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Implementation of the Boundary Integral Method
on MIMD Systems for Electromagnetic Scattering

Problems
Thierry Jacques, Laurent Nicolas, and Christian Vollaire

Abstract—The boundary integral method is used to solve
problems of scattering by perfect electric conducting or perfect
dielectric bodies. Because this method requires large memory
storage, it is implemented on a distributed memory parallel
computer. The assembling is performed by nodal contribution,
and the BiCGStab(m) algorithm is used for solving. Performances
are analyzed using several large problems.

Index Terms—Distributed memory systems, integral equations,
numerical analysis, parallel algorithms.

I. INTRODUCTION

I N [1], SEVERAL examples of parallelization of the different
numerical methods used in computational electromagnetics

are described. It is also shown that only a few attempts to par-
allelize the boundary element method (BEM) have been made.
This method shows however several advantages: first, only the
material interfaces have to be discretized. Second, it takes im-
plicitly into account the decrease of the field at infinity. On the
other hand, it is applicable to nonlinear materials with difficulty.
Moreover, it generates a full non-Hermitian matrix which re-
quires large memory capabilities. This last point explains why
only parallel computers are able to offer the required power to
handle large devices.

The objective of this paper is to show how the BEM has been
implemented on a distributed memory parallel computer, a Cray
T3E. The frequency-domain formulations for electromagnetic
scattering by both perfect electric conducting (PEC) or perfect
dielectric bodies are first described. The parallel implementa-
tion is then presented. Special attention is paid to the reduction
of the storage of the matrix and to the communication between
the processors. Parallel efficiency is finally analyzed using sev-
eral examples.

II. BEM FORMULATIONS FOR ELECTROMAGNETIC SCATTERING

As shown in Fig. 1, an incident wave (frequency , beat ) is
perturbed by an object of boundary .
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Fig. 1. Description of the problem. The electromagnetic properties of the
material are the conductivity ( ), the permittivity ( ) and the permeability
( ).

A. Scattering by a PEC Body

By writing the Magnetic Field Integral Equation at a point
on the surface of the scatterer, we get [2]:

(1)

where
is the electric current density,

is normal electric field,

is Green’s function,

is the unit normal vector to the surface and

are the magnetic and electric incident fields.

Only the first equation of this formulation is required to solve
the scattering problem. It leads to 3 complex degrees of freedom
per node.

B. Scattering by a Dielectric Body

The properties of the material are its permittivity and its
permeability . For each term, two equations are obtained
by applying the Green’s theorem in the inner and outer regions.
By taking into account the boundary conditions at material inter-
faces, these two equations are coupled in order to avoid numer-
ical problems due to the gradient term ( ). and
are Green’s function of respective wave number
and , and . By denoting the
normal magnetic and electric fields and , the electric and
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magnetic current densities and , the following equations
may be obtained:

(2)

This formulation may be seen as the frequency-domain ver-
sion of the time-domain formulation found in [3]. The number

has been chosen so that the variables and the coefficients of
the matrix have the same size, leading to a better conditioning
of the matrix. Eight complex degrees of freedom are required at
each mesh node.

C. Numerical Solving

The numerical discretization is performed by using second
order surface finite elements (triangular or quadrilateral ele-
ments). Ten nodes per wavelength ( for a PEC body,

for a dielectric body) are required for a good ac-
curacy. Regular surface integrals are computed using Gauss in-
tegration. Singular integral equations are computed analytically
[4].

On a geometrical discontinuity such as edges or corners, the
electromagnetic fields are discontinuous, leading to indefinite
integrals. Half-discontinuous finite elements are then used in

Fig. 2. Half-discontinuous surface finite elements.

order to avoid this difficulty[5]: depending on the type of dis-
continuity, the points on the edges are separated in two or three
computation nodes and moved toward the interior of the ele-
ments (Fig. 2).

