
HAL Id: hal-00141525
https://hal.science/hal-00141525

Submitted on 13 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Range of Brownian motion with drift
Etienne Tanré, Pierre P. Vallois

To cite this version:
Etienne Tanré, Pierre P. Vallois. Range of Brownian motion with drift. Journal of Theoretical
Probability, 2006, 19 (1), pp.45-69. �10.1007/s10959-006-0012-7�. �hal-00141525�

https://hal.science/hal-00141525
https://hal.archives-ouvertes.fr


Range of Brownian motion with drift

Etienne Tanré1 , Pierre Vallois2

Abstract

Let (Bδ(t) ; t ≥ 0) be a Brownian motion with drift δ > 0, starting at
0. Let us define by induction S1 = − inf

t≥0
Bδ(t), ρ1 the last time such that

Bδ(ρ1) = −S1, S2 = sup
0≤t≤ρ1

Bδ(t), ρ2 the last time such that Bδ(ρ2) = S2

and so on. Setting Ak = Sk + Sk+1 ; k ≥ 1, we compute the law of
(A1, · · · , Ak) and the distribution of ((Bδ(t+ρl)−Bδ(ρl) ; 0 ≤ t ≤ ρl−1−
ρl))2≤l≤k for any k ≥ 2, conditionally to (A1, · · · , Ak). We determine the
law of the range Rδ(t) of (Bδ(s) ; s ≥ 0) at time t, and the first range
time θδ(a) (i.e. θδ(a) = inf{t > 0 ; Rδ(t) > a}). We also investigate the
asymptotic behaviour of θδ(a) (resp. Rδ(t)) as a →∞ (resp. t →∞).

Key words : Range Process, Enlargement of filtration, Brownian motion with
drift.

MSC 2000 : 60E10, 60F05, 60G17, 60G40, 60G44, 60J10, 60J60, 60J65

1 Introduction

1) The range concerning one-dimensional Markov chains or random walks
has been already investigated by [5] and [4]. See for instance [15] for a short
survey. The aim of this paper is to study the range of a Brownian motion
with drift ; this process being the prototype of transient diffusions. The range
(R(X)(t) ; t ≥ 0) associated with a continuous process (Xt ; t ≥ 0) is the process :

R(X)(t) = sup
0≤u,v≤t

(Xv −Xu) = sup
0≤u≤t

Xu − inf
0≤u≤t

Xu. (1.1)

When (Xt) is a one-dimensional Brownian motion started at 0, Feller [4] has
computed the density function of R(X)(t), using the fact that the joint distribu-
tion of sup

0≤u≤t
Xu and inf

0≤u≤t
Xu is explicitly known. Unfortunately the result is

expressed as the sum of a series, and the result cannot be generalized to diffu-
sions since the joint distribution of the maximum and the minimum is in general
unknown.
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To go further we observe that t 7→ R(X)(t) is a non-decreasing, continuous
function starting at 0. Therefore we can define its right continuous inverse :

θ(X)(a) = inf
{
t ≥ 0;R(X)(t) > a

}
. (1.2)

Formally it is equivalent to deal with (θ(X)(a) ; a ≥ 0) either (R(X)(t) ; t ≥ 0),
since we have {

R(X)(t) < a
}

=
{
θ(X)(a) > t

}
. (1.3)

It is actually more convenient to work with (θ(X)(a) ; a ≥ 0). For instance,
if (Xt) is a Brownian motion, then for any a > 0, the Laplace transform of
the r.v. θ(X)(a) can be computed, see [7], [13]. Moreover (θ(X)(a) ; a ≥ 0) has
independent increments.

Assume that (Xt) is a diffusion process and for simplicity X0 = 0. It is proved
(Theorem 4, [13]) that the process (Xt; 0 ≤ t ≤ θ(X)(Ua)) is distributed as
(Xt; 0 ≤ t ≤ T (X)(aU)∧T (X)(a(U−1)), where a > 0, T (X)(c) is the first hitting
time of level c, and U denotes a r.v. uniformly distributed on [0, 1], independent
of the underlying process (Xt). This property has been generalized by [11].
The Laplace transform of T (X)(c) ∧ T (X)(d) can be expressed besides through
eigenfunctions associated with the generator of (Xt). Consequently previous
result gives an analytic expression for the Laplace transform of θ(X)(a).

2) Let (B(t) ; t ≥ 0) be a one-dimensional Brownian motion started at 0,
and (St ; t ≥ 0) its unilateral maximum : St = sup0≤u≤tB(u). The process
(St ; t ≥ 0) gives rise to an excursion theory. More precisely it can be pro-
ved (see for instance [10], Chap. XII, section 2.) that the family of processes{(
x−B(T (B)(x−) + t) ; 0 ≤ t ≤ T (B)(x)− T (B)(x−)

)
;x > 0

}
is Poisson point

process whose characteristic measure is explicit.

It seems natural to ask for a similar question replacing the one-sided maximum
by the range. Results in this direction has been obtained in [6], [8] and [14]. In
these decompositions, the fact that the Brownian motion is recurrent plays a
crucial role. We shall be a little bit more precise below. This leads naturally to
investigate the case of transient diffusions. To obtain explicit results, we restrict
our attention to the case of Brownian motion with drift.

Let (Bδ(t) ; t ≥ 0) be the Brownian motion with drift δ : Bδ(t) = B(t) +
δ t. For simplicity, we note (Rδ(t) ; t ≥ 0) the range of (Bδ(t)) instead of
(R(Bδ)(t) ; t ≥ 0) :

Rδ(t) = sup
0≤s,u≤t

(Bδ(s)−Bδ(u)) = sup
0≤s≤t

Bδ(s)− inf
0≤s≤t

Bδ(s). (1.4)

The right continuous inverse of (Rδ(t) ; t ≥ 0) is noted (θδ(a) ; a ≥ 0) :

θδ(a) = inf {t ≥ 0 ; Rδ(t) > a} . (1.5)

3) Let us explain why the transient case is drastically different from the
recurrent case. Let Σδ be the random set :

Σδ = {a ≥ 0 ; Bδ(θδ(a))Bδ(θδ(a−)) < 0} (1.6)
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where θδ(a−) is the left limit of θδ at a.

When δ = 0, for any a > 0, the two sets Σ0 ∩ (0, a] and Σ0 ∩ [a,+∞) are
infinite. This generates a difficulty to enumerate the points in Σ0. However
a decomposition of the Brownian path (B0(t) ; t ≥ 0) has been given [8, 14]
through Σ0, and three dimensional Bessel processes.

Suppose δ > 0. Since Bδ(t) drifts to infinity, as t → +∞, for any a > 0 the
random set Σδ ∩ [a,+∞) is finite and enables an explicit description of Σδ. Let
us first introduce the minimum −S1 of (Bδ(t) ; t ≥ 0), and ρ1 the last time such
that Bδ(ρ1) = −S1. Secondly let S2 be the maximum of Bδ(t), t running over
[0, ρ1], and ρ2 be the last time in [0, ρ1] such that Bδ(ρ2) = S2, and so on, see
(2.1) for details. Then

Σδ = {An ; n ≥ 1} (1.7)

where An = Sn + Sn+1.

