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adsorption model applied to a unidirectional multicracking

problem ∗

Pierre Calka†, André Mézin‡and Pierre Vallois§

26th November 2004

Abstract

We work out a stationary process on the real line to represent the positions of the multiple
cracks which are observed in some composites materials submitted to a fixed unidirectional
stress ε. Our model is the one-dimensional Random Sequential Adsorption. We calculate
the intensity of the process and the distribution of the inter-crack distance in the Palm sense.
Moreover, the successive crack positions of the one-sided process (denoted by X ε

i
, i ≥ 1)

are described. We prove that the sequence {(Xε

i
, Y ε

i
), 1 ≤ i ≤ n} is a “conditional renewal

process”, where Y ε

i
is the value of the stress at which Xε

i
forms. The approaches “in the

Palm sense” and “one-sided process” merge when n → +∞. The saturation case (ε = +∞)
is also investigated.

Introduction

Let {Xi; i ≥ 1} be a sequence of independent and uniformly distributed variables on the segment
[0, L], L > 0. We throw successively X1, · · · , XN on this segment, keeping only some of them
according to the following procedure. For N ≥ 2, we keep X1 and after that, we erase X2 if and
only if X2 is in the interval of radius r > 0 around X1. Once we have decided if X2, · · · , Xn,
2 ≤ n ≤ (N − 1) are kept or not, we erase Xn+1 if it belongs to the union of all the intervals
centered on the non-erased points, with length 2r.

This construction is known as the one-dimensional random sequential adsorption (RSA) [3],
[2]. In spite of its simplicity, this model is difficult to deal with: in particular, the law of the
number of preserved points is unknown.

In 1958, Rényi [18] worked out a model where the points are placed on the segment up to
saturation (i.e. when no more point can be added). He obtained the asymptotic behaviour
of the mean number of points in [0, L] when L goes to infinity. This question, known as the
car-parking problem, has been largely investigated (see for example [4], [5], [11], [16], [17]).
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In 1966, fixing the number N of thrown variables, Widom [21] demonstrated by heuristic
methods that the mean number of points which are separated from their right-neighbor by a
fixed length l > 0 satisfies a differential equation in l. Moreover, he provided formulas for the
empirical distribution function of the inter-point distance when N,L → +∞, with N/L fixed.

In this paper, we are interested mainly in modelling a unidirectional multicracking phe-
nomenon of brittle coatings. A uniaxial strain is applied to a specimen consisting of a ductile
substrate covered with a brittle coating. The applied strain is supposed to result in the coating
in a regularly increasing stress denoted by ε, which leads to the formation of cracks parallel
and orthogonal to the stress direction [7],[12]. Consequently, the geometrical aspect of the
problem reduces practically to the intersections of the cracks with a fixed line parallel with the
stress axis. It has been observed [1],[7],[10],[12] that the formation of a crack in the coating
results in a relaxation of the stress in the vicinity of this crack so that no new crack can form
close to an existing crack because of the smallness of the stress in this area. Consequently, the
above-described RSA construction can be considered as a model for the crack positions.

More precisely, we construct through the RSA procedure a one-dimensional stationary point
process Λε, that represents the positions of cracks for a fixed value of the applied stress ε > 0.
The parameter ε plays a central role in the model. In particular, the limit ε → +∞ corresponds
to saturation.

The first section of our paper is devoted to the construction of Λε. We start with a two-
dimensional Poisson process Φ on R×R+ of intensity measure 1R+(y)f(y)dxdy. In the physics
literature, f is called (see e.g. [13]) rupture probability density of the coating. It is a non-
decreasing function and therefore expresses the fact that the number of cracks grows with
stress. From a mathematical point of view, there is no loss of generality in assuming that f = 1
(see the beginning of Section 1 for details).

By an erasing procedure, we construct a subset Ψ of Φ such that for every point (x, y) ∈ Ψ,
the first and second coordinates represent respectively the position of a crack and the exact
stress level at which it forms. For every ε > 0,

Λε = {x ∈ R;∃y ∈ [0, ε] | (x, y) ∈ Ψ},

is the projection on the x-axis of Ψ ∩ (R × [0, ε]).
In Section 2, we demonstrate that the process Λε is stationary. In particular, the mean crack

number λε and the couple (Dε, Lε) of the typical inter-crack distance and the stress level in the
Palm sense are precisely defined, and a different notion of inter-crack distance I ε

0 is given. The
results are expressed through two unknown functions, G and H.

We demonstrate in Section 3 that the function G satisfies an integral equation that can be
solved, which allows us to determine the function H.

Let us denote by α the function on R+ defined by

α(s) = exp

{
−

∫ rs

0

1 − e−t

t
dt

}
, s ≥ 0. (1)

Precise formulas for λε and the distribution of (Dε, Lε) (resp. Iε
0) can thus be obtained:

Theorem 1 We have

(i) λε =
∫ ε
0 α(v)2dv;

(ii) The distribution of Dε has a density ϕDε on [r,+∞) such that

ϕDε(x) =

{
ε2

λε
α(ε)2e−(x−2r)ε if x > 2r

2
λε

∫ ε
0 e−(x−r)vα(v)2vdv if r ≤ x ≤ 2r.
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(iii) Lε has a density ϕLε such that

ϕLε(y) =
1

λε
α(y)21[0,ε](y); (2)

(iv) The distribution of Dε conditionally on Lε has a density ΠDε(Lε; ·) such that for every
y ∈ [0, ε], u ≥ 0,

ΠDε(y;u) = 1{u>2r}
εα(ε)

α(y)
e−rye−(u−2r)ε

+1{r≤u≤2r}

{
ye−(u−r)y +

e−ry

α(y)

∫ ε

y
e−(u−r)vα(v)dv

}
. (3)

In order to understand more deeply the process Λε, an alternative point of view is considered
in Section 4, i.e. we describe the points X ε

i of the process on the positive half-line:

0 < Xε
1 < Xε

2 < · · · < Xε
n, n ≥ 1.

We denote by Y ε
n the corresponding stress level of the crack position X ε

n, n ≥ 1.
Because of the complexity of the erasing procedure, (X ε

n)n≥1 is not a renewal process. We
call it a “conditional renewal process” since we show in Theorem 2 below, that for every n ≥ 1,
{Xε

i , 1 ≤ i ≤ n} coincides with the first n points of a renewal process conditioned on some
explicit event.

More precisely, let us introduce three probability densities on R+:

ϕη(x) =
ε

rε + 1
(1[0,r](x) + 1(r,+∞)(x)e−(x−r)ε), (4)

ϕρ(x) =
1

ε
1[0,ε](x), (5)

ϕρ′(x) =
1∫ ε

0 α(u)du
1[0,ε](x)α(x). (6)

Theorem 2 Let {ξi; i ≥ 1}, {ηi; i ≥ 1}, {ρi; i ≥ 1} and {ρ′i; i ≥ 1} be four mutually indepen-
dent sequences of i.i.d. variables such that ξ1 is an exponential variable with mean 1 and the
distribution of η1 (resp. ρ1, ρ′1) has the density ϕη (resp. ϕρ, ϕρ′).

Besides, let us consider the events

Bn = {ξn ≥ (ηn ∧ r)(ρn ∨ ρn−1) + r(ρn ∧ ρn−1)},

B′
n = {ξn ≥ (ηn ∧ r)(ρ′n ∨ ρn−1) + r(ρ′n ∧ ρn−1)},

with the convention ρ0 = 0 a.s.. Then
(i) The vector (Xε

1 , Y ε
1 ) is distributed as (η1, ρ

′
1) conditioned on B ′

1;
(ii) For every n ≥ 2, the vector

(Xε
1 , Y ε

1 , Xε
2 − Xε

1 , Y ε
2 , · · · , Xε

n − Xε
n−1, Y

ε
n )

is distributed as (η1, ρ1, r + η2, ρ2, · · · , r + ηn−1, ρn−1, r + ηn, ρ′n) conditioned on the event

Cn =
n−1⋂

i=1

Bi ∩ B′
n.
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Theorem 2 provides an algorithm to simulate the successive positions of the cracks (see Remark
20).

We also prove that both (Xε
n+1 −Xε

n, Y ε
n )n≥1 and (Y ε

n )n≥1 are Markov chains and the initial
distribution, transition probability density and invariant probability measure are determined
for each of them. We verify that the process (X ε

n+1 − Xε
n, Y ε

n )n≥1 converges to its invariant
probability measure (i.e. the law of (Dε, Lε), see Theorem 1).

Section 5 presents the saturation case already considered by Renyi. We define directly the
process Λ∞ associated to saturation as well as its associated quantities (λ∞, D∞, L∞, X∞

i , Y ∞
i ,

i ≥ 1), then we demonstrate that λε tends to λ∞ as ε → +∞ and Dε (resp. Iε
0 , Lε) converges

in distribution to D∞ (resp. I∞0 , L∞). We also give a complete description of the distribution
of (X∞

n , Y ∞
n )n≥1 and a result of convergence in law of (X∞

n+1 − X∞
n , Y ∞

n ) to (D∞, L∞).

1 A stationary model with relaxation of stress

In this section, we define a stationary process Λε on R that represents the crack positions for a
given stress ε on the assumption that the stress is relaxed on an interval of radius r > 0 around
every existing crack.

To this end, we introduce a two-dimensional point process Ψ on R × R+ such that the first
and the second coordinates of a point of Ψ represent respectively the position of a crack and
the stress level at which the crack forms. Λε is the projection on the x-axis of Ψ ∩ (R × [0, ε]):

Λε = {x ∈ R;∃y ∈ [0, ε] | (x, y) ∈ Ψ}. (7)

Considering a two-dimensional point process is a convenient way to order the crack positions as
in the case of the segment [0, L], by associating with any position an “arrival time” of the crack.
To define Ψ, we start with the process Φ associated with the cracking phenomenon without
stress relaxation.

Φ is a Poisson point process on R × R+, with intensity measure ν(dx, dy) = 1R+(y)dxdy.
To take into account the physical reality of the cracking process, Φ should be a Poisson point
process with intensity measure f(y)1R+(y)dxdy where f is a positive continuous and non-
decreasing function on R+. However, in that case, the random set Φf = {(x, F (y)), (x, y) ∈ Φ}

(where F (y) =

∫ y

0
f(t)dt, y ≥ 0) is a Poisson point process of intensity measure 1R+(y)dxdy

and the erasing procedure applied to either Φf or Φ is the same. Therefore from a mathematical
point of view, we can suppose, without any loss of generality, that Φ is a homogeneous Poisson
point process.

