, as follows :

P (R δ (t) < a) = 1 √ 2πt e - δ 2 t 2 k∈Z µ k , with µ k = a -a 2k 
C 1 (δ) + C 1 (-δ) = -aA 1 + (-1) k A 2 , C 2 (δ) + C 2 (-δ) = a 2 A 1 + a 2 A 3 -(-1) k a 2 A 4 , C 3 (δ) + C 3 (-δ) = -a 3 A 3 -(-1) k a 3 A 4 -2a 3 A 5 + (-1) k 2a 3 A 6 ,
where we have set : 

A 1 = 1 δa + ikπ + 1 -δa + ikπ = -2ikπ C k

22

Coming back to (5.4), we easily obtain successively : In particular :

I k exp k 2 π 2 t 2a 2 = ikπt a 2 - k 2 π
(I k + I -k ) exp k 2 π 2 t 2a 2 = k 2 π 2 C 2 k (1 -(-1) k ch(δa)) × 4t(k 2 π 2 + δ 2 a 2 ) a 2 -4 (a 2 δ 2 -k 2 π 2 )t a 2 + 8k 2 π 2 -24a 2 δ 2 C k -(-1) k 8 k 2 π 2 C 2 k aδ sh(δa).
This achieves the proof of Proposition 4.4.

δα δ an 0 e

 0 δy sh δy dy = e -δα 4 e 2δan -1 -2δa n .

Proposition 3 . 2

 32 Let S and ρ be r.v.'s defined by (3.10) and (3.11). Then, 1) S has a density function ϕ ϕ(x) = δe δa sh δa 1 sh 2 δ(x + a) 1 {x≥0} .

(3. 20 )

 20 Proof a) Recall a classical result concerning hitting times of Brownian motion with drift (see for instance Borodin and Salminen[START_REF] Borodin | Handbook of Brownian motion-facts and formulae[END_REF] formula 2.1.2 p. 295)P T δ b < T δ a B δ (0) = x) = e -2δx -e -2δae -2δb -e -2δa , for x between a and b.(3.21) 

  P(S ∈ dx) = 2δe 2δx e 2δx -e -2δa P(S ≥ x) dx. Hence, S has a density function ϕ and :ϕ(x) = 2δe 2δx e 2δx -e -2δa ∞ x ϕ(s) ds.(3.27)(3.27) may be written as a linear differential equation with respect to Φ(x) = ∞ x ϕ(s) ds. It is easy to solve explicitly since Φ(0) = 1 :

(4. 1 ) 4 . 1 1.

 141 Proposition The r.v. B δ ( θδ (a)) has density function f :

( 4 . 2 ) 2 .

 422 -1) 2 (e 2δa -e 2δu )1 {0≤u≤a} . Conditionally to {B δ ( θδ (a)) = u}, a. the processes (B δ (s) ; 0 ≤ s ≤ θδ (a)) and (B δ (s + θδ (a)) -u ; 0 ≤ s ≤ θ(a) -θδ (a)) are independent. b. (B δ (s) ; 0 ≤ s ≤ θδ (a)) has the same law as a Brownian motion with drift δ stopped at its first hitting time of level u, conditioned by hitting u before u -sgn(u)a. c. (|B δ (s + θδ (a)) -u| ; 0 ≤ s ≤ θ(a) -θδ (a)) has the same law as the process Z (δ) defined by (1.10), stopped at its first hitting time of level a.

  (4.16) (4.5) is a direct consequence of (3.21) and Proposition 4.1.

  λ δ + o(1)) = e δa -e -δae δa+ λ δ +o(1) -e -δa-

2 + 2a 3 (- 1 ) k e δa - 1 (aδ + ikπ) 3 ., I k exp k 2 π 2 t 2a 2 = - ikπt a 3 (

 231133 ConsequentlyC 1 (δ) + C 1 (-δ)) -k 2 π 2 t a 4 (C 2 (δ) + C 2 (-δ)) + ikπ a 3 (C 3 (δ) + C 3 (-δ)).(5.6)

2 k A 4 2 k A 5 3 k A 6 = (2δ 3 a 3 -

 2425363 + ikπ) 2 = 2(a 2 δ 2 -k 2 π 2 ) C = e δa (δa + ikπ) 2 + e -δa (-δa + ikπ) 2 = 2 ch(δa)(a 2 δ 2 -k 2 π 2 ) -4iaδkπ sh(δa) C = 1 (δa + ikπ) 3 + 1 (-δa + ikπ) 3 = -6δ 2 a 2 ikπ + 2ik 3 π 3 C = e δa (δa + ikπ) 3 + e -δa (-δa + ikπ) 3 , 6k 2 π 2 δa) sh(δa) + i(-6δ 2 a 2 kπ + 2k 3 π 3 ) ch(δa) C 3 k .

  .19)Again, taking the t-derivative in (4.19), we obtain the density function of θ δ (a). However that series expension is more complicated than (4.19) (c.f. also Theorem 9 of[START_REF] Chong | The ruin problem and cover times of asymmetric random walks and Brownian motions[END_REF]) : it is more convenient to use probability distribution function instead of probability density function.The law of θ δ (a) or R δ (t) being complicated, it seems natural to consider the asymptotic behaviour of θ δ (a) (resp. R δ (t)) when a goes to +∞ (resp. t → +∞). The asymptotic comportments of θ δ (a) and R δ (t) are given by the following convergence results :

	Proposition 4.6

  2 t a 2 A 1 -(-1) k ikπt a 2 A 2 -k 2 π 2 t a 2 + ikπ A 3 + (-1) k k 2 π 2 t a 2 -ikπ A 4 -2ikπA 5 + (-1) k 2ikπA 6 = Re I k exp k 2 π 2 t 2a 2 = 2k 2 π 2 t C k a 2 -(-1) k 2k 2 π 2 t ch(δa) C k a 2 -2 (a 2 δ 2 -k 2 π 2 )k 2 π 2 t C 2 k a 2 +(-1) k 2 ch(δa)(a 2 δ 2 -k 2 π 2 )k 2 π 2 t -4k 2 π 2 a 3 δ sh(δa) C 2 k a 2 + 4k 4 π 4 -12k 2 π 2 a 2 δ 2 C 3 k +(-1) k (12δ 2 a 2 k 2 π 2 -4k 4 π 4 ) ch(δa) C 3

k

.
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Proof ofProposition 4.4 In order to calculate the probability distribution function of R δ (a), we perform the following calculations. Beginning with the formula 1.15.8 (1) p. 271