We compute the density function of (S1, · · · , Sn) in Proposition 2.1. We also
obtain an enlighted description of the law of (A1, · · · , An) (cf Theorem 2.2). Let
ψ : R → (−∞, 1) be the function :

ψ(x) =
ex − 1− x

ex − 1
if x 6= 0, and ψ(0) = 0. (1.8)

Then ψ is one-to-one from R to (−∞, 1) and :(
ψ(2δA1),

ψ(−2δA2)
ψ(−2δA1)

, . . . ,
ψ((−1)n+12δAn)
ψ((−1)n+12δAn−1)

)
d= (U1, U2, . . . , Un) (1.9)

where U1, · · · , Un are i.i.d. r.v.’s, uniformly distributed on [0, 1].

We are also able to determine the law of the sequence of processes (|Bδ(t+
ρn) − Bδ(ρn)| ; 0 ≤ t ≤ ρn−1 − ρn)n≥2. The result being technical, we do not
state it in the Introduction. A complete formulation can be found in Theorem
2.4. We would like to note that three dimensional Bessel processes coming from
the decomposition of the Brownian motion have to be replaced by non negative
diffusions distributed as the process Z(δ) where

Z(δ)(t) = Bt + δ

∫ t

0

coth(δZ(δ)(s)) ds. (1.10)

Heuristically, (Z(δ)(t) ; t ≥ 0) is the process (Bδ(t) ; t ≥ 0) conditioned to be
positive, see [17]. Taking formally the limit δ → 0 in (1.10), we recover the
three-dimensional Bessel process started at 0.

4) In Section 4, we focus on the law of Rδ(t) (resp. θδ(a)) where t > 0 (resp.
a > 0) is fixed. We compute the two distribution functions ofRδ(t) and θδ(a). We
partially recover the result of [2]. A path decomposition of (Bδ(t) ; 0 ≤ t ≤ θδ(a))
(Proposition 4.1) allows us to determine the Laplace transform of θδ(a). Then,
by a straightforward approach, it is easy to obtain the asymptotic behaviour of
θδ(a), a → +∞. We prove two limit results : the first one looks like a Law of
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Large Numbers and the second one is similar to the Central Limit Theorem.
More precisely :

θδ(a)
a

a.s.−→
a→∞

1
δ
, (1.11)

√
a

(
θδ(a)
a

− 1
δ

)
d−→

a→∞
N
(
0, 1/δ3

)
, (1.12)

where N
(
0, 1/δ3

)
denote the Gaussian distribution with 0-mean and variance

1/δ3.

2 Notations and main results

We keep the notations introduced in the Introduction. In particular (B±δ(t) ; t ≥
0) is a Brownian motion with constant drift ±δ starting at 0. Throughout this
paper, we suppose that δ > 0.

Let −S1 denote the absolute (random) minimum of (Bδ(t) ; t ≥ 0) and ρ1 the
last (random) time when it is reached. The decomposition of the Brownian path
t 7→ Bδ(t) may be continued by induction on k ≥ 2, as follows : Sk = sup

t∈[0,ρk−1]

(−1)kBδ(t),

ρk = sup{t ∈ [0, ρk−1] , Bδ(t) = (−1)k
Sk}.

(2.1)

Note that if we set ρ0 = ∞, then relations (2.1) are still valid for k = 1.

Since Bδ(t) goes to +∞, as t→∞, and t 7→ Bδ(t) is a continuous function,
then the random times (ρk)k≥1 are well defined. This does not mean that {t ∈
[0, ρk−1];Bδ(t) = (−1)k

Sk} is reduced to the singleton {ρk}. We actually prove
that this property holds.

We start with the law of (S1, · · · , Sk) ; k ≥ 1.

Proposition 2.1 Suppose δ > 0. Let (Sk ; k ≥ 1) be defined by (2.1). Then

1. The law of S1 is exponential of parameter 2δ
(i.e. with density function 2δe−2δx

1{x≥0}).

2. Conditionally to {S1 = x1}, S2 has density function :

δeδx1 sh(δx1)
1

sh2(δ(x+ x1))
1{x≥0}. (2.2)

3. For every k ≥ 3, conditionally to {S1 = x1, . . . , Sk−1 = xk−1}, Sk has
density function :

δ
sh δxk−1 sh δ(xk−1 + xk−2)

sh δxk−2

1
sh2 δ(xk−1 + x)

1{0≤x≤xk−2}.
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Proof The proof of Proposition 2.1 is postponed in Section 3. �

Note that xk + xk−1 appears in the conditional density function of Sk. This
leads us to introduce

Ak = Sk + Sk+1 ; k ≥ 1. (2.3)

(Ak)k≥1 is the sequence of maximal ranges associated with (Bδ(t) ; t ≥ 0).

Theorem 2.2 Suppose δ > 0. Then

1. (A1, · · · , An) has a density function given by

δn

2

[
n−1∏
k=1

e(−1)kδak

sh(δak)

]
e(−1)n2δan − 1 + (−1)n+12δan

sh2 δan

1{0≤an≤···≤a1}. (2.4)

2. Let : ψ : R → (−∞, 1)

ψ(x) =
ex − 1− x

ex − 1
; x 6= 0 and ψ(0) = 0.

ψ is one-to-one from R to (−∞, 1) and we have(
ψ(2δA1),

ψ(−2δA2)
ψ(−2δA1)

, . . . ,
ψ((−1)n+12δAn)
ψ((−1)n+12δAn−1)

)
d= (U1, U2, . . . , Un)

(2.5)
where U1, · · · , Un are i.i.d. r.v.’s, uniformly distributed on [0, 1].

Proof The proof is postponed in Section 3 �

Remark 2.3 1) Recall that Σδ is defined by (1.6). In [14], it is proved
that if δ = 0, then Σ0 is a one-dimensional Poisson point process (P.p.p.) with
characteristic measure ν(da) = 1

a1{a>0}da. Concerning P.p.p. we refer to [10]
(chapter XII).

If δ > 0, we claim that Σδ is not a P.p.p.. Using (2.5), by tedious calculations
we prove

E

∑
n≥1

f(An)

 = δ2
∫ ∞

0

f(x)
x

sh2(δx)
dx, (2.6)

for any positive Borel function f .

Suppose that Σδ is a P.p.p. with characteristic measure νδ, (2.6) implies that :

νδ(dx) =
δ2x

sh2(δx)
1{x>0}dx. (2.7)
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A straightforward calculation gives :

νδ ([b,+∞)) = δb coth(δb)− log(sh(δb))− log 2 , b > 0. (2.8)

Consequently, N =
∑
n≥1

1{An≥b} is a Poisson random variable with parameter

νδ ([b,+∞)).

But n 7→ An is a decreasing sequence, then

P(N = 0) = P(A1 < b) = Ψ(2δb).