For any point (x, y) ∈ R × R+, we define the corresponding domain of relaxation:

R(x, y) = [x − r, x + r] × [y,+∞) ⊂ R × R+. (8)

Let us introduce Ψ. This random process is a sub-process of Φ defined by the following recursive
algorithm.
Initialization.We start with taking any couple (x, y) in Ψ, such that y is a local minimum, i.e.

Φ ∩ ([x − r, x + r] × [0, y)) = ∅.

Let us denote by Ψ1 the set of these points and by Φ1 the subset of Φ obtained by erasing all
the points that are in the domains of relaxation associated to the points of Ψ1. This means

Φ1 = Φ ∩
(
∪(x,y)∈Ψ1

R(x, y)
)c

.
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Iteration. Suppose that for a fixed n ∈ N∗, the processes Φ1, · · · ,Φn and Ψ1, · · · ,Ψn are
constructed.
We then take in Ψn+1 the points (x, y) of Φn such that y is a local minimum. We define Φn+1

as the set of the points of Φn not erased by the domains of relaxation associated to the points
of Ψn+1. In mathematical terms,

{
Ψn+1 = {(x, y) ∈ Φn; Φn ∩ [x − r, x + r] × [0, y) = ∅}
Φn+1 = Φn ∩

(
∪(x,y)∈Ψn+1

R(x, y)
)c

We then define
Ψ = ∪n≥1Ψn. (9)

From now on the points of Ψ will be named erasers, and the points of Φ \ Ψ that are deleted
by the domains of relaxation associated to the erasers, will be named erased points. So

Φ \ Ψ = {(x, y) ∈ Φ;∃(x′, y′) ∈ Ψ | (x, y) ∈ R(x′, y′)}.

The point process Ψ can also be seen as the complementary set in Φ of the erasing tree A(Φ),
where

A(Φ) = ∪(x,y)∈Ψ([x − r, x + r] × (y,+∞)). (10)

We say that a point of R × R+ is erased if it is contained in the erasing tree A(Φ).
The first properties of Ψ are stated in the following proposition.

Proposition 3 (i) Almost surely the projections of the points of Ψ on the x-axis are separated
by a distance at least equal to r.
(ii) Ψ is infinite a.s..
(iii) Ψ is invariant under horizontal translations.
(iv) Ψ is ergodic.

Proof. (i) Let us consider two points (x, y), (x′, y′) ∈ Ψ and suppose that

(x, y) ∈ Ψn and (x′, y′) ∈ Ψm, m ≥ n.

Then (x′, y′) 6∈ R(x, y) so |x′ − x| > r.
(ii) It suffices to show that Ψ0 is infinite. Let us denote by Cn, n ∈ Z, the event such that “the
minimum of the second coordinates of the points of Φ ∩ [3nr, 3(n + 1)r] × R+ is reached at a
point of [(3n + 1)r, (3n + 2)r] × R+”.

Let us remark that

Cn ⊂ {Ψ0 ∩ [(3n + 1)r, (3n + 2)r] × R+ 6= ∅}, n ∈ Z.

Since Φ is a Poisson point process, the events Cn are mutually independent and have the same
positive probability. So using the Borel-Cantelli lemma leads to

P{lim sup Cn} = 1,

which proves that Ψ0 is infinite.
(iii) Let us consider the set Mσ(R2) of the locally finite sequences of R2, endowed with the
σ−field generated by the applications φ 7−→ #(φ ∩ A), φ ∈ Mσ(R2), where A ∈ B(R2). We
define for every x ∈ R,

T x :

{
Mσ(R2) −→ Mσ(R2)
{(xi, yi)}i≥1 7−→ {(xi + x, yi)}i≥1

5



We see immediately that Ψ as well as Φ is invariant in law under the applications T x, x ∈ R.
(iv) To prove the ergodicity, let us show that Ψ is strongly mixing for the applications T x, i.e.
every couple (A,B) of measurable sets of Mσ(R2) satisfies

P{A ∩ T x(B)} −→
|x|→+∞

P{A} · P{B}. (11)

Let us remark (see [9]) that the sets {Ψ ∩ K = ∅}, where K runs throughout the compact sets
of R2, generate the σ-field of Mσ(R2). Consequently, it suffices to prove the convergence in
(11) when A = {Ψ ∩ A = ∅} and B = {Ψ ∩ B = ∅}, A, B being two compact sets of R2.

Since Ψ is invariant by T x/2, we have

P{(Ψ ∩ A = ∅) ∩ (T−x(Ψ) ∩ B = ∅)} = P{(T x/2(Ψ) ∩ A = ∅) ∩ (T−x/2(Ψ) ∩ B = ∅)}

= P{(Ψ ∩ (A − x/2) = ∅) ∩ (Ψ ∩ (B + x/2) = ∅)}.(12)

In order to prove the asymptotic independence of {Ψ∩(A−x/2)) = ∅} and {Ψ∩(B+x/2)) = ∅},
we are going to rewrite these two events with the independent processes Φ+ and Φ− defined by

Φ+ = Φ ∩ (R+ × R+) and Φ− = Φ ∩ (R− × R+). (13)

Let Z+ (respectively Z−) be the minimum (respectively the maximum) of the first coordinates
of the points of Ψ0 contained in the domain [r,+∞)×R+ (respectively (−∞,−r]×R+). In other
words, Z+ (respectively Z−) is the minimal (respectively maximal) first coordinate of the points
of Φ+∩ [r,+∞)×R+ (respectively Φ−e∩(−∞,−r]×R+) such that Φ+∩ [x−r, x+r]× [0, y) = ∅
(respectively Φ− ∩ [x − r, x + r] × [0, y) = ∅). So Z+ and Z− are two independent variables.

Besides, let A(Φ+) (resp. A(Φ−)) be the erasing tree of Φ+ (resp. of Φ−). We then have

A(Φ+) ∩ ([Z+,+∞) × R+) = A(Φ) ∩ ([Z+,+∞) × R+), (14)

and
A(Φ−) ∩ ((−∞, Z−] × R+) = A(Φ) ∩ ((−∞, Z−] × R+). (15)

For n ∈ N, let x be such that x/2 + inf p1(B) > n and −x/2 + sup p1(A) < −n, where p1(A)
denotes the projection on the x-axis of A. Let us consider the events

E+
n = {Z+ ∈ [0, n]; Ψ ∩ (B + x/2) = ∅} and E−

n = {Z− ∈ [−n, 0];Ψ ∩ (A − x/2) = ∅}.

Then E+
n and E−

n are independent because the equalities (14) and (15) imply that

E+
n = {Z+ ∈ [0, n]; Φ+ ∩ [A(Φ+) ∩ [Z+,+∞) × R+]c ∩ (B + x/2) = ∅},

and
E−

n = {Z− ∈ [−n, 0]; Φ− ∩ [A(Φ−) ∩ (−∞, Z−] × R+]c ∩ (A − x/2) = ∅}.

Consequently, let us fix η > 0 and choose n ∈ N such that

P{Z+, Z− ∈ [0, n]} ≥ 1 − η/3.

Then for x ≥ 2 sup{(n− inf p1(B)), (n + sup p1(A))}, using the invariance of Ψ under T x/2 and
the independence of E+

n and E−
n , we have

|P{(Ψ ∩ A = ∅) ∩ (T−x(Ψ) ∩ B = ∅)} −P{Ψ ∩ A = ∅} ·P{Ψ ∩ B = ∅}|

≤ |P{(Ψ ∩ (A − x/2) = ∅) ∩ (Ψ ∩ (B + x/2) = ∅)} −P{E+
n ∩ E−

n }|

+|P(E+
n )P(E−

n ) −P{Ψ ∩ (A − x/2) = ∅}P{Φ ∩ (B + x/2) = ∅}|

≤
η

3
+ 2 ·

η

3
= η.

So the required convergence (11) is proved.

2
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2 The mean crack number and typical inter-crack distance

Let us consider for a fixed ε > 0, the set Λε given by the equality (7). Due to Proposition 3, Λε

is stationary and ergodic.
We are interested in two physical quantities, the mean crack number and typical inter-crack

distance. First, the mean crack number λε, i.e. the mean number of cracks per unit of length
is the intensity of Λε. Secondly, we can define two different characteristic distances:
(i) the typical inter-crack distance Dε represents the distance in the Palm sense (see (17))
between a point “randomly chosen” in Λε and its successor.
(ii) Iε

x, x ∈ R, is the smallest interval whose bounds are in Λε and that contains x (it is unique
almost surely). Since Λε is stationary, the distribution of |I ε

x| does not depend on x.
We express the distribution of |Iε

0 | via the law of Dε and we notice that Dε and |Iε
0 | are not

identically distributed. Moreover, we determine λε and the distribution of Dε. In a first step
we prove that both λε and the probability distribution function of Dε can be expressed as an
integral of two functions G and H. The calculation of G and H is postponed in Section 3.

Let us start with a precise definition of λε and Dε. The function that associates to any
Borel set B ⊂ R, the value E(#(Λε ∩B)) is a positive measure invariant under translations. So
it is proportional to the Lebesgue measure on R denoted by | · |. Consequently, we can define
the intensity λε of Λε as

λε =
1

|B|
E(#(Λε ∩ B)), (16)

where B ⊂ R is a fixed Borel set verifying 0 < |B| < +∞.
The law in the Palm sense (see Section 4.4 of [20] or Section 2 of [15] for a complete survey

on Palm distributions of stationary point processes on the real line) of the typical inter-crack
distance Dε is defined as follows:

Eh(Dε) =
1

λε|B|
E

{ ∑

x∈Λε∩B

h(v(x,Λε) − x)

}
, (17)

for every measurable function h : R+ −→ R+ and every fixed Borel set B ⊂ R, where

v(x,Γ) = inf{Γ ∩ (x,+∞)} = inf{s ∈ Γ; s > x}, x ∈ R, Γ ⊂ R, (18)

with the conventions inf ∅ = +∞ and
∑

∅

= 0. Let us note that the right-hand side does not

depend on B.
Let Lε be the stress level associated with Dε. We can define the joint distribution of (Dε, Lε)

(in the Palm sense) in the same manner. More precisely, we have

E {h(Dε, Lε)} =
1

λε|B|
E





∑

(x,y)∈Ψ∩(B×[0,ε])

h(v(x,Λε) − x, y)



 , (19)

for every Borel function h : (R+)2 −→ R+ and every fixed Borel set B ⊂ R.
Let us observe that Proposition 3 implies that Dε ≥ r a.s.. Besides, using the same argument

as J. Møller in ([14], page 62), we obtain that Dε is an integrable r.v. and

EDε =
1

λε
. (20)

We now establish a connection between the distributions of Dε and |Iε
0 |. Let Iε

L, L > 0, be the
set of intervals Iε

x included in the segment [−L,L], and N ε
L the number of such intervals, i.e.