D. Validation

Validation has been first performed using the analytical so-
lution of the scattering by a perfect electric conducting sphere
[6]. As shown in Fig. 3, the maximal relative error between com-
puted and analytical solutions is about 0.25% for 384 quadrilat-
eral finite elements.

The half-discontinuous elements have been validated by com-
parison with the results provided by the finite element method
[9]. Same method has been used for the case of scattering by a
dielectric body.

III. PARALLEL IMPLEMENTATION

A. Reduction of the Storage

These formulations generate a full non-Hermitian matrix. For
a -nodes mesh, the storage of the matrix requires 18 real data
for a PEC body and 128 real data for a dielectric body. For a
PEC body, each node generates three rows of the global matrix,
corresponding to the three components of the field. The global
matrix has the following form of (3) as shown at the bottom of
the page, where ( ) is the vector normal to the surface
at node. The submatrices located on the diagonal of the global

. . .
...

...
. . .

with

(3)
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Fig. 3. Scattering of a 600 MHz plane wave by a perfect electric conductor sphere. Visualization of the magnitude of the electric current density (left, in A/m)
and the relative error (right, in %).

TABLE I
COMPUTATION TIMES (IN S)/NUMBER OF ITERATIONS OF BICGSTAB(4) FOR

THE PEC AND OF BICGSTAB(2) FOR THE DIELECTRIC CYLINDER

matrix are proportional to the identity matrix. For each node,
only the coefficients ( ) are stored, such as the
diagonal coefficient and the normal vector. The global storage
may consequently be reduced to 6 real data.

The storage may be reduced in the same manner to 16 real
data for the dielectric body. With a direct method to solve the
matrix system, this reduction would be useless since this method
requires memory to achieve calculations. However, even when
using this trick, parallel computing remains unavoidable to com-
pute large scale devices.

B. Parallel Implementation

The entire data file is duplicated on each processor. The
matrix is row-distributed on the processors, and the global
system matrix is assembled per node. Hence no communication
between the processors is required during this stage, and the
speedup is optimal.

The matrix system is solved with the BiCGStab(m) algorithm
[7]. A complex left diagonal preconditioning is used in the case
of a perfect electric conductor, while a complex left block diag-
onal preconditioning is used in the case of a dielectric body. A
diagonal preconditioning has been preferred since the subma-
trix on the diagonal is dominant. A right preconditioning would
require that each processor knows the whole preconditioning
matrix and calculates the whole preconditioned vector before
the matrix-vector multiplication. On the other hand, a left pre-
conditioning needs less memory and less computation since it
is local.

Fig. 4. Parallel efficiency for several number of degrees of freedom. Scattering
of a 3 GHz plane wave by a PEC cylinder.

Fig. 5. Parallel efficiency for several number of degrees of freedom. Scattering
of a 900 MHz plane wave by a dielectric cylinder.

At each iteration, matrix-vector multiplications are re-
quired. The BiCGStab(m) algorithm is parallelized in order to
minimize the communications between the processors: only
message passing are required per iteration. Each processor com-
putes only a part of the matrix-vector multiplication and some
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Fig. 6. Scattering of a 900 MHz plane wave by a dielectric cylinder. Visualization of magnetic (left, in A/m) and electric fields (right, in V/m) on the surface of
the cylinder.

Fig. 7. Scattering of a 900 MHz plane wave by a dielectric cylinder. Visualization of magnetic (left, in A/m) and electric (right, in V/m) fields in the cross-section
located in the middle of the cylinder.

partial inner products. On the other hand, it performs all total
vector sums and it calculates all correlation coefficients.

The exchange of partial data between processors is achieved
by using PVM library. There are two ways to pass messages:

1) Broadcast: each processor sends the partial inner product
vector to the other processors. With processors and a
total vector of length , this method requires
messages of size , leading to a total exchange of

data.
2) Master–slave mode: each processor sends the partial re-

sult to the first processor which adds first partial inner
products and vectors and then returns the whole result.
This method requires the exchange of ( ) messages
of size and ( ) messages of size , leading to a
total exchange of data.