This generates a contradiction since

P(N = 0) = exp(−νδ([b,+∞))) 6= Ψ(2δb).

2) Due to (2.4), it is easy to check that (A2n−1, A2n;n ≥ 1) is a Markov chain,
which takes its values in

{
(x, y) ∈ R2; 0 < y < x

}
, with transition probability

density function :

P ((u, v); (x, y)) =
4δ2

Ψ(2δv)
1

e2δx − 1
e2δy

e2δy − 1
Ψ(2δy)1{0<y<x<v}. (2.9)

Note that this quantity dœs not depend on u.

3) If we set
Xn = ψ

(
(−1)n+1An

)
; n ≥ 1,

then (Xn ; n ≥ 1) is a Markov chain on (−∞, 1), with initial distribution the
uniform distribution on [0, 1], with transition probability kernel :

K(x, f) = E
[
f(Uψ(−ψ−1(x)))

]
(2.10)

where U denotes a r.v. uniformly distributed in [0, 1].

We now give the law of the sequence of processes ((Bδ(t+ ρk)−Bδ(ρk) ; t ∈
[0, ρk−1 − ρk]))k≥1. The result makes use of the process Z(δ) defined by (1.10).

Theorem 2.4 Let δ > 0 and k ≥ 2.
Conditionally to S1 = x1, . . . , Sk = xk,

1) (Bδ(t) ; 0 ≤ t ≤ ρk), (Bδ(t+ρ1)−Bδ(ρ1) ; t ≥ 0), (Bδ(t+ρ2)−Bδ(ρ2) ; 0 ≤
t ≤ ρ1 − ρ2), ..., (Bδ(t+ ρk)−Bδ(ρk) ; 0 ≤ t ≤ ρk−1 − ρk) are independent ;

2) (Bδ(t) ; 0 ≤ t ≤ ρk) has the law of Brownian motion with drift (−1)kδ
stopped at the first hitting time of level (−1)kxk, and conditioned not to hit
(−1)k+1xk−1 ;

3) For any 2 ≤ l ≤ k, (|Bδ(t+ ρl)−Bδ(ρl)| ; 0 ≤ t ≤ ρl−1 − ρl) is a process
with the same law as Z(δ) stopped at the first moment it reaches the level
xl + xl−1.
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3 Proofs of Theorems 2.2, 2.4 and Proposition 2.1

We keep the notations introduced in Sections 1 and 2.

3.1 Proof of Theorem 2.2

1) Formula (2.4) is a direct consequence of Proposition 2.1. Indeed, let F be
a test function. We have :

E [F (A1, . . . , An)] = E [F (S1 + S2, . . . , Sn + Sn+1)]

=
∫

Rn+1
F (x1 + x2, . . . , xn + xn+1)2δn+1 e−δx1 sh δxn∏n−1

k=1 sh δ(xk+1 + xk)

× 1
sh2δ(xn+1+xn)

1{x1≥x3≥···≥0}1{x2≥x4≥···≥0}dx1 . . . dxn+1.

We use the following change of variables :
x1 = x1

a1 = x1 + x2

. . .
an = xn + xn+1.

(3.1)

Then,

xk − xk+2 = ak − ak+1 ; 1 ≤ k ≤ n− 1
xn = α+ (−1)n+1x1

xn+1 = an − (α+ (−1)n+1x1)
where α = an−1 − an−2 + · · ·+ (−1)na1.

Consequently,

E [F (A1, . . . , An)] =
∫

Rn

F (a1, . . . , an)
2δn(∏n−1

k=1 sh(δak)
)

sh2 δan

×1{0 ≤ an ≤ an−1 ≤ · · · ≤ a1}I(α)da1 . . . dan,

where

I(α) =
∫ ∞

0

δe−δx1 sh δ(α+ (−1)n+1x1)1{0≤α+(−1)n+1x1≤an} dx1.

Suppose for instance that n is even. Setting y = α− x1 in order to obtain

I(α) = e−δαδ

∫ an

0

eδy sh δy dy

=
e−δα

4
(
e2δan − 1− 2δan

)
.
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Then (2.4) follows immediately.

2) The density function h1 of A1 is

h1(x) =
δ

2 sh2 δx

(
e−2δx − 1 + 2δx

)
. (3.2)

Let H1 denote the distribution function of A1

H1(x) =
∫ x

0

h1(y) dy. (3.3)

We have ∫ x

0

e2y − 1− 2y
sh2 y

dy =
ex

shx
(
e−2x − 1 + 2x

)
. (3.4)

Consequently
H1(x) = ψ(2δx). (3.5)

So
A1

d=
1
2δ
ψ−1(U1), (3.6)

where U1 is a uniform random variable on [0, 1].

We compute now the density h(x)
2 of A2 conditionally to A1 = x.

h
(x)
2 (y) =

δ2

2
e2δy − 1− 2δy

sh2 δy

e−δx

sh δx
1{0≤y≤x}

2 sh2 δx

δ

1
e−2δx − 1 + 2δx

= δ
e−δx sh δx

e−2δx − 1 + 2δx
e2δy − 1− 2δy

sh2 δy
1{0≤y≤x}. (3.7)

Let H(x)
2 denote the associated distribution function

H
(x)
2 (y) =

e−δx sh δx
e−2δx − 1 + 2δx

δ

∫ y

0

e2δt − 1− 2δt
sh2 δt

dt. (3.8)

Relation (3.4) implies that :

H
(x)
2 (y) =

e−δx sh δx
e−2δx − 1 + 2δx

eδy

sh δy
(
e−2δy − 1 + 2δy

)
=

ψ(−2δy)
ψ(−2δx)

.

So, we have proved that
(
ψ(2δA1),

ψ(−2δA2)
ψ(−2δA1)

)
is distributed as (U1, U2), where

U1 and U2 are two independent r.v.’s, uniformly distributed on [0, 1].

Reasoning by induction, identity (2.5) can be proved by the same way via (2.4).
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3.2 Proofs of Theorem 2.4 and Proposition 2.1

In our approach, Theorem 2.4 and Proposition 2.1 are a direct consequence
of Proposition 3.2 stated below. Therefore, we first focus on this key result, and
we prove Theorem 2.4 and Proposition 2.1 at the end of this subsection.

The description of the laws of (Bδ(t) ; 0 ≤ t ≤ ρ1) and (Bδ(t)−Bδ(ρ1) ; t ≥
ρ1) is given by the well-known theorem of Williams [17].

Proposition 3.1 ([17])

1) The law of S1 is exponential with parameter 2δ (i.e. its density function is
2δe−2δx

1{x≥0}).

2) Conditionally to S1 = x1,

a. (Bδ(t) ; t ≤ ρ1) and (Bδ(t+ρ1)−Bδ(ρ1) ; t ≥ 0) are independent processes

b. (Bδ(t) ; t ≤ ρ1) is a process with the same law as a B−δ stopped at its
first hitting time of −x1

c. (Bδ(t+ ρ1)−Bδ(ρ1) ; t ≥ 0) is a (positive) process distributed as Z(δ).