N ε
L = #Iε

L = (#{Λε ∩ [−L,L]} − 1)+ .

7



The distributions of Dε and Iε
0 are connected by the following proposition.

Proposition 4 (i) For any positive measurable function h on R+,

Eh(Dε) =
1

E(1/|Iε
0 |)

E

(
h(|Iε

0 |)

|Iε
0 |

)
. (21)

(ii) If there exists p > 1 such that E(h(Dε)
p) < +∞, then when L goes to infinity,

1

N ε
L

∑

I∈Iε
L

h(|I|) −→ Eh(Dε) a.s. (22)

Proof. (i) It suffices to combine (20) with the argument used by Møller in ([14], Prop. 3.3.2.),
in his study of the typical cell of a Voronoi tessellation on R generated by a stationary point
process.
(ii) Let us define for all x ∈ R,

T̃ x :

{
Mσ(R) −→ Mσ(R)
{xi}i≥1 7−→ {xi + x}i≥1,

where Mσ(R) is the set of locally finite sequences of R.
According to Wiener’s ergodic theorem [22], if E(h(|I ε

0 |)/|I
ε
0 |) < +∞, then

1

2L

∫ L

−L

h(|Iε
x|))

|Iε
x|

dx =
1

2L

∫ L

−L

h(|Iε
0(T̃−x(Λε))|)

|Iε
0(T̃−x(Λε))|

dx −→ E

(
h(|Iε

0 |)

|Iε
0 |

)
a.s. (23)

Moreover, taking h = 1, we easily verify that

N ε
L

2L
−→ E

(
1

|Iε
0 |

)
, a.s. when L → +∞.

We suppose that h satisfies the condition (ii). Applying the argument used by Goldman (see
[8], Lemma 4) in the case of Poissonian tessellations, we demonstrate that

1

2L

∫ L

−L

h(|Iε
x|)

|Iε
x|

dx −
1

2L

∑

I∈Iε
L

h(|I|) −→ 0, when L → +∞.

2

Remark 5 It is possible to invert the equality (21), namely

E{h(|Iε
0)} =

1

E(Dε)
E{Dεh(Dε)}, (24)

for every positive Borel function h defined on R+.

From now on, we focus on the calculation of λε and the distribution of Dε. The following lemma
is an essential intermediate result.

Lemma 6 (i) λε =
∫ ε
0 P{(0, v) 6∈ A(Φ)}dv.

(ii) For every t ≥ 0,

P{Dε ≥ t} =
1

λε

∫ ε

0
P{(0, v) 6∈ A(Φ); v(0,Λε,v) ≥ t}dv,

where Λε,v is the cracking process based on Φ∩(R×[0, ε])∪{(0, v)} and v(0,Λε,v) is defined
by the equality (18).
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Proof. To prove these two equalities, the essential tool is Slivnyak’s formula (see for example
[14]) satisfied by Φ:

E




∑

(x,y)∈Φ

h((x, y),Φ)



 =

∫
E(h((u, v),Φ ∪ {(u, v)}))1R+ (v)dudv, (25)

for every positive measurable function h defined on R2 ×Mσ(R2).
Using successively (7), (16) and (25), we have for every L > 0

λε =
1

L
E [#(Λε ∩ [0, L])]

=
1

L
E


 ∑

(x,y)∈Φ

1[0,L](x)1[0,ε](y)1A(Φ)c(x, y)




=
1

L

∫ L

0
du

∫ ε

0
P{(u, v) 6∈ A(Φ ∪ {(u, v)})}dv. (26)

Using invariance under horizontal translations of Φ and the equality between the two events
{(0, v) 6∈ A(Φ ∪ {(0, v)}} and {(0, v) 6∈ A(Φ)}, we deduce from (26) that

λε =

∫ ε

0
P{(0, v) 6∈ A(Φ)}dv.

That completes the proof of (i).
Using the equalities (17) and (25), we can prove (ii) in the same manner.

2

Let us consider the continuous function

G(x, y) = P{Φ+ ∩ ([0, x] × [0, y]) ⊂ A(Φ+)}, x ∈ [0, r], y ≥ 0, (27)

where Φ+ is defined by (13).
G(x, y) is the probability that either Φ ∩ [0, x] × [0, y] = ∅ or the points of Φ ∩ [0, x] × [0, y]

are erased by erasers from the right (i.e. belonging to Φ+).
More generally, we define the continuous function

H(x, y, x′, y′) = P{Φ+ ∩ ([0, x] × [0, y] \ [0, x′] × [y′, y])) ⊂ A(Φ+)}, 0 ≤ x′ ≤ x ≤ r, 0 ≤ y′ ≤ y.
(28)

H(x, y, x′, y′) is the probability that either Φ ∩ ([0, x] × [0, y] \ [0, x′] × [y′, y]) = ∅ or the points
of the set Φ ∩ ([0, x] × [0, y] \ [0, x′] × [y′, y]) are erased by erasers from the right.

The following proposition provides the expression of λε and the distribution function of Dε

as integrals of G and H.

Proposition 7 We have:

(i) λε =
∫ ε
0 G(r, v)2dv;

(ii) For every t ≥ 2r,

P{Dε ≥ t} =

(
G(r, ε)

λε

∫ ε

0
G(r, v)e−rvdv

)
· e−(t−2r)ε; (29)
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(iii) For every t ∈ [r, 2r],

P{Dε ≥ t} =
1

λε

∫ ε

0
G(r, v)H(r, ε, 2r − t, v)e−v(t−r)dv. (30)

Proof. (i) According to the point (i) of Lemma 6, it suffices to prove that for every v ∈ [0, ε],

P{(0, v) 6∈ A(Φ)} = P{(0, v) not erased} = G(r, v)2. (31)

Besides, the point (0, v), 0 ≤ v ≤ ε, is not erased if and only if there is no eraser in [−r, r]×[0, v],
i.e. if the points of Φ ∩ ([−r, r] × [0, v]) have been erased themselves.

In that case, the points of Φ∩ ([0, r]× [0, v]) (respectively of Φ∩ ([−r, 0]× [0, v])) could have
been erased only by erasers from the right (respectively from the left).

So we have the equivalence

(0, v) 6∈ A(Φ) ⇐⇒

{
Φ+ ∩ ([0, r] × [0, v]) ⊂ A(Φ+)
Φ− ∩ ([−r, 0] × [0, v]) ⊂ A(Φ−).

(32)

Consequently, using the independence of Φ+ and Φ−, we obtain

P{(0, v) 6∈ A(Φ)} = P{Φ+ ∩ ([0, r] × [0, v]) ⊂ A(Φ+)} ·P{Φ− ∩ ([−r, 0] × [0, v]) ⊂ A(Φ−)}.

It remains to notice that (31) is a direct consequence of the equalities

P{Φ+ ∩ ([0, r] × [0, v]) ⊂ A(Φ+)} = P{Φ− ∩ ([−r, 0] × [0, v]) ⊂ A(Φ−)} = G(r, v).

(ii)(iii) In order to determine the law of Dε, we deduce from Lemma 6 (ii) that it is sufficient
to calculate the expression

P{(0, v) 6∈ A(Φ); v(0,Λε,v) ≥ t}, t ≥ r, v ∈ [0, ε].

We proceed as for (i) and we obtain the equality

{(0, v) not erased ; v(0,Λε,v) ≥ t} = A− ∩ A+
t , (33)

where A− and A+
t are two independent events defined by

A− = {Φ ∩ ([−r, 0] × [0, v]) = ∅ or all points of Φ ∩ ([−r, 0] × [0, v]) erased from the left},

A+
t = {Φ ∩ ([0, r] × [0, v] ∪ [r, t] × [0, ε]) is empty or erased from the right}.

Let us remark that
P(A−) = G(r, v). (34)

Consequently we obtain the formula

P{(0, v) 6∈ A(Φ); v(0,Λε,v) ≥ t} = G(r, v) ·P(A+
t ). (35)

It then remains to determine P(A+
t ). The computation of this probability depends whether

t ≥ 2r or t ∈ [r, 2r].

First case: t ≥ 2r.
Since a point of Φ can be erased only by an eraser located at a distance smaller than r on

the x-axis, we can rewrite the event A+
t as follows:

A+
t = {Φ∩([0, r]×[0, v]∪[r, t−r]×[0, ε]) = ∅}∩{Φ∩([t−r, t]×[0, ε]) erased from the right}, (36)
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the two events of the intersection being independent.
The Poissonian property of Φ provides the equality

P{Φ ∩ ([0, r] × [0, v] ∪ [r, t − r] × [0, ε]) = ∅} = e−ν([0,r]×[0,v]∪[r,t−r]×[0,ε]) = e−(t−2r)εe−rv. (37)

Since Φ is invariant under horizontal translations T t−r, we have

P{Φ ∩ ([t − r, t] × [0, ε]) erased by the right} = G(r, ε). (38)

Consequently, we deduce from formulas (36), (37) and (38):

P(A+
t ) = G(r, ε)e−rve−(t−2r)ε.

Relation (29) follows immediately.

Second case: t ∈ [r, 2r].
We rewrite the event A+

t as the intersection of two independent events:

A+
t = {Φ∩ ([0, t−r]× [0, v] = ∅}∩{Φ∩ ([t−r, t]× [0, ε]\ [t−r, r]× [v, ε]) erased from the right}.