The message passing may generate negligible errors due to
the 32 bits implementation of PVM while computations are per-
formed in 64 bits. The broadcast method broadcasts these errors:
after a few thousands of message passing, a residual vector may
be slightly different from a processor to another, leading to com-
promise the convergence of the algorithm.

Consequently, the master–slave mode has been chosen as par-
allel strategy. A synchronization between processors is then car-
ried out before and after each message passing.

C. Algorithm

The solving is performed using the BiCGStab(m) algorithm,
since it appears very attractive for non symmetric matrix [8]. An

iteration may be seen as a step of the biconjugate gradient algo-
rithm followed by a step of the GMRES(m) algorithm: its tries to
minimize the residual vector according to particular direc-
tions. The BiCGStab(m) algorithm is less parallelized than the
BiCGStab algorithm because all inner products are not paral-
lelized. On the other hand, it is more robust and converges more
quickly for large problems with half-discontinuous elements.
The smaller the number of nodes per wavelength is, the larger
has to be the number , in order to allow the convergence of the
iterative method: the diagonal term becomes smaller while the
contributions of the adjacent nodes become greater. The param-
eter is actually chosen according to our experience: it depends
on the frequency, on the size of the mesh and on the number of
processors.

Regarding the parallel implementation of the BiCGStab al-
gorithm, each processor computes only a part of the solution
because the algorithm uses the residual vector to perform the
calculations.

IV. PARALLEL PERFORMANCES

The first test problem is the scattering of a 3 GHz plane wave
by a PEC cylinder. Its length goes from 2,5 to 6 , and its ra-
dius is equal to 0.5 . The second example is the scattering of a
900 MHz plane wave by a dielectric cylinder ( )
of same dimensions. Computations are performed on a Cray
T3E (Table I). Results are presented in terms of parallel effi-
ciency, since some problems cannot be computed on one pro-
cessor: if the minimal number of processors which can be used
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Fig. 8. Scattering of a 100 MHz plane wave by a plane considered as a perfect
electric conductor. Visualization of magnetic field (in A/m).

is , the reference computation time obtained on these pro-
cessors leads to a parallel efficiency equal to .

The parallel efficiency remains high when the number of
processors increases (Figs. 4 and 5). Two reasons can be
underlined. First, the assembling stage remains dominating
(From 70–85% of the total time), with a speedup nearly op-
timal. Second, the main stage of the solver is the matrix-vector
multiplication, which is parallelized. Furthermore, the com-
puting load is well distributed over the processors because each
processor performs the same number of operations.

V. NUMERICAL EXAMPLES

The first numerical example is the scattering of a 900 MHz
plane wave by a dielectric cylinder ( ). Its length
and its diameter are respectively equal to 1.2 and 0.075 .
Fig. 7 shows the magnetic and electric fields computed on the
surface of the cylinder. It is meshed with 2322 nodes. The calcu-
lation has required 2400 seconds with 32 processors on a Cray
T3E. Fig. 7 shows the fields computed in a cross section.

The computation of the scattering of a 100 MHz plane wave
by an airplane is presented as large example. The solving has
been carried out with 64 processors of a Cray T3E. The length
of the plane is equal to 11.7 meters. The mesh is made of 2928
finite elements and 10 291 nodes. The calculation required 20

iterations of BiCGStab(12) and has been performed in 35 425
seconds (total time) on a Cray T3E.

VI. CONCLUSION

The parallel implementation of the boundary element method
for electromagnetic scattering analysis is presented. The mesh is
distributed equally over each processors and the assembling of
the full matrix is performed by nodes. This stage is carried out
without message passing between the processors. The solving is
performed using the BiCGStab(m) algorithm. The parallel ef-
ficiency of this solver is excellent, since the parallelized ma-
trix-vector multiplication constitutes its main stage. As shown
by the example of scattering by a PEC airplane, the computation
of large problems using the BEM is then made possible.
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