To obtain the decomposition of the Brownian motion with drift given in Theo-
rem 2.4, Proposition 3.1 leads us to study (B−δ(t) ; 0 ≤ t ≤ T−δ

−a ) conditionally
to max

0≤t≤T−δ
−a

B−δ(t) where :

T−δ
−a = inf {t ≥ 0 , B−δ(t) < −a} , a > 0. (3.9)

Since (−B−δ(t) ; 0 ≤ t ≤ T−δ
−a ) and (Bδ(t) ; 0 ≤ t ≤ T δ

a ) have the same law, it is
equivalent to determine the distribution of (Bδ(t) ; 0 ≤ t ≤ T δ

a ) conditionally to

S = − inf
t∈[0,T δ

a ]
Bδ(t), (3.10)

T δ
a being the first hitting time of level a :

T δ
a = inf {t ≥ 0 , Bδ(t) > a} , a > 0.

Let ρ be the random time :

ρ = sup{t ∈ [0, T δ
a ], Bδ(t) = −S}. (3.11)

Time ρ plays a central role in our approach, as shows the following proposition.

Proposition 3.2 Let S and ρ be r.v.’s defined by (3.10) and (3.11). Then,

1) S has a density function ϕ

ϕ(x) = δeδa sh δa
1

sh2 δ(x+ a)
1{x≥0}. (3.12)
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2) Conditionally to S = b,
a. (Bδ(t) ; 0 ≤ t ≤ ρ) and (Bδ(t + ρ) − Bδ(ρ) ; 0 ≤ t ≤ T δ

a − ρ) are inde-
pendent,

b. (Bδ(t) ; 0 ≤ t ≤ ρ) is a process with the same law as a Brownian motion
with drift −δ, stopped at its first hitting time of level −b and conditioned
to stay less than a,

c. (Bδ(t+ ρ)−Bδ(ρ) ; 0 ≤ t ≤ T δ
a − ρ) is a (positive) process distributed as

the process Z(δ), stopped at its first hitting time of level a+ b

Before starting the proof of Proposition 3.2, we would like to explain our
approach.

Let (Ft) be the natural filtration generated by (B(t) ; t ≥ 0). Unfortunately
the random time ρ is not stopping time. However ρ is a last exit time : ρ =
sup{t ∈ [0, T δ

a ];Bδ(t) = sup
0≤u≤t

Bδ(u)}. This leads us to apply the theory of

enlargement of filtrations (See Protter [9] Ch. VI).

Let (Fρ
t ) be the smallest right-continuous filtration containing (Ft) (i.e. Ft ⊂

Fρ
t , for any t ≥ 0) such that ρ is a (Fρ

t )-stopping time. Let :

Y ρ
t = P (ρ ≤ t|Ft) , (3.13)

(Y ρ
t ; t ≥ 0) is the optional projection of

(
1{ρ≤t}; t ≥ 0

)
(cf [9] p 371).

It is easy to check that (Y ρ
t ; t ≥ 0) is a (Ft)-submartingale. Let :

Y ρ
t = Mρ

t +Aρ
t , (3.14)

be its Doob-Meyer decomposition, where (Mρ
t ; t ≥ 0) denotes the martingale

part, (Aρ
t ; t ≥ 0) is a non-decreasing and adapted process such that Aρ

0 = 0. The
processes (Y ρ

t ; t ≥ 0) and (Aρ
t ; t ≥ 0) will be given in Lemma 3.3.

To determine the law of
(
Bδ(s); s ≤ ρ

)
, we need the following result.

Let (Ut; t ≥ 0) be a non-negative and (Ft)-adapted process then ([9] p 371) :

E[Uρ] = E
[∫ ∞

0

UtdA
ρ
t

]
. (3.15)

Note that S = − min
0≤s≤ρ

Bδ(s). Taking Ut = F (Bδ(s); s ≤ t) f(− min
0≤s≤t

Bδ(s)),

where F and f are measurable and non negative, we get :

E [F (Bδ(s); s ≤ ρ) f(S)] = E
[∫ ∞

0

F (Bδ(s); s ≤ t) f(− min
0≤s≤t

Bδ(s))dA
ρ
t

]
.

Since (Aρ
t ; t ≥ 0) is explicitly known, previous identity allows us to determine

the law of
(
Bδ(s); s ≤ ρ

)
conditionally to S, see Lemma 3.5.

To obtain the law of (Bδ(t+ ρ)−Bδ(ρ) ; 0 ≤ t ≤ T δ
a − ρ), we use ([9] Theorem

18, p 375) the following property :

B(t) = B(t)− χ(t) is a (Fρ
t )− Brownian motion (3.16)
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where :

χ(t) = −
∫ t∧ρ

0

1
1− Y ρ

s
d 〈B,Mρ〉s +

∫ t

0

1{ρ<s}
1
Y ρ

s
d 〈B,Mρ〉s . (3.17)

This allows us to prove that (Bδ(t + ρ) − Bδ(ρ) ; 0 ≤ t ≤ T δ
a − ρ) solves a

stochastic differential equation of type (1.10).

Lemma 3.3 Let (Y ρ
t )t≥0 be the process defined by (3.13).

1. We have :

Y ρ
t =

e2δBδ(t∧T δ
a ) − e−2δBδ(t∧T δ

a )

e2δBδ(t∧T δ
a ) − e−2δa

; t ≥ 0, (3.18)

where Bδ(t) = − inf
s≤t

Bδ(s).

2. (Y ρ
t )t≥0 is a (Ft) sub-martingale with Doob-Meyer decomposition (3.14)

and

Aρ
t = ln

(
e2δBδ(t∧T δ

a ) − e−2δa

1− e−2δa

)
(3.19)

Mρ
t = 2δ

∫ t∧T δ
a

0

1
e2δBδ(s) − e−2δa

e−2δBδ(s) dB(s). (3.20)

Proof a) Recall a classical result concerning hitting times of Brownian motion
with drift (see for instance Borodin and Salminen [1] formula 2.1.2 p. 295)

P
(
T δ

b < T δ
a

∣∣Bδ(0) = x) =
e−2δx − e−2δa

e−2δb − e−2δa
, for x between a and b. (3.21)

b) Let t > 0 fixed. We have :

1{ρ≤t} = 1{ρ≤t≤T δ
a} + 1{T δ

a≤t}. (3.22)

If t ≤ T δ
a , ρ ≤ t means that after the time t, Bδ hits a before −Bδ(t). Conse-

quently :

P(ρ ≤ t ≤ T δ
a |Ft) =

e2δBδ(t) − e−2δBδ(t)

e2δBδ(t) − e−2δa
1{t≤T δ

a}. (3.23)

Ỹ ρ denotes the process :

Ỹ ρ
t =

e2δBδ(t) − e−2δBδ(t)

e2δBδ(t) − e−2δa
for t ≥ 0. (3.24)

Note that Ỹ ρ
T δ

a
= 1, therefore : Y ρ

t = Ỹ ρ
t∧T δ

a
.