The invariance under horizontal translations of Φ implies that

P{Φ ∩ ([t − r, t] × [0, ε] \ [t − r, r] × [v, ε]) erased by the right} = H(r, ε, 2r − t, v),

and we then have the equality

P(A+
t ) = H(r, ε, 2r − t, v)e−v(t−r) .

Using (35), we can conclude as in the first case.

2

3 Explicit formulas for the mean crack number and the distri-

bution function of the typical inter-crack distance

Proposition 7 implies that the mean crack number and the distribution of Dε (resp. |Ie
0 |) are

known as soon as the functions G and H are determined. We prove in Proposition 8 below that
G satisfies an integral equation. Fortunately we can solve it (see Proposition 10) and thereby
obtain an explicit formula for both G and H. As for the joint distribution of (Dε, Lε), we prove
that it can be determined via G and H.

3.1 A functional equation satisfied by G

G satisfies the following functional equation.

Proposition 8 For every 0 ≤ x ≤ r, y ≥ 0,

G(x, y) = 1 − e−xy

∫ x

0

∫ y

0
G(r − u, y − v)euv(1 + uv)dudv. (39)

Proof. Let us first recall that for every fixed x ∈ [0, r] and y ∈ [0, ε], we have:

Φ+ ∩ ([0, x] × [0, y])
law
= {(Xi, Yi); 1 ≤ i ≤ N},

where:
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(i’) {(Xi, Yi); i ≥ 1} is a sequence of independent and uniform variables on [0, x] × [0, y];

(ii’) N is a Poisson variable of mean value EN = xy, independent of the preceding sequence.

Let us define for all n ≥ 1,

(
M

(n)
1 ,M

(n)
2

)
=

(
inf

1≤i≤n
Xi, inf

1≤i≤n
Yi

)
.

It is easily verified that the law of the couple
(
M

(n)
1 ,M

(n)
2

)
is given by

P
{

M
(n)
1 ≥ u; M

(n)
2 ≥ v

}
=

(
1 −

u

x

)n
(

1 −
v

y

)n

, u ∈ [0, x], v ∈ [0, y]. (40)

The key point is the following: let
(
M

(n)
1 , Y

)
(respectively

(
X̂,M

(n)
2

)
) be the point of Φ, of

first coordinate M
(n)
1 (resp. of second coordinate M

(n)
2 ).

The points of Φ+ ∩ ([0, x] × [0, y]) cannot be erased by more than one eraser (X,Y ). Since

(X,Y ) has to erase
(
M

(n)
1 , Y

)
(resp.

(
X̂,M

(n)
2

)
), then X ≤ M

(n)
1 + r (resp. Y ≤ M

(n)
2 ).

Consequently, that happens if and only if either N = 0 or N = n, n ≥ 1, and there is an

eraser in ([x,M
(n)
1 + r] × [0,M

(n)
2 ]).

Combining this argument with the equality (40), we obtain that for every x ∈ [0, x], y ∈ [0, y],

G(x, y)

= P{Φ+ ∩ ([0, x] × [0, y]) empty or erased from the right}

= P{N = 0}

+
∑

n≥1

P{N = n}P{Φ+ ∩ ([x,M
(n)
1 + r] × [0,M

(n)
2 ]) not totally erased from the right}

= e−xy


1 +

∑

n≥1

(xy)n

n!

∫ x

0

∫ y

0
(1 − G(u + r − x, v))P(M

(n)
1 ∈ du,M

(n)
2 ∈ dv)




= 1 − e−xy
∑

n≥1

n2 (xy)n−1

n!

∫ x

0

∫ y

0
G(u + r − x, v)

(
1 −

u

x

)n−1
(

1 −
v

y

)n−1

dudv

= 1 − e−xy

∫ x

0

∫ y

0
G(u + r − x, v)e(x−u)(y−v)(1 + (x − u)(y − v))dudv.

Taking the change of variables (in the integral) u′ = x− u, v′ = y − v, we deduce (39) from the
preceding equality.

2

Let us consider the bounded operator L on the space of continuous functions C([0, r]×R+)
(endowed with the topology of uniform convergence on every compact set) defined by

L(Q) : (x, y) 7−→ e−xy

∫ x

0

∫ y

0
Q(r − u, y − v)euv(1 + uv)dudv, x ∈ [0, r], y ≥ 0, (41)

where Q ∈ C([0, r] × R+).
The following theorem provides the uniqueness of the solution of the functional equation

(39) in the space C([0, r] × R+).
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Proposition 9 We have

G =
∑

n≥0

(−1)nLn(1), (42)

the convergence of the series being uniform on [0, r] × [0, k], for any k > 0.

Proof. Equation (39) can be rewritten as

G + L(G) = 1, G ∈ C([0, r] × R+). (43)

Let us remark that
L(1)(x, y) = 1 − e−xy, x ∈ [0, r], y ∈ R+. (44)

Let k > 0 be fixed. We suppose that the set C([0, r] × [0.k]) of continuous fonctions defined on
[0, r] × [0, k] is equipped with the uniform norm.

We deduce easily from (44) that the restriction of L to C([0, r] × [0, k]) has a finite norm
equal to (1 − erk). Consequently, the series

∑

n≥0

(−1)nLn

converges to the inverse of (I + L). Therefore (42) is a direct consequence of (43).

2

The functional equation (39) is the key point to calculate the expressions of the functions G and
H. We will then deduce from Proposition 7 the mean crack number and distribution function
of the typical inter-crack distance.

3.2 Explicit formulas for λε and P{Dε ≥ t}, t ≥ r

Let us remark that the function α defined in (1) satisfies the two following identities:

(α(t)t)′ = α(t)e−rt, (45)

α(t) =
e−γ

rt
exp {−Ei(1, rt)} , t > 0, (46)

where γ is Euler’s constant and Ei(n, x) =

∫ +∞

1

e−xs

sn
ds.

Proposition 10 For every 0 ≤ x ≤ r, y ≥ 0,

G(x, y) = 1 −

∫ y

0
α(s)

1 − e−sx

s
ds = 1 −

∫ y

0
exp

{
−

∫ rs

0

1 − e−t

t
dt

}
1 − e−sx

s
ds.

In particular,

G(r, y) = α(y) = exp

{
−

∫ ry

0

1 − e−v

v
dv

}
. (47)

Proof. Let us recall that Proposition 9 provides the uniqueness of the solution of the integral
equation (39) in the space C([0, r]×R+). Consequently, it suffices to verify that the continuous
function

U(x, y) = 1 − V (x, y) = 1 −

∫ y

0
α(s)

1 − e−sx

s
ds, x ∈ [0, r], y ≥ 0,
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satisfies the identity U + L(U) = 1. Using (44), we obtain that it is equivalent to

L(V )(x, y) = U(x, y) − e−xy. (48)

We need to calculate L(V ) where L is the operator defined by (41).
For x ∈ [0, r] and y ≥ 0 fixed, we have

L(V )(x, y) = e−xy

∫ x

0

∫ y

0

∫ y−v

0
α(s)

1 − e−s(r−u)

s
euv(1 + uv)dudvds

= e−xy

∫ x

0

∫ y

0
α(s)

1 − e−s(r−u)

s

[∫ y−s

0
euv(1 + uv)dv

]
dsdu

= e−xy

∫ y

0

α(s)

s

[∫ x

0
(y − s)(1 − e−s(r−u))eu(y−s)du

]
ds

=

∫ y

0

α(s)

s

{
e−xs − e−xy − (y − s)e−rs 1 − e−xy

y

}
ds

= −

∫ y

0

α(s)

s
(1 − e−xs)ds −

1 − e−xy

y

(∫ y

0
(y − s)α(s)

e−sr − 1

s
ds −

∫ y

0
α(s)ds

)

= U(x, y) − 1 −
1 − e−xy

y

(∫ y

0
(y − s)α′(s)ds −

∫ y

0
α(s)ds

)

= U(x, y) − 1 + (1 − e−xy) = U(x, y) − e−xy.

We then obtain (48). This implies Proposition 10.

2

Remark 11 Let us briefly explain how the right function G was determined.
Let us fix x ∈ (0, r) and a continuously derivable function h defined on R+ and

H(y) =

∫ y

0
h(y − v)exv(1 + xv)dv, y ≥ 0.

It is easy to check that H solves the following linear ordinary equation:

H ′′(y) − 2xH ′(y) + x2H(y) = h′(y)

with the boundary conditions H(0) = 0 and H ′(0) = h(0).
Let G be a solution of G = 1 − LG. We introduce G1(x, y) = ∂G

∂y (x, y). The previous step
implies that G1 solves:

2G1(x, y) + y
∂G1

∂y
(x, y) +

∂2G1

∂x∂y
(x, y) = −e−xyG1(r − x, y), 0 ≤ x ≤ r, y ≥ 0.

We notice that (x, y) 7−→ xe−xy and (x, y) 7−→ 1/y2 are two particular solutions of:

2A(x, y) + y
∂A

∂y
(x, y) +

∂2A

∂x∂y
(x, y) = 0.

It is then possible (after tedious calculations) to deduce G1(x, y).

Let us define the cracking process Λ+
ε on the positive half-line. Let Ψ+ be the set obtained by

the erasing procedure (developed in Section 1) applied to the intersection Φ+ of Φ and (R+)2.
Λ+

ε is defined as the projection on the first axis of Ψ+ ∩ (R × [0, ε]), namely:

Λ+
ε = {x ∈ R+;∃y ∈ [0, ε] | (x, y) ∈ Ψ+}. (49)
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Λ+
ε represents the position of the cracks when the stress is less than ε.

Let us consider the first positive crack position:

Xε
1 = inf Λ+

ε . (50)

The calculation of the law of Xε
1 , ε ≥ 0, is essential to obtain an explicit formula of the function

H(r, ·, ·, ·) defined in (28). The following theorem provides the exact distribution of X ε
1 .

Theorem 12 The law of Xε
1 has a density ϕXε

1
such that

ϕXε
1
(x) =

{
εα(ε)e−ε(x−r) if x ≥ r∫ ε
0 α(v)e−xvdv if x ∈ [0, r].

(51)

Proof. Using Proposition 10, we only have to verify that

P{Xε
1 ≥ x} =

{
G(x, ε) if x ∈ [0, r]

e−(x−r)εα(ε) if x ≥ r.
(52)

Let us notice the equality of events

{Φ+ ∩ ([0, x] × [0, ε]) erased from the right} = {X ε
1 ≥ x}. (53)

The equality (52), with x ∈ [0, r], follows directly from (53) and (27).
When x ≥ r, using (53) and the invariance under every horizontal translation of Φ+, we

have

P{Xε
1 ≥ x} = P{Φ+ ∩ ([0, x] × [0, ε]) empty or erased from the right}

=
P{Φ+ ∩ ([0, x − r] × [0, ε]) = ∅;

Φ+ ∩ ([x − r, x] × [0, ε]) empty or erased from the right)}

= P{Φ+ ∩ ([0, x − r] × [0, ε]) = ∅}

·P{Φ+ ∩ ([0, r] × [0, ε]) empty or erased from the right)}

= e−(x−r)εG(r, ε).

This proves the second part of (52). In particular,

P{Φ+ ∩ ([0, r] × [0, ε]) erased from the right} = P{X ε
1 ≥ r} = α(ε). (54)

2

Proposition 13 For every 0 ≤ x ≤ r, 0 ≤ y ≤ ε,

H(r, ε, x, y) = α(y) − e−xy

∫ ε

y
α(s)

1 − e−(r−x)s

s
ds.

Proof. We observe that

{Φ+ ∩ ([0, r] × [0, ε] \ [0, x] × [y, ε]) erased from the right} = A1 ∪ A2,

where

A1 = {Xy
1 ∈ [r, x + r]},

A2 = {Φ+ ∩ ([0, x] × [0, y]) = ∅; Φ+ ∩ ([x, r] × [0, ε]) erased from the right}.
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We then obtain the following formula which is the key point of the proof of Proposition 13:

H(r, ε, x, y) = P(A1) + P(A2) −P(A1 ∩ A2). (55)

Using Theorem 12, we have

P(A1) =

∫ x+r

r
yα(y)e−y(u−r)du = α(y)(1 − e−xy). (56)

The invariance of Φ+ under every positive translation combined with Theorem 10 implies:

P(A2) = P{Φ+ ∩ ([0, x] × [0, y]) = ∅} ·P{Φ+ ∩ ([0, r − x] × [0, ε]) erased by the right}

= e−xyG(r − x, ε)

= e−xy

(
1 −

∫ ε

0
α(s)

1 − e−s(r−x)

s
ds

)
. (57)

It remains to determine P(A1 ∩ A2). To this end, we remark that the law of the process Φ+

conditioned on the event {Φ+ ∩ ([0, x] × [0, y]) = ∅} is the same as T x(Φ+).
Consequently, we have

P(A1 ∩ A2) = P{Xy
1 ∈ [r, x + r]|Φ+ ∩ ([0, x] × [0, y]) = ∅} · P{Φ+ ∩ ([0, x] × [0, y]) = ∅}

= P{Xy
1 ∈ [r − x, r]} · e−xy

= e−xy(P{Xy
1 ≥ r − x} −P{Xy

1 > r})

= e−xy

∫ y

0
α(v)

e−(r−x)v − e−rv

v
dv. (58)

Inserting the formulas (56), (57) and (58) in (55), we get

H(r, ε, x, y) = α(y)(1 − e−xy)

+e−xy

{
1 −

∫ ε

0
α(s)

1 − e−s(r−x)

s
ds −

∫ y

0
α(s)

e−s(r−x) − e−rs

s
ds

}
. (59)

We calculate the last integral in the following way:

∫ y

0
α(s)

e−s(r−x) − e−rs

s
ds =

∫ y

0
α(s)

e−s(r−x) − 1

s
ds +

∫ y

0
α(s)

1 − e−rs

s
ds

=

∫ ε

0
α(s)

e−s(r−x) − 1

s
ds −

∫ ε

y
α(s)

e−s(r−x) − 1

s
ds

− [α(s)]y0

=

∫ ε

y
α(s)

1 − e−s(r−x)

s
ds −

∫ ε

0
α(s)

1 − e−s(r−x)

s
ds

+1 − α(y). (60)

Combining the equalities (59) et (60), we obtain Proposition 13.

2

Proof of Theorem 1. The point (i) follows immediately from Propositions 7 and 10.
To prove the point (ii), it suffices to demonstrate that

P{Dε ≥ t} =

{
ε
λε

α(ε)2e−(t−2r)ε; if t ≥ 2r
2
λε

∫ ε
0 α(v)2e−(t−r)vdv − 1 if t ∈ [r, 2r].

(61)
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Using Proposition 7(ii) and (45), we have when t > 2r,

P{Dε ≥ t} =
α(ε)

λε

∫ ε

0
α(v)e−rvdv · e−(t−2r)ε

=
α(ε)

λε
[vα(v)]ε0 · e

−(t−2r)ε

=
ε

λε
α(ε)2e−(t−2r)ε.

Ir remains to calculate P{Dε ≥ t} when t ∈ [r, 2r]. Using Propositions 7(iii) and 13, we obtain:

P{Dε ≥ t} =
1

λε

∫ ε

0
α(v)e−(t−r)v

{
α(v) − e−(2r−t)v

∫ ε

v
α(s)

1 − e−(t−r)s

s
ds

}
dv

=
1

λε

∫ ε

0
α(v)2e−(t−r)vdv −

1

λε

∫ ε

0
α(s)

1 − e−(t−r)s

s

[∫ s

0
e−rvα(v)dv

]
ds

=
1

λε

∫ ε

0
α(v)2e−(t−r)vdv −

1

λε

∫ ε

0
α(s)

1 − e−(t−r)s

s
sα(s)ds

=
2

λε

∫ ε

0
α(v)2e−(t−r)vdv − 1.

This completes the proof of the equality (61).
We now generalize (ii) in determining the joint density of the couple (Dε, Lε). Fixing

t ≥ r, s ∈ [0, ε], we use the equality (19) of (Dε, Lε) and apply Slivnyak’s formula (25) as in the
proof of Lemma 6 to obtain that

P{Dε ≥ t;Lε ≤ s} =
1

λε

∫ s

0
P{(0, v) 6∈ A(Φ); v(0,Λε,v) ≥ t}dv.

Consequently, we get as in Proposition 7 that

P{Dε ≥ t;Lε ≤ s} =

{ (
G(r,ε)

λε

∫ s
0 G(r, v)e−rvdv

)
· e−(t−2r)ε if t ≥ 2r

1
λε

∫ s
0 G(r, v)H(r, ε, 2r − t, v)e−v(t−r)dv if t ∈ [r, 2r].

(62)

It then suffices to insert the expressions of G and H (see Propositions 10 and 13) into (62) to
deduce that

P{Dε ≥ t;Lε ≤ s} (63)

=

{
α(ε)
λε

sα(s)e−(t−2r)ε if t ≥ 2r
1
λε

∫ s
0 α(v)2(2e−(t−r)v − 1)dv − sα(s)

λε

∫ ε
s α(v)1−e−(t−r)v

v dv if t ∈ [r, 2r].
(64)

Points (iii) and (iv) of Theorem 1 are easy consequences of this last equality.

2

Remark 14 (i) A similar formulation of points (i)-(ii) of Theorem 1 has been obtained by
Widom (see [21], page 3893, results (37)-(39)) through heuristic methods. Besides, Coffman
et al. [5], [4] constructed a point process on a finite interval, by the same erasing procedure
as ours, and deduced analogous results by taking the limit when the length of the interval
goes to infinity. Their work mostly used analytic tools such as Fourier transform and analytic
functions.
(ii) Let us remark that the distribution of Dε has a decreasing density on [r,+∞), with a
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transition at 2r. Since the distribution is of exponential type in the interval [2r,+∞), Dε has
finite moments of any order. Applying Proposition 4, we obtain

1

NL

∑

I∈IL

|I|n −→ E(Dn
ε ), when L → +∞, n ≥ 1.

Besides, it is easy to verify that the first moment of Dε satisfies (20).

Using (24), we can prove easily that |I ε
0 | has an explicit density.

Proposition 15 The law of |Iε
0 | has a density ϕ|Iε

0 |
on [r,+∞) such that

ϕ|Iε
0 |

(x) =

{
ε2α(ε)2xe−(x−2r)ε if x > 2r

2x
∫ ε
0 e−(x−r)vα(v)2vdv if r ≤ x ≤ 2r

4 The law of the successive cracks on the positive half-line

Using stationarity of Λε, we have determined some of its statistical characteristics such as the
distribution of the inter-crack distance. We would like to give an enumerative description of
the points in Λε. It is actually more convenient to fix an origin, namely 0, and to replace Λε by
Λ+

ε (defined by (49)). We have already considered the first crack position X ε
1 and determined

its distribution in Theorem 12. Here we plan to go further, enumerating the point of Λ+
ε as

follows:
Λ+

ε = {Xε
n;n ∈ N∗},

where 0 < Xε
1 < Xε

2 < · · · < Xε
n < · · · , n ≥ 1.

Let Y ε
n , n ≥ 1, be the positive real number such that

(Xε
n, Y ε

n ) ∈ Ψ+ ∩ (R+ × [0, ε]).

The aim of this section is the description of the distribution of {(X ε
i , Y ε

i ); 1 ≤ i ≤ n} for
any n ≥ 1. A first answer is given by a recursive algorithm (see Theorems 16 and 17):
we compute the distribution of (Xε

1 , Y ε
1 ) and the distribution of (Xε

i+1, Y
ε
i+1) conditionally on

(Xε
1 , Y ε

1 , · · · , Xε
i , Y ε

i ), 1 ≤ i ≤ n − 1. We interpret this result by using a Markov chain model
(see Theorem 18) and we prove the convergence in law of the couple (X ε

n+1−Xε
n, Y ε

n ) to (Dε, Lε)
(see Theorem 19).

We observe in particular that {Xε
n;n ≥ 1} is not a renewal sequence, for instance (X ε

2 −Xε
1)

is not independent of Xε
1 . However we prove (see Theorem 2) that {X ε

n;n ≥ 1} is a “conditional
renewal process” (see Theorem 2 for a detailed explanation of this expression).

Let us start with the density of (Xε
1 , Y ε

1 ).