11



c) We know that e−2δBδ(t) = e−2δB(t)−2δ2t is a martingale. So using the classical
rules of stochastic calculus we get :

dỸ ρ
t =

1
e2δBδ(t) − e−2δa

e−2δBδ(t)2δdB(t)

+
e−2δBδ(t) − e−2δa(
e2δBδ(t) − e−2δa

)2 2δe2δBδ(t)dBδ(t).

(3.25)

Since the support of the random measure dBδ is included in {t ≥ 0 ; Bδ(t) =
−Bδ(t)}, then (3.19) and (3.20) follow immediately. �

The following result will be useful in the proof of Lemma 3.5 below.

Proposition 3.4 Let x > 0 and y > 0. Then (Bδ(t) ; 0 ≤ t ≤ T δ
x ) condi-

tioned by {T δ
x < T δ

−y} is distributed as (B−δ(t) ; 0 ≤ t ≤ T−δ
x ) conditioned by

{T−δ
x < T−δ

−y }.

Proof Let F be a test function. We have :

A = E
[
F
(
B(t) + δt ; 0 ≤ t ≤ T δ

x

)
|T δ

x < T δ
−y

]
= E

[
F
(
B(t) + δt ; , 0 ≤ t ≤ T δ

x

)
1{T δ

x <T δ
−y}

] 1
P(T δ

x < T δ
−y)

.

The r.v. F
(
B(t) + δt ; 0 ≤ t ≤ T δ

x

)
1{T δ

x <T δ
−y} being FT δ

x
measurable, and T δ

x <

∞ a.s., Girsanov’s theorem and (3.21) imply :

A = E
[
F
(
B(t), 0 ≤ t ≤ T 0

x

)
1{T 0

x <T 0
−y} exp(δB(T 0

x )− δ2

2
T 0

x )
]
e−2δx − e2δy

1− e2δy
,

= E
[
F
(
B(t), 0 ≤ t ≤ T 0

x

)
1{T 0

x <T 0
−y} exp(−δ

2

2
T 0

x )
]
e−δx − e2δy+δx

1− e2δy
.

Replacing δ by −δ, we obtain similarly

Ã = E
[
F
(
B(t)− δt, 0 ≤ t ≤ T−δ

x

)
|T−δ

x < T−δ
−y

]
,

= E
[
F
(
B(t), 0 ≤ t ≤ T 0

x

)
1{T 0

x <T 0
−y} exp(−δB(T 0

x )− δ2

2
T 0

x )
]

×e
2δx − e−2δy

1− e−2δy
,

= E
[
F
(
B(t), 0 ≤ t ≤ T 0

x

)
1{T 0

x <T 0
−y} exp(−δ

2

2
T 0

x )
]
eδx − e−2δy−δx

1− e−2δy
.

�

We are now able to describe the law of (Bδ(t); 0 ≤ t ≤ ρ) conditionally to S.
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Lemma 3.5 1) The r.v. S has a density function ϕ given by (3.12).

2) Conditionally to S = b, (Bδ(t) ; 0 ≤ t ≤ ρ) is a process with the same law as
a Brownian motion with drift −δ, stopped at its first hitting time of level −b
and conditioned to stay less than a.

Proof of Lemma 3.5 1) Let f and F be two non-negative test functions and
∆ = E [f(S)F (Bδ(s), 0 ≤ s ≤ ρ)].
We have :

∆ = E
[
f(Bδ(ρ))F (Bδ(s), 0 ≤ s ≤ ρ)

]
.

Setting Ut = f(Bδ(t))F (Bδ(s), 0 ≤ s ≤ t), we have : ∆ = E [Uρ]. Since (Ut, t ≥
0) is a predictable process, property (3.15) implies that :

∆ = E
[∫ ∞

0

Ut dA
ρ
t

]
.

Using (3.19), we obtain

∆ = 2δE

[∫ T δ
a

0

f(Bδ(t))F (Bδ(s), 0 ≤ s ≤ t)
e2δBδ(t)

e2δBδ(t) − e−2δa
dBδ(t)

]
.

In particular, if F = 1, the change of variable : “x = Bδ(t)” yields to :

E [f(S)] = 2δE

[∫ S

0

f(x)
e2δx

e2δx − e−2δa
dx

]
,

= 2δE
[∫ ∞

0

f(x)
e2δx

e2δx − e−2δa
P(S ≥ x) dx

]
.

(3.26)

As a result

P(S ∈ dx) = 2δ
e2δx

e2δx − e−2δa
P(S ≥ x) dx.

Hence, S has a density function ϕ and :

ϕ(x) = 2δ
e2δx

e2δx − e−2δa

∫ ∞

x

ϕ(s) ds. (3.27)

(3.27) may be written as a linear differential equation with respect to Φ(x) =∫∞
x
ϕ(s) ds. It is easy to solve explicitly since Φ(0) = 1 :

Φ(x) =
∫ ∞

x

ϕ(s) ds =
1− e−2δa

e2δx − e−2δa
. (3.28)

This implies (3.12).
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2) We now study the law of (Bδ(t) ; 0 ≤ t ≤ ρ). (T δ
−x ; x ≥ 0) being the right

continuous inverse of (Bδ(t) ; t ≥ 0), then

∆ = 2δ
∫ ∞

0

f(x)E
[
F (Bδ(s), 0 ≤ s ≤ T δ

−x)1{T δ
−x<T δ

a}

] e2δx

e2δx − e−2δa
dx,

= 2δ
∫ ∞

0

f(x)E
[
F (Bδ(s), 0 ≤ s ≤ T δ

−x)|T δ
−x < T δ

a

]
× e2δx

e2δx − e−2δa
P(T δ

−x < T δ
a ) dx,

=
∫ ∞

0

f(x)E
[
F (Bδ(s), 0 ≤ s ≤ T δ

−x)|T δ
−x < T δ

a

]
ϕ(x) dx.

We now use the result of Proposition 3.4 to obtain the law of (Bδ(t) ; 0 ≤ t ≤ ρ)
conditionally to S. �

Proof of Proposition 3.2

It remains to determine the law of (Bδ(t+ ρ)− Bδ(ρ), 0 ≤ t ≤ T δ
a − ρ) and

to prove that this process is independent of (Bδ(t); 0 ≤ t ≤ ρ).

Let (Fρ
t )t≥0 denote the smallest filtration including (Ft)t≥0 for which ρ is a

stopping time. ρ is an honest time since, for any t > 0, on {ρ < t}, ρ coincides
with a Ft-measurable r.v. (see [9] p 370) That allows to use (3.16). Combining
(3.17), (3.20) with (3.18), we obtain

χ(t) = −
∫ t∧ρ

0

(e2δBδ(s) − e−2δa)2δe−2δBδ(s)

(e−2δBδ(s) − e−2δa)(e2δBδ(s) − e−2δa)
ds

+
∫ t∧T δ

a

0

1{ρ<s}
(e2δBδ(s) − e−2δa)2δe−2δBδ(s)

(e2δBδ(s) − e−2δBδ(s))(e2δBδ(s) − e−2δa)
ds,

χ(t) = −
∫ t∧ρ

0

2δe−2δBδ(s)

e−2δBδ(s) − e−2δa
ds+

∫ t∧T δ
a

0

1{ρ<s}
2δe−2δBδ(s)

e2δBδ(s) − e−2δBδ(s)
ds.

Since Bδ(s) = S, then for any ρ ≤ s ≤ T δ
a , we have

χ(t+ ρ)− χ(ρ) = 2δ
∫ (t+ρ)∧T δ

a

ρ

e−2δBδ(s)

e2δS − e−2δBδ(s)
ds; 0 ≤ t ≤ T δ

a − ρ.

Let (W (t)) and
(
Ẑ(t)

)
be the processes

W (t) = B̄(t+ρ)−B̄(ρ) ; t ≥ 0, Ẑ(t) = Bδ(ρ+t)−Bδ(ρ) = Bδ(ρ+t)+S ; 0 ≤ t ≤ T δ
a−ρ.
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According to (3.16), for any t ∈ [0, T δ
a − ρ] we have :

Ẑ(t) = W (t) + δt+ 2δ
∫ t

0

e−2δBδ(s+ρ)

e2δS − e−2δBδ(s+ρ)
ds.

= W (t) + δ

∫ t

0

coth(δẐ(s))ds.

We know that
(
B̄(t)

)
is a

(
Fρ

ρ+t

)
- Brownian motion. Therefore (W (t)) is in-

dependent of Fρ
ρ . Since S = −Bδ(ρ) and (Bδ(t); 0 ≤ t ≤ ρ) are Fρ

ρ -measurable,
then (W (t)) is independent of S and (Bδ(t); 0 ≤ t ≤ ρ). Furthermore, T δ

a − ρ =
inf{t ≥ 0 ; Ẑ(t) = a + b}, with b = S. To conclude the proof of Proposition
3.2 (part 1 and 3), we use the fact that stochastic differential equation (1.10)
admits a unique non negative strong solution. We can prove this property with
a similar method as for a Bessel process (we apply Yamada Watanabe Theorem
to the square of Z(δ)). �

Remark 3.6 Conditionally to {S ≤ z}, the density of S is :

δ sh δa sh δ(z + a)
sh δz

1
sh2 δ(x+ a)

1{0≤x≤z}. (3.29)

Formula (3.29) is really a direct consequence of (3.28).

Proofs of Theorem 2.4 and Proposition 2.1
The processes (−Bδ(t) ; t ≥ 0) and (B−δ(t) ; t ≥ 0) have the same law. Conse-
quently Proposition 3.2 admits a version where (Bδ(t) ; 0 ≤ t ≤ T δ

a ) (resp. S) is
replaced by (B−δ(t) ; 0 ≤ t ≤ T−δ

−a ) (resp. sup
0≤t≤T−δ

−a

B−δ(t)). Then Theorem 2.4

and Proposition 2.1 can be proved by induction on k. �

4 First range time, range at a fixed time, asymp-
totic results

In this section, we focus on Bδ stopped at its first range time θδ(a) defined by
(1.5). The first result concerns the law of (Bδ(t) ; 0 ≤ t ≤ θδ(a)). We determine
the joint law of (Bδ(t) ; 0 ≤ t ≤ θ̃δ(a)) and (Bδ(t + θ̃δ(a)) − Bδ(θ̃δ(a)) ; 0 ≤
θδ(a)− θ̃δ(a)) where

θ̃δ(a) =


sup{t ≤ θδ(a) ; Bδ(t) = inf

0≤u≤θδ(a)
Bδ(u)} if Bδ(θδ(a)) > 0

sup{t ≤ θδ(a) ; Bδ(t) = sup
0≤u≤θδ(a)

Bδ(u)} otherwise .
(4.1)
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Proposition 4.1 1. The r.v. Bδ(θ̃δ(a)) has density function f :

f(u) =
2δ

(1− e−2δa)2
(e2δu − e−2δa)1{−a≤u<0}

+
2δ

(e2δa − 1)2
(e2δa − e2δu)1{0≤u≤a}.

(4.2)

2. Conditionally to {Bδ(θ̃δ(a)) = u},
a. the processes (Bδ(s) ; 0 ≤ s ≤ θ̃δ(a)) and (Bδ(s + θ̃δ(a)) − u ; 0 ≤ s ≤

θ(a)− θ̃δ(a)) are independent.

b. (Bδ(s) ; 0 ≤ s ≤ θ̃δ(a)) has the same law as a Brownian motion with
drift δ stopped at its first hitting time of level u, conditioned by hitting
u before u− sgn(u)a.

c. (|Bδ(s + θ̃δ(a)) − u| ; 0 ≤ s ≤ θ(a) − θ̃δ(a)) has the same law as the
process Z(δ) defined by (1.10), stopped at its first hitting time of level
a.

A similar result was obtained by Vallois [13] when δ = 0.

As for the proof of Proposition 3.2, a straightforward approach may be de-
veloped using enlargement of filtrations, since θ̃δ(a) is an honest time. More
precisely, the optional projection of

(
1{θ̃δ(a)≤t}; t ≥ 0

)
can be decomposed as :

P
(
θ̃δ(a) ≤ t|Ft

)
= Mt +At,

where (Mt; t ≥ 0) is a martingale and :

At =
2δe−δa

eδa − e−δa
Bδ(t ∧ θ(a))−

2δeδa

eδa − e−δa
Bδ(t ∧ θ(a)). (4.3)

The details are left to the reader.

Proposition 4.1 allows us to determine the Laplace transform of θδ(a). Let σδ(a)
be the stopping time

σδ(a) = inf
{
s ≥ 0 , Z(δ)(s) > a

}
. (4.4)

Proposition 4.2 The Laplace transforms of θ̃δ(a), σδ(a) and θδ(a) are gi-
ven by :

E
[
e−λθ̃δ(a)

]
=
δ

λ

(√
2λ+ δ2 coth(a

√
2λ+ δ2) coth(δa)− δ

−
√

2λ+ δ2

sh(a
√

2λ+ δ2) sh(δa)

)
, (4.5)
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E
[
e−λσδ(a)

]
=
√

2λ+ δ2

δ

sh(δa)
sh(a

√
2λ+ δ2)

, (4.6)

E
[
e−λθ(a)

]
=
√

2λ+ δ2

λ

[√
2λ+ δ2 ch(a

√
2λ+ δ2) ch(δa)

sh2(a
√

2λ+ δ2)

− δ sh(δa)
sh(a

√
2λ+ δ2)

−
√

2λ+ δ2

sh2(a
√

2λ+ δ2)

] (4.7)

where λ ≥ 0.