Theorem 16 The law of the couple (Xε
1 , Y ε

1 ) has a density ϕ(Xε
1 ,Y ε

1 ) such that for every u, v ∈ R,

ϕ(Xε
1 ,Y ε

1 )(u, v) =
(
1{u>r}e

−(u−r)εe−rv + 1{0≤u≤r}e
−uv
)

α(v)1{0≤v≤ε}. (65)

Proof. It suffices to prove that for every x ≥ 0 and 0 ≤ y ≤ ε:

P{Xε
1 ≥ x;Y ε

1 ≤ y} =

{
y
εα(y)e−(x−r)ε if x > r

1 − α(y) −
∫ y
0

α(v)
v (1 − e−xv)dv + y

εα(y) otherwise.
(66)
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We notice that

P{Xε
1 ≥ x;Y ε

1 ≤ y} = P{Xε
1 ≥ x;Xε

1 = Xy
1 }

= P{Xy
1 ≥ x;Xε

1 = Xy
1 }

=

∫ +∞

x
P{Xε

1 = Xy
1 |X

y
1 = u}P{Xy

1 ∈ du}. (67)

Moreover, (Xε
1 = Xy

1 ) if and only if there is no positive eraser in ([0, X y
1 ] × [y, ε]), which means

that for every u ≥ 0,

P{Xε
1 = Xy

1 |X
y
1 = u} =

{
1 if u ≤ r
P{Φ ∩ [0, u − r] × [y, ε] = ∅} otherwise.

Since Φ is a Poisson point process,

P{Xε
1 = Xy

1 |X
y
1 = u} =

{
1 if u ≤ r

e−(u−r)(ε−y) otherwise.
(68)

Inserting equalities (51) and (68) in (67), we get the result (66), via (60).

2

The following theorem provides the law of the couple (X ε
n+1 − Xε

n, Y ε
n+1) conditionally on

(Xε
1 , Y ε

1 , · · · , Xε
n, Y ε

n ).

Proposition 17 For every n ≥ 1, the distribution of the couple (X ε
n+1−Xε

n, Y ε
n+1) conditionally

on (Xε
1 , Y ε

1 , · · · , Xε
n, Y ε

n ) has a density θε(Y ε
n ; ·):

θε(y;u, v) =
[
1{u>2r}1{0≤v≤ε}e

−r(y+v)e−(u−2r)ε

+1{r≤u≤2r}

{
1{0≤v≤y}e

−(u−r)ye−rv + 1{y<v≤ε}e
−rye−(u−r)v

}] α(v)

α(y)
, (69)

where y, v ∈ [0, ε] and u ≥ 0.

Proof. Let Zn = (Xε
1 , Y ε

1 , · · · , Xε
n, Y ε

n ) and z = (x1, · · · , xn−1, x, y1, · · · , yn−1, y) where
0 < x1 < · · · < xn−1 < x and y1, · · · , yn−1, y ∈ [0, ε]. It suffices to demonstrate

P{Xε
n+1 − Xε

n ≥ u;Y ε
n+1 ≤ v|Zn = z}

=





e−ry

α(y)
v
εα(v)e−(u−2r)ε if u > 2r

(e−(u−r)y − e−ry)α(v)v
α(y)y + e−ry α(v)v

α(y)ε if r ≤ u ≤ 2r

and v ≤ y,

e−(u−r)y − e−ry

α(y)

{∫ v
y (1 − e−(u−r)s)α(s)

s ds + α(v)
(
1 − v

ε

)}
if r ≤ u ≤ 2r

and v > y.

(70)

Our approach is based on the following properties:
(i) the distribution of Φ̂ = T−Xε

n(Φ+)∩(R+)2 conditionally on Zn is the same as the distribution
of Φ+ conditionally on {Φ+ ∩ ([0, r] × [0, Y ε

n ]) empty or erased from the right}.
(ii) (Xε

n+1 − Xε
n − r, Y ε

n+1) is the first point on the right of the point process T −r(Φ̂) ∩ (R+)2.
Using points (i) and (ii) above, (47) and (54), we get

P{Xε
n+1 − Xε

n ≥ u;Y ε
n+1 ≤ v | Zn = z}

=

P{Φ+ ∩ ([0, r] × [0, y]) empty or erased from the right;
Xε

1(T−r(Φ+)) ≥ u − r;Y ε
1 (T−r(Φ+)) ≤ v}

P{Φ+ ∩ ([0, r] × [0, y]) empty or erased from the right}

=
1

α(y)

P{Φ+ ∩ ([0, r] × [0, y]) empty or erased from the right;
Xε

1(T−r(Φ+)) ≥ u − r;Y ε
1 (T−r(Φ+)) ≤ v}

(71)
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where (Xε
1(T−r(Φ+)), Y ε

1 (T−r(Φ+))) is the first point on the right of the process T −r(Φ+) ∩
(R+)2. In particular, (Xε

1(T−r(Φ+)), Y ε
1 (T−r(Φ+))) is distributed as (Xε

1 , Y ε
1 ).

First case: u > 2r. We have that

{Φ+ ∩ ([0, r] × [0, y]) empty or erased from the right;

Xε
1(T−r(Φ+)) ≥ u − r;Y ε

1 (T−r(Φ+)) ≤ v}

= {Φ+ ∩ ([0, r] × [0, y]) = ∅} ∩ {Xε
1(T−r(Φ+)) ≥ u − r;Y ε

1 (T−r(Φ+)) ≤ v},

the two events of the intersection being independent.
Using this remark, (71) and (66), we obtain

P{Xε
n+1 − Xε

n ≥ u;Y ε
n+1 ≤ v|Zn = z}

=
1

α(y)
P{Φ+ ∩ ([0, r] × [0, y]) = ∅} ·P{Xε

1 ≥ u − r;Y ε
1 ≤ v}

=
e−ry

α(y)

v

ε
α(v)e−(u−2r)ε. (72)

Second case: r ≤ u ≤ 2r.
The independence property is not satisfied, but (X ε

1(T−r(Φ+)), Y ε
1 (T−r(Φ+))) is still dis-

tributed with density ϕ(Xε
1 ,Y ε

1 ) given by (65). Then going back to (71), we get

P{Xε
n+1 − Xε

n ≥ u;Y ε
n+1 ≤ v|Yn = y} =

1

α(y)

∫ +∞

u−r
dw

∫ v

0
A(w, t, y)ϕ(Xε

1 ,Y ε
1 )(w, t)dt,(73)

where for every w ≥ 0, 0 ≤ y, t ≤ ε,

A(w, t, y) = P{Φ+ ∩ ([0, r] × [0, y]) erased by the right |X ε
1(T−r(Φ+)) = w, Y ε

1 (T−r(Φ+)) = t}.

It remains to determine the function A. To this end, let us notice that ([0, r] × [0, y]) has a
non-empty intersection with the domain of relaxation R(w+r, t) if and only if w ≤ r and t ≤ y.
Consequently, we obtain

A(w, t, y) =

{
e−wy−(r−w)t if w ≤ r and t ≤ y
e−ry otherwise.

(74)

Inserting formulas (74) and (65) in (73), we deduce the result (70), via (45), which completes
the proof of Theorem 17.

2

We explicit the distribution of {(Xε
i , Y ε

i ); 1 ≤ i ≤ n} starting with the law of {Y ε
i ; i ≥ 1}.

Theorem 18 (Y ε
n )n≥1 is a homogeneous Markov chain such that:

(i) Y ε
1 has a density ϕY ε

1
such that

ϕY ε
1
(y) =

(
e−ry

ε
+

1 − e−ry

y

)
α(y)1[0,ε](y);

20



(ii) the transition kernel of {Y ε
n ;n ≥ 1} admits a transition probability density ΠY,ε(y; ·) such

that for every y, v ∈ [0, ε],

ΠY,ε(y; v) =

(
1{0≤v≤ε}

e−r(y+v)

ε
+ 1{0≤v≤y}e

−rv 1 − e−ry

y

+1{y<v≤ε}e
−ry 1 − e−rv

v

)
α(v)

α(y)
; (75)

(iii) the stationary law of (Y ε
n )n≥1 is the distribution of Lε (cf (2));

(iv) conditionally on (Xε
1 , Y ε

1 , · · · , Xε
n, Y ε

n ) the r.v. (Xε
n+1 − Xε

n) has a density which depends
only on Y ε

n and is equal to ΠDε(Y ε
n ; ·) (where ΠDε(y; ·) is defined by (3)).

Proof. The points (i), (ii) and (iv) follow easily from Theorems 16 and 17. In order to obtain
(iii), it suffices to prove that for every v ∈ [0, ε],

P{Lε ≤ v} =

∫ ε

0
ΠY,ε(y; v)P{Lε ∈ dy}. (76)

Using (75) and (45), we have for any v ∈ [0, ε],

∫ ε

0
ΠY,ε(y; v)α(y)2dy

= α(v)

[
e−rv

ε

∫ ε

0
e−ryα(y)dy + e−rv

∫ ε

v

1 − e−ry

y
α(y)dy +

1 − e−rv

v

∫ v

0
e−ryα(y)dy

]

= α(v)

[
e−rv

ε
εα(ε) + e−rv(α(v) − α(ε)) +

1 − e−rv

v
vα(v)

]

= α(v)2. (77)

Combining (77) with (2), we obtain the equality (76) which completes the proof of Theorem 18.

2

Proposition 17 implies that (Xε
n, Y ε

n )n≥1 is a Markov chain. It seems natural to investigate
its limit distribution. More precisely, we have the following result.

Theorem 19 The couple (Xε
n+1 − Xε

n, Y ε
n ) converges in law when n → +∞, and the limit

distribution coincides with the law of (Dε, Lε) (see Theorem 1).