Remark 4.3 1) In [16], using approximation by random walks, it is pro-
ved :

E [θδ(a)] =
a2

2
f(δa), (4.8)

where
f(x) =

1
x2

(x− x cothx+ 1)(x+ x cothx− 1) ; x > 0. (4.9)

Moreover f is decreasing, in particular :

E [θδ(a)] ≤ E [θ0(a)] =
a2

2
. (4.10)

The variance of θδ(a) is computed :

Var [θδ(a)] =
a4

12
g1(δa)g2(δa), (4.11)

with

g1(x) =
3 sh2 x− x2

x2 sh2 x
; g2(x) =

x2 coth2 x+ 4x cothx− 5− x2

x2
; x > 0.

Moreover,

Var (θδ(a)) ≤ Var (θ0(a)) =
a4

12
.

2) It is possible to prove Propositions 4.1 and 4.2 using Theorems 2.2, 2.4 and
the identity : Ω = ∪n≥0

{
ρn+1 ≤ θ̃δ(a) < ρn

}
, where the sequence (ρn)n≥0

is defined at the beginning of Section 2. It is however easier and shorter to
prove directly Propositions 4.1 and 4.2.

Proof of Proposition 4.2
We only give the main ideas of the proof, the details being left to the reader.

Let fλ be the function :

fλ(x) =
δ√

2λ+ δ2
sh(x

√
2λ+ δ2)

sh(δx)
; x > 0. (4.12)
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It is easy to check that fλ is an eigenfunction of the infinitesimal generator
associated with Z(δ) :

1
2
f ′′λ (x) + δ coth(δx)f ′λ(x) = λfλ(x) ; x > 0. (4.13)

The function fλ being locally bounded on [0,+∞), then

E0 [exp(−λσδ(a))] =
fλ(0)
fλ(a)

. (4.14)

This proves (4.6).

Recall (cf formulas 2.1.4 and 2.2.4 p. 295 of [1])

E
[
e−λT δ

u |T δ
u < T δ

u+a

]
=

sh((a+ u)
√

2λ+ δ2)
sh(a

√
2λ+ δ2)

sh(δa)
sh(δ(a+ u))

, (4.15)

E
[
e−λT δ

u |T δ
u < T δ

u−a

]
=

sh((a− u)
√

2λ+ δ2)
sh(a

√
2λ+ δ2)

sh(δa)
sh(δ(a− u))

. (4.16)

(4.5) is a direct consequence of (3.21) and Proposition 4.1. �

By inversion of the Laplace transform of θδ(a), the authors in [2] have com-
puted the probability density function of this r.v.

We develop an alternative approach based on the knowledge (c.f. [1], for-
mula 1.15.8 (1) p. 271) of the joint distribution of (Bδ(t), Rδ(t)). By tedious
calculations (see Section 5), we determine the probability distribution function
of Rδ(t).

Relation (1.3) allows us to obtain the probability distribution function of
θδ(a) and the rate of decay of P(θδ(a) > t), as t→∞.

Proposition 4.4 Let a > 0, t > 0 and Ck = k2π2 + a2δ2, k ∈ N. Then :

P (Rδ(t) < a) =
∞∑

k=1

4k2π2

C2
k

exp
(
−Ckt

2a2

){(
1− (−1)k ch(δa)

)
×
(

1 +
k2π2t

a2
− 4a2δ2

Ck

)
− (−1)kaδ sh(δa)

}
.

(4.17)

P (θδ(a) > t) ∼
t→∞

4π4 (1 + ch(δa))
a2 (π2 + a2δ2)

t exp
(
−π

2 + a2δ2

2a2
t

)
. (4.18)

Remark 4.5 1) Formula (4.17) has been obtained in [12], the approach
being different.

2) Taking the a-derivative in (4.17) gives the density function of Rδ(t).
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3) Relation (1.3) implies that :

P (θδ(a) > t) =
∞∑

k=1

4k2π2

C2
k

exp
(
−Ckt

2a2

){(
1− (−1)k ch(δa)

)
×
(

1 +
k2π2t

a2
− 4a2δ2

Ck

)
− (−1)kaδ sh(δa)

}
.

(4.19)

Again, taking the t-derivative in (4.19), we obtain the density function of
θδ(a). However that series expension is more complicated than (4.19) (c.f.
also Theorem 9 of [2]) : it is more convenient to use probability distribution
function instead of probability density function.

The law of θδ(a) or Rδ(t) being complicated, it seems natural to consider the
asymptotic behaviour of θδ(a) (resp. Rδ(t)) when a goes to +∞ (resp. t→ +∞).

Proposition 4.6 The asymptotic comportments of θδ(a) and Rδ(t) are gi-
ven by the following convergence results :

θδ(a)
a

a.s.−→
a→∞

1
δ
, (4.20)

Rδ(t)
t

a.s.−→
t→∞

δ, (4.21)

δ3/2
√
a

(
θδ(a)
a

− 1
δ

)
d−→

a→∞
N (0, 1) , (4.22)

√
t

(
Rδ(t)
t

− δ

)
d−→

t→∞
N (0, 1). (4.23)

Proof 1) We first examine (4.20). By (4.7), we have :

E
[
e−

λ
a θδ(a)

]
=

√
2λ
a + δ2

λ
a

[√ 2λ
a + δ2 ch(a

√
2λ
a + δ2) ch(δa)

sh2(a
√

2λ
a + δ2)

− δ sh(δa)

sh(a
√

2λ
a + δ2)

−

√
2λ
a + δ2

sh2(a
√

2λ
a + δ2)

]
.

E
[
e−

λθδ(a)
a

]
=
a

(
δ + λ

δa + o

(
1
a

))
λ

[(
δ + λ

δa + o
(

1
a

))
ch(δa+ λ

δ + o(1)) ch(δa)

sh2(δa+ λ
δ + o(1))

− δ sh(δa)
sh(δa+ λ

δ + o(1))
+

δ + λ
δa + o

(
1
a

)
sh2(δa+ λ

δ + o(1))

]
.
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The limit of the two first terms in the bracket is easy to determine :

sh(δa)
sh(δa+ λ

δ + o(1))
=

eδa − e−δa

eδa+ λ
δ +o(1) − e−δa−λ

δ +o(1)
−→
a→∞

e−
λ
δ ,

ch(δa+ λ
δ + o(1)) ch(δa)

sh2(δa+ λ
δ + o(1))

−→
a→∞

e−
λ
δ .

As for the third term, it may be neglected (being equivalent to 4δ exp(−2δa)).

Hence θδ(a)/a converges in distribution to the constant 1/δ. This implies
that θδ(a)/a converges in probability to 1/δ. Since (Rδ(t) ; t ≥ 0) is the right
continuous inverse of (θδ(a) ; a ≥ 0), Rδ(t)/t converges in probability to δ.

(Rδ(t) ; t ≥ 0) is a subadditive process (cf [3], example 6.2 p.320, in the discrete
case). The subadditive ergodic theorem implies that Rδ(t)/t converges a.s., as
t→∞. As a result, Rδ(t)/t converges a.s. towards δ when t→∞.

2) To prove (4.22), we use the characteristic function of θδ(a). This function
can be explicitly determined through (4.7) and analytic continuation argument.
In the discrete case (cf proof of Theorem 20 of [15]) a detailed approach is
developed.