Proof. Let us begin with proving the convergence of the Markov chain (Y ε
n )n≥1 to its stationary

distribution µ, i.e. the distribution of Lε.
The transition probability of (Y ε

n )n≥1 has a density ΠY,ε(y; ·), y ∈ [0, ε] (see Theorem 18
(ii)) such that the function (y, v) 7−→ ΠY,ε(y; v) is continuous and everywhere positive on (0, ε]2.
Consequently, following ([6], example 6.2. of Section 5), we deduce that (Y ε

n )n≥1 is a Harris
chain. Moreover, since we have proved the existence of a stationary distribution (see Theorem
18 (iii)), it is also recurrent (see [6], exercise 6.11. of Section 5). An application of the beginning
of Section 5.6.c of [6] shows that (Y ε

n )n≥1 is an aperiodic recurrent Harris chain. Consequently,
applying the convergence theorem for Harris chains (see [6], Theorem (6.8)), we deduce that
(Y ε

n )n≥1 converges to µ in the sense of the total variation distance ||·|| (let us notice that the note
following Durrett’s theorem guarantees that the starting law of (Y ε

n )n≥1 given by Theorem 18
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(i) satisfies the required hypothesis for the convergence). We recall that the variation distance
between two probability measures µ1, µ2 with support in [0, ε] is:

||µ1 − µ2|| = sup
f

∣∣∣∣∣

∫
fdµ1 −

∫
fdµ2

∣∣∣∣∣,

where f belongs to the set of measurable functions defined on [0, ε], with values in [0, 1]. In
particular, (Y ε

n )n≥1 converges in distribution to µ.
We now prove the convergence in distribution of (X ε

n+1 − Xε
n, Y ε

n ). Let us consider a con-
tinuous bounded measurable function h : R+ × [0, ε] −→ R. Using Theorem 18 (iv), we get for
every n ≥ 1,

E{h(Xε
n+1 − Xε

n, Y ε
n )} =

∫ ε

0

[∫ +∞

0
h(x, y)ΠDε(y;x)dx

]
P{Y ε

n ∈ dy} (78)

But y 7−→
∫ +∞
0 h(x, y)ΠDε(y;x)dx is a bounded and continuous function, therefore

lim
n→+∞

E{h(Xε
n+1 − Xε

n, Y ε
n )} =

∫ ε

0

[∫ +∞

0
h(x, y)ΠDε(y;x)dx

]
P{Lε ∈ dy}. (79)

Using (iii) and (iv) of Theorem 1, we obtain that the right hand-side of (79) is equal to
E{h(Dε, Lε)}.

2

Thanks to Proposition 17, we are able to prove Theorem 2.
Proof of Theorem 2. (i) Using Theorem 16, it suffices to have

E{h(η1, ρ
′
1)1B′

1
} = P(B′

1)

∫
h(u, v)ϕ(Xε

1 ,Y ε
1 )(u, v)dudv, (80)

for every measurable and bounded function h on R2. Taking the conditional expectation of
h(η1, ρ

′
1)1B′

1
with respect to η1, ρ

′
1, we have

E{h(η1, ρ
′
1)1B′

1
} = E{h(η1, ρ

′
1)e

−(η1∧r)ρ′1}

= C

∫ +∞

0
du

∫ ε

0
h(u, v)

(
1[0,r](u)e−uv

+1(r,+∞)(u)e−(u−r)εe−rv
)

α(v)dv

= C

∫ ∫
h(u, v)ϕ(Xε

1 ,Y ε
1 )(u, v)dudv,

where C is a positive constant. Consequently, we get (80).
(ii) Let us first prove that (Xε

1 , Y ε
1 , Xε

2 −Xε
1 , Y ε

2 ) is distributed as the vector (η1, ρ1, r + η2, ρ
′
2)

conditioned on the event B1 ∩ B′
2, i.e.

E
{

g(η1, ρ1)h(r + η2, ρ
′
2)1B11B′

2

}
= KE {g(Xε

1 , Y ε
1 )h(Xε

2 − Xε
1 , Y ε

2 )} (81)

where g and h are two bounded Borel functions defined on R2 and K is a positive constant,
independent from g and h. It is clear that (5) and (6) imply:

ϕρ′(x) =
ε∫ ε

0 α(v)dv
α(x)ϕρ(x). (82)
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Consequently, the left-hand side of (81) is equal (up to a multiplicative constant) to

E

{
g(η1, ρ

′
1)h(r + η2, ρ2)

α(ρ2)

α(ρ′1)
1B′

1
1fB2

}
,

where B̃2 = {ξ2 ≥ (η2 ∧ r)(ρ2 ∨ ρ′1) + r(ρ2 ∧ ρ′1).
We now take the conditional expectation with respect to ξ1, η1, ρ

′
1, η2, ρ2 in the previous

expectation and we obtain:

E
{

g(η1, ρ1)h(r + η2, ρ
′
2)1B11B′

2

}

= K1E

{
g(η1, ρ

′
1)h(r + η2, ρ2)

α(ρ2)

α(ρ′1)
1B′

1
e−(η2∧r)(ρ2∨ρ′1)−r(ρ2∧ρ′1)

}
.(83)

Inserting the densities (4) and (5) of η2 and ρ2 in (83), we thus get

E
{

g(η1, ρ1)h(r + η2, ρ
′
2)1B11B′

2

}

= K1E

{
g(η1, ρ

′
1)1B′

1

∫ +∞

r
du

∫ ε

0
h(u, v)e−((u−r)∧r)(v∨ρ′1 )−r(v∧ρ′1)ϕη(u − r)ϕρ(v)

α(v)

α(ρ′1)
dv

}

= K2E

{
g(η1, ρ

′
1)1B′

1

∫

R
2
+

h(u, v)
[
1{u>2r}1{0≤v≤ε}e

−r(v+ρ′1)e−(u−2r)ε + 1{r≤u≤2r}·

·
(
1{0≤v≤ρ′1}

e−(u−r)ρ′1e−rv + 1{ρ′1<v≤ε}e
−(u−r)ve−rρ′1

)] α(v)

α(ρ′1)
dudv

}
. (84)

Moreover, using (69), we obtain that

E
{

g(η1, ρ1)h(r + η2, ρ
′
2)1B11B′

2

}
= K2E

{
g(η1, ρ

′
1)1B′

1

∫ ∫
h(u, v)θε(ρ′1, u, v)dudv

}
. (85)

Let us recall that Point (i) shows that, up to a multiplicative constant, the right-hand side of
(85) is equal to

E

{
g(Xε

1 , Y ε
1 )

∫ ∫
h(u, v)θε(Xε

1 , u, v)dudv

}
.

Using Proposition 17, we obtain that the expectation above is equal to

E {g(Xε
1 , Y ε

1 )h(Xε
2 − Xε

1 , Y ε
2 )} ,

which completes the proof of (81).
Our next objective is to prove Point (ii) in the general case, i.e. that for any n ≥

2, the distribution of (Xε
1 , Y ε

1 , · · · , Xε
n−1 − Xε

n−2, Y
ε
n−1, X

ε
n − Xε

n−1, Y
ε
n ) is the distribution of

(η1, ρ1, · · · , r + ηn−1, ρn−1, r + ηn, ρ′n) conditioned on the event B1 ∩ · · ·Bn−1 ∩ B′
n. As in the

case n = 2, it is equivalent to show that

E
{

g(η1, ρ1, r + η2, ρ2, · · · , r + ηn−1, ρn−1)h(r + ηn, ρ′n)1∩n−1
i=1 Bi

1B′
n

}

= KE
{
g(Xε

1 , Y ε
1 , · · · , Xε

n−1 − Xε
n−2, Y

ε
n−1)h(Xε

n − Xε
n−1, Y

ε
n )
}

, (86)

where g (resp. h) is a bounded Borel function on R2n (resp. R2) and K is a constant independent
from g and h.
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In much the same way as (85), we can obtain that for every n ≥ 2,

E
{

g(η1, ρ1, r + η2, ρ2, · · · , r + ηn−1, ρn−1)h(r + ηn, ρ′n)1Tn−1
i=1 Bi

1B′
n

}

= KE

{
g(η1, ρ1, r + η2, ρ2, · · · , r + ηn−1, ρ

′
n−1)1Tn−2

i=1 Bi
1B′

n−1

∫

R
2
+

h(u, v)θε(ρ′n−1, u, v)dudv

}
.(87)

It remains to use a reasoning by induction to deduce (86) from (87) and Proposition 17. This
completes the proof of Theorem 2.

2

Remark 20 1. We emphasize that Theorem 2 leads us to simulate to 2n-vector

Zn = (Xε
1 , Y ε

1 , Xε
2 − Xε

1 , Y ε
2 , · · · , Xε

n − Xε
n−1, Y

ε
n ), n ≥ 1.

Let us consider

Z ′
n = (η1, ρ1, r + η2, · · · , r + ηn−1, ρn−1, r + ηn, ρ′n), n ≥ 1.

We will denote by ϕZn (resp. ϕZ′
n
) the density of Zn (resp. Z ′

n).
Since ξ1, · · · , ξn are independent exponential variables with mean 1, we have

P
{
∩n−1

i=1 Bi ∩ B′
n|η1, · · · , ηn, ρ1, · · · , ρn−1, ρ

′
n

}

= exp

(
−

n−1∑

k=1

[(ηk ∧ r)(ρk ∨ ρk−1) + r(ρk ∧ ρk−1)] −
[
(ρn ∧ r)(ρ′n ∨ ρn−1) + r(ρ′n ∧ ρn−1)

]
)

.(88)

Consequently, Theorem 2 (ii) implies that

ϕZn =
1

P(Cn)
e−ΓnϕZ′

n
, (89)

where Γn is the positive function defined on (R+)2n by:

Γn(x1, y1, · · · , xn, yn) = A(x1, y1, 0) +

n∑

i=2

A(xi − r, yi, yi−1), (90)

with
A(x, y, y′) = (x ∧ r)(y ∨ y′) + r(y ∧ y′).

In particular, combining (88) with (90), we obtain

Γn(η1, ρ1, r + η2, ρ2, · · · , r + ηn−1, ρn−1, r + ηn, ρ′n)

= − ln
(
P
{
∩n−1

i=1 Bi ∩ B′
n|η1, · · · , ηn, ρ1, · · · , ρn−1, ρ

′
n

})
a.s.

We may apply the Hit or Miss Monte-Carlo Method (see [19], Chapter 4). More precisely, we
first simulate Z ′

n = ω and keep it with probability p = e−Γn(ω). Otherwise we simulate a new
independent copy of Z ′

n and so on.
Let us remark that this procedure is not on-line in the following sense: if the algorithm

has been applied to construct the first n points (X ε
i , Y ε

i ), 1 ≤ i ≤ n, then (Xε
n+1, Y

ε
n+1) cannot

be obtained directly. In fact, the whole procedure has to be applied once more to provide the
(n + 1) points (Xε

i , Y ε
i ), 1 ≤ i ≤ (n + 1).
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Figure 1: Hachured domain of “potential erasers” of {(x̂i, yi), 1 ≤ i ≤ 5} (black points)

2. Besides, the function Γn has a geometrical interpretation. A(x, y, y ′) is the area of the
union of two rectangles, i.e.

A(x, y, y′) =

{
ν [([0, (x ∧ r)] × [0, y′]) ∪ ([x, x + r] × [0, y])] if y ≤ y′

ν [([0, r] × [0, y′]) ∪ ([x + r − (x ∧ r), x + r] × [0, y])] else,
(91)

where ν is the Lebesgue measure on R × R+.
We deduce easily from (91) that

Γn(x1, y1, · · · , xn, yn) = ν(∪n
i=1D(xi, yi)),

where




D(x1, y1) = ([(x̂1 − r) ∨ 0, x̂1 + r] × [0, y1]) \ R(x̂2, y2)
D(xi, yi) = ([x̂i − r, x̂i + r] × [0, yi]) \ [R((x̂i−1, yi−1) ∪ R(x̂i+1, yi+1)] if 2 ≤ i ≤ (n − 1)
D(xn, yn) = ([x̂n − r, x̂n] × [0, yn]) \ R(x̂n−1, yn−1),

R(x, y), (x, y) ∈ R × R+, is the set defined in (8) and with the convention x̂i =
∑i

k=1 xk,
1 ≤ i ≤ n.

By definition of the erasing procedure, the set

n⋃

i=1

D(xi, yi) is exactly the set of points of

[0, x̂n] × R+ which erase at least one of the points (x̂i, yi), 1 ≤ i ≤ n and are not erased by any

of these n points. In other words, the set

n⋃

i=1

D(xi, yi) (denoted by PE(x1, y1, · · · , xn, yn)) is the

domain of “potential erasers” of the points (x̂i, yi), 1 ≤ i ≤ n (see Figure 1). This geometrical
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interpretation provides us a more intuitive way to rewrite Theorem 2: let us consider the
sequences (ηi)i≥1, (ρi)i≥1 and (ρ′i)ı≥1 defined as in Theorem 2 and a Poisson point process Φ+

on R+ × R+ with intensity measure 1(R+)2(x, y)dxdy independent from the three sequences
above. Then for every n ≥ 1,

(Xε
1 , Y ε

1 , (Xε
2 − Xε

1), Y ε
2 , · · · , (Xε

n − Xε
n−1), Y

ε
n )

is distributed as (η1, ρ1, r + η2, ρ2, · · · , r + ηn−1, ρn−1, r + ηn, ρ′n) conditioned on the event

{Φ+ ∩ PE(η1, ρ1, r + η2, ρ2, · · · , r + ηn, ρ′n) = ∅}.

5 The saturation case

In this section, the saturation model Λ∞ is directly defined and we prove that Λ∞ is the limiting
process of Λε when ε → +∞. As in Sections 2 and 4, the following quantities related to Λ∞

are introduced: λ∞, D∞, L∞, |I∞0 | and (X∞
i , Y ∞

i ), i ≥ 1. Most of the calculations done in
the unsaturated case (i.e. Λε) are valid in the saturated case (i.e. Λ∞) as well. Moreover, we
obtain the convergence of λε, Dε, Lε, Xε

1 ,..., to their analogues for Λ∞.
More precisely, let us consider the process

Λ∞ = {x ∈ R;∃y ≥ 0|(x, y) ∈ Ψ},

where Ψ is the point process on R × R+ defined in the first section. Λ∞ is a saturation model
in the sense that no new crack can be added. Consequently, two successive points of Λ∞ are
separated by at least a distance r and at most 2r.

As in the unsaturated case, λ∞, D∞, L∞ and |I∞0 | are respectively defined as the mean
number of points of Λ∞ per unit length, the typical inter-crack distance of Λ∞ in the Palm
sense, the typical stress level of a point of Λ∞ and the length of the smallest interval containing
the origin and bounded by two points of Λ∞. The calculations of Sections 2 and 3 still hold
when ε is replaced by +∞. Consequently, the analogues of Theorem 1 and Proposition 15 can
be obtained:

Theorem 21 We have :

(i) λ∞ =
∫ +∞
0 α(v)2dv;

(ii) a) The distribution of D∞ has a density ϕD∞ given by

ϕD∞(x) =
2

λ∞
1[r,2r](x)

∫ +∞

0
e−(x−r)vvα(v)2dv; (92)

b) The two-dimensional r.v. (D∞, L∞) has the following density:

ϕ(D∞,L∞)(y, u) = ϕL∞(y)ΠD∞(y;u), (93)

where ϕL∞ (resp. ΠD∞(y; ·)) is the density of L∞ (resp. the density of D∞ conditionally
on L∞ = y) and

ϕL∞(y) =
1

λ∞
α(y)21R+(y), (94)

ΠD∞(y;u) = 1{r≤u≤2r}

{
ye−(u−r)y +

e−ry

α(y)

∫ +∞

y
e−(u−r)vα(v)dv

}
; (95)
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(iii) The distribution of |I∞
0 | has a density ϕ|I∞0 | given by

ϕ|I∞0 |(x) = 2x

∫ +∞

0
e−(x−r)vvα(v)2dv · 1[r,2r](x). (96)

Remark 22 (i) In a different theoretical context, Rényi gave an equivalent formulation of the
point (i) in [18] (see result (0.10)) and he estimated that the mean crack number at saturation
is approximately 0.748 (for r = 1). To our knowledge, the other results of Theorem 23 are new.
(ii) Let us notice that the distribution of D∞ has a decreasing density on [r, 2r] and as for (20),
by an easy calculation, we have:

ED∞ =
1

λ∞
.

We see at once that Λε converges in law [15] to Λ∞ and λε tends to λ∞ when ε → +∞.
Moreover, we have the following:

Theorem 23 When ε goes to infinity (saturation), (Dε, Lε) (resp. |Iε
0 |) converges in distribu-

tion to (D∞, L∞). (resp. |I∞0 |).

Proof. Let us investigate the convergence of P{Dε ≥ t;Lε ≤ s}, t ≥ r, s ≥ 0, when ε → +∞.
We notice that

α(t) ∼
t→+∞

α0

t
, (97)

where α0 = (1/r) exp

{
−

∫ 1

0

1 − e−s

s
ds +

∫ +∞

1

e−s

s
ds

}
.

Combining Theorem 1 (ii) with (97), we obtain that

P{Dε ≥ 2r} =
ε

λε
α(ε)2 −→

ε→+∞
0.

It remains to prove that for any t ∈ [r, 2r] and s ≥ 0, P{Dε ≥ t;Lε ≤ s} converges to
P{D∞ ≥ t;L∞ ≤ s} which is clear from (63) and (93).

The same method holds for the convergence of |I ε
0 |.

2

Let us define in the same way as Λ∞ the one-sided process Λ+
∞ of the cracks on the pos-

itive half-line. X∞
1 , · · · , X∞

n , · · · denote the successive crack positions of this process and
Y ∞

1 , · · · , Y ∞
n , · · · their corresponding stress levels. Similarly to Section 4, we are able to deter-

mine the joint distribution of

{(X∞
i , Y ∞

i ); 1 ≤ i ≤ n}, n ≥ 1.

Theorem 24 (i) (X∞
1 , Y ∞

1 ) is a two-dimensional r.v. with density:

ϕ(X∞
1 ,Y ∞

1 )(u, v) = e−uvα(v)1{0≤u≤r}1{v≥0};

(ii) Conditionally on (X∞
1 , · · · , X∞

n , Y ∞
1 , · · · , Y ∞

n ), the couple (X∞
n+1−X∞

n , Y ∞
n+1) has a density

θ∞(Y ∞
n ; ·) such that for every y, u, v ≥ 0:

θ∞(y;u, v) =
(
e−(u−r)ye−rv1{0≤v≤y} + e−rye−(u−r)v1{v>y}

) α(v)

α(y)
1{r≤u≤2r}.
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Remark 25 (i) Since the process Λ+
∞ is a saturation model, we obviously have

X∞
1 ≤ r and (X∞

n+1 − X∞
n ) ∈ [r, 2r], ∀n ≥ 1 a.s..

However we are not able to prove, as we did in Theorem 2, that (X∞
n )n≥1 is a “conditional

renewal process”.
(ii) As in the non-saturated case, it suffices to have the law of (X∞

1 , Y ∞
1 ) on the one hand and

the law of (Y ∞
n )n≥1 on the other to determine the positions (X∞

n )n≥1.
(iii) It is immediate that the sequence (X ε

i , Y ε
i )i≥1 converges in distribution to (X∞

i , Y ∞
i )i≥1.

Theorem 18 may be easily generalized to the saturated case in the following way.

Theorem 26 (Y ∞
n )n≥1 is a homogeneous Markov chain such that:

(i) Y ∞
1 has a density ϕY ∞

1
such that

ϕY ∞
1

(y) =
1 − e−ry

y
α(y)1R+(y);

(ii) the law of Y ∞
n+1 conditionally on {Y ∞

n = y}, y ≥ 0, is independent from n and has a
density ΠY,∞(y; ·) such that for every v ≥ 0,

ΠY,∞(y; v) =

(
1{0≤v≤y}(1 − e−ry)

e−rv

y
+ 1{y<v}e

−ry 1 − e−rv

v

)
α(v)

α(y)
;

(iii) the stationary law of (Y ∞
n )n≥1 is the distribution of L∞, with density given by (94);

(iv) conditionally on (X∞
1 , Y ∞

1 , · · · , X∞
n , Y ∞

n ), the distribution of the r.v. (X∞
n+1 −X∞

n ) has a
density which only depends on Y ∞

n and is equal to ΠD∞(Y ∞
n ; ·) (where ΠD∞(y; ·) is given

by (95)).

Finally, Theorem 19 is generalized to the saturated case.

Theorem 27 The couple (X∞
n+1 − X∞

n , Y ∞
n ) converges in law when n → +∞, and the limit

distribution is the law of (D∞, L∞) (provided by (93)).
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