3) We claim that
(

Rδ(t)
t − δ

)√
t converges in distribution to N (0, 1) when t→

+∞.

Let a > 0 and t > 0 such that a
√
t+ δt > 0. We have :

p = P
((

Rδ(t)
t

− δ

)√
t < a

)
= P (Rδ(t) < s) ,

where s = a
√
t+ δt.

Property (1.3) implies that

p = P (θδ(s) > t) = P
((

θδ(s)
s

− 1
δ

)√
s > u(t)

)
,

where

u(t) =
(
t

s
− 1
δ

)√
s = − a

δ
√
δ + a√

t

.

Since t → +∞ implies s → +∞, and u(t) ∼
t→∞

− a

δ3/2
, (4.23) follows immedia-

tely. �

5 Proof of Proposition 4.4

In order to calculate the probability distribution function of Rδ(a), we per-
form the following calculations. Beginning with the formula 1.15.8 (1) p. 271
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of [1] :

P (Rδ(t) < a) =
1√
2πt

e
−
δ2t

2
∑
k∈Z

µk,

with

µk =
∫ a

−a

(
2k + 1− 2k(a− |z|)(|z|+ 2ka)

t

)
exp

(
δz − (|z|+ 2ka)2

2t

)
dz.

Recalling the Poisson formula

1√
2πt

∑
k∈Z

exp
(
− (x+ 2ky)2

2t

)
=

1
2y

∑
k∈Z

exp
(
−k

2π2

2y2
t

)
exp

(
ikπx

y

)
. (5.1)

Let us compute the y-derivative and the x-derivative :

1√
2πt

∑
k∈Z

2k
t

(x+ 2ky) exp
(
− (x+ 2ky)2

2t

)
=

1
2

∑
k∈Z

exp
(
−k

2π2

2y2
t

)
× exp

(
ikπx

y

)(
1
y2
− k2π2t

y4
+
ikπx

y3

)
,

(5.2)

1√
2πt

∑
k∈Z

(
x+ 2ky

t

)
exp

(
− (x+ 2ky)2

2t

)
= − 1

2y

∑
k∈Z

exp
(
−k

2π2

2y2
t

)
× exp

(
ikπx

y

)
ikπ

y
.

(5.3)

Replacing x with |z| and y with a in t
y × (5.3) + (1− x

y )× (5.1), we obtain

1√
2πt

∑
k∈Z

(2k + 1) exp
(
− (|z|+ 2ka)2

2t

)
=

1
2

∑
k∈Z

exp
(
−k

2π2t

2a2

)
× exp

(
ikπ|z|
a

)(
− ikπt

2a3
− |z| − a

a2

)
.

(5.4)

Replacing x with |z| and y with a in −(y−x)×(5.2) and adding (5.4), we obtain
1√
2πt

∑
k∈Z

µk =
1
2

∑
k∈Z

Ik, where

Ik =
∫ a

−a

eδz exp
(
−k

2π2t

2a2

)
exp

(
ikπ|z|
a

)
×
(
− ikπt

a3
+ (|z| − a)

(
ikπ|z|
a3

− k2π2t

a4

))
dz.

(5.5)
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Let us introduce :

C1(δ) =
∫ a

0

exp
(
δz +

ikπz

a

)
dz =

a

aδ + ikπ

[
(−1)keδa − 1

]
,

C2(δ) =
∫ a

0

(z − a) exp
(
δz +

ikπz

a

)
dz =

a2

aδ + ikπ
+
a2(1− (−1)keδa)

(aδ + ikπ)2
,

C3(δ) =
∫ a

0

z(z − a) exp
(
δz +

ikπz

a

)
dz

= −
a3
(
1 + (−1)keδa

)
(aδ + ikπ)2

+
2a3

(
(−1)keδa − 1

)
(aδ + ikπ)3

.

Consequently,

Ik exp
(
k2π2t

2a2

)
= − ikπt

a3
(C1(δ) + C1(−δ))−

k2π2t

a4
(C2(δ) + C2(−δ))

+
ikπ

a3
(C3(δ) + C3(−δ)). (5.6)

We decompose Ci(δ) + Ci(−δ), 1 ≤ i ≤ 3, as follows :

C1(δ) + C1(−δ) = −aA1 + (−1)kA2,
C2(δ) + C2(−δ) = a2A1 + a2A3 − (−1)ka2A4,
C3(δ) + C3(−δ) = −a3A3 − (−1)ka3A4 − 2a3A5 + (−1)k2a3A6,

where we have set :

A1 =
1

δa+ ikπ
+

1
−δa+ ikπ

=
−2ikπ
Ck

A2 =
eδa

δa+ ikπ
+

e−δa

−δa+ ikπ
=

2 sh(δa)aδ − 2 ch(δa)ikπ
Ck

A3 =
1

(δa+ ikπ)2
+

1
(−δa+ ikπ)2

=
2(a2δ2 − k2π2)

C2
k

A4 =
eδa

(δa+ ikπ)2
+

e−δa

(−δa+ ikπ)2

=
2 ch(δa)(a2δ2 − k2π2)− 4iaδkπ sh(δa)

C2
k

A5 =
1

(δa+ ikπ)3
+

1
(−δa+ ikπ)3

=
−6δ2a2ikπ + 2ik3π3

C3
k

A6 =
eδa

(δa+ ikπ)3
+

e−δa

(−δa+ ikπ)3
,

=
(2δ3a3 − 6k2π2δa) sh(δa) + i(−6δ2a2kπ + 2k3π3) ch(δa)

C3
k

.
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Coming back to (5.4), we easily obtain successively :

Ik exp
(
k2π2t

2a2

)
=

(
ikπt

a2
− k2π2t

a2

)
A1 − (−1)k ikπt

a2
A2

−
(
k2π2t

a2
+ ikπ

)
A3 + (−1)k

(
k2π2t

a2
− ikπ

)
A4

−2ikπA5 + (−1)k2ikπA6

= Re

(
Ik exp

(
k2π2t

2a2

))
=

2k2π2t

Cka2
− (−1)k 2k2π2t ch(δa)

Cka2
− 2

(a2δ2 − k2π2)k2π2t

C2
ka

2

+(−1)k 2 ch(δa)(a2δ2 − k2π2)k2π2t− 4k2π2a3δ sh(δa)
C2

ka
2

+
4k4π4 − 12k2π2a2δ2

C3
k

+(−1)k (12δ2a2k2π2 − 4k4π4) ch(δa)
C3

k

.

In particular :

(Ik + I−k) exp
(
k2π2t

2a2

)
=

k2π2

C2
k

(1− (−1)k ch(δa))

×

(
4t(k2π2 + δ2a2)

a2
− 4

(a2δ2 − k2π2)t
a2

+
8k2π2 − 24a2δ2

Ck

)
−(−1)k8

k2π2

C2
k

aδ sh(δa).

This achieves the proof of Proposition 4.4. �
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