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Abstract 

On the basis of the work showing that the maximum entropy principle for equilibrium 

mechanical system is a consequence of the principle of virtual work, i.e., the virtual work of 

random forces on a mechanical system should vanish in thermodynamic equilibrium, we 

present in this paper a development of the same principle for the dynamical system out of 

equilibrium. One of the objectives of the present work is to justify a least action principle we 

postulated previously for stochastic mechanical systems. 
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02.50.Ey (Stochastic processes) 

02.30.Xx (Calculus of variations) 

05.40.-a (Fluctuation phenomena) 



   

 2

1) Introduction 

The least action principle1 first developed by Maupertuis[1][2] is originally formulated for 

regular dynamics of mechanical system. However, when the system is perturbed by noise 

such that the dynamics becomes irregular and stochastic, what is the fate of the principle? 

There have been many efforts to answer the question. One can count Onsager[3] and De 

Broglie[4] among the first scientists who were interested in developing least action principle 

or its analog for random dynamics. Other efforts have also been made in the fields such as 

random dynamics[5][6], stochastic mechanics[7][8], quantum theory[9] and quantum gravity 

theory[10]. Recently, a new extension of the Maupertuis principle using the Lagrange action 

(see definition below) was suggested fort describing stochastic motion in a mean way[11]. 

The new ingredient in this approach is the introduction of informational entropy or 

probabilistic uncertainty in the variational calculus. This leads to a so called stochastic least 

action principle given by 

0=Aδ       (1) 

where A is the Lagrange action and the Aδ  its variation averaged over all the possible paths 

between two points a and b in configuration space. When there is vanishing perturbation, this 

variation becomes the usual principle 0=Aδ . Eq.(1) is equivalent to a maximization of path 

entropy Sab defined by ( )AASab δδηδ −= .   

This formalism seems not so strange and encouraging in many points. It has a diffusion 

probability in exponential of action. For free diffusing particles, this is the transition 

probability of Brown motion. For particles in a potential energy, the diffusion probability 

satisfies the Fokker-Planck equation of diffusion[11].  But many questions have been asked 

about Eq.(1). For instance, why 0=Aδ  instead of 0=Aδ ? Why the path entropy Sab is defined 

as mentioned above and why it goes to maximum for the correct path probability distribution 

of action? In this work, we try to answer these questions on the basis of a basic principle of 

mechanics, the principle of virtual work [12][13].  

We look at mechanical systems out of equilibrium. So the term “entropy” is used as a 

measure of uncertainty or randomness of stochastic motion. The first law and the second law 

of thermodynamics will be used formally to define a generalized “heat” as a measure of 
                                                 
1 We continue to use the term "least action principle" here considering its popularity in the scientific community. 
We know nowadays that the term "optimal action" is more suitable because the action of a mechanical system 
can have a maximum, or a minimum, or a stationary for real paths[14]. 
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uncertainty. It will be indicated if we use entropy in the sense of equilibrium thermodynamics. 

In what follows, we first recall the least action principle of Maupertuis and the principle of 

virtual work. Then we present a derivation of Eq.(1) from these principles. 

2) Principle of least action 

The least action principle is well formulated for non-dissipative Hamiltonian system 

satisfying following equations [2]:  

k
k P

Hx
∂
∂

=&  and 
k

k x
HP
∂
∂

−=&  with k=1,2, …g 
     (2) 

where xk is the coordinates, Pk the momentum, H the Hamiltonian given by VTH += , T the 

kinetic energy, V the potential energy, and g the number of degrees of freedom of the system.  

The least action principle stipulates that the action of a motion between two point a and b 

in the configuration space defined by the time integral ∫=
b

a
LdtA  on a given path from a to b 

must be a stationary on the unique true path for given period of time τ  of the motion between 

the two points, i.e.,  

0=τδA        (3) 

where the Lagrangian is defined by the VTL −= . In what follows, we will drop the index τ  

of the variation and the action variation is always calculated for fixed period of timeτ . This 

principle yield the famous Lagrange-Euler equation given by 
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t kk&
 

     (4) 

and underlies a completely deterministic character of dynamic process. Eq.(3) says that if the 

time period of the motion is given, there is only one path between two given points with all 

states of the systems completely determined by Eq.(4) for any moment of the motion. This 

uniqueness does not exist any more when the motion becomes random and stochastic[11]. 

This is the physical situation we encounter in the case of thermodynamic systems either in 

equilibrium or out of equilibrium. 
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3) Principle of virtual work 

In mechanics, a virtual displacement of a system is a kind of hypothetical infinitesimal 

displacement with no time passage and no influence on the forces. It should be perpendicular 

to the constraint forces. The principle of virtual work says that the total work done by all 

forces acting on a system in static equilibrium is zero for any possible virtual displacement. 

Let us suppose the simple case of a particle in equilibrium under n forces Fi (i=1,2,…n) and 

virtual displacement rvδ , the principle stipulates  

0
1

=⋅∑=
=

rFW
n

i
i
vv δδ       (5) 

This principle for statics has been extended to dynamics by D’Alembert in the Lagrange-

d'Alembert principle given by 

0)(
1

=⋅−∑=
=

ramFW i
n

i i
vvv
δδ       (6) 

where m is the mass and ai
v  the acceleration of the particle due to Fi

v . Eqs.(5) et (6) are two of 

the most basic principles of classical mechanics.  

For the stochastic dynamics mechanical systems in thermodynamic equilibrium, with 

the help of the first law and the second law, we have shown that[15]  

)(
00

EppSW j
w

j j
w

j j ∑−∑+=
==

βαδδ       (7) 

where S is the entropy of the second law, pj the probability that the system is found at the state 

j and Ej the energy of the state j. Eq.(7) implies that the virtual work of random forces 

corresponds to a variation of thermodynamic entropy under two constraints associated with 

the normalization and the mean energy, respectively. α and β are two Lagrange multipliers. If 

we apply the principle of virtual work  Eq.(5), it follows that  

0)(
00

=∑−∑+
==

EppS j
w

j j
w

j j βαδ       (8) 

which is nothing but the Jaynes principle of maximum entropy[15]. 
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4) Stochastic least action principle 
Now let us consider a nonequilibrium mechanical system composed of an ensemble of 

particles moving in the configuration space starting from a point a. If the motion was regular, 

all the particles would follow a same trajectory from a to a given point b according to the least 

action principle. But if there are random forces perturbing the motion, the particles will take 

different paths to go to all the possible final positions allowed by the constraints. Suppose 

there are N particles arriving at point b by different paths linking a and b. At each moment of 

time, there are two kind of forces acting on a given particle of number i. One is the total 

conservative force VFi −∇=v , another is the random force Ri
v . In the sense of the D’Alembert 

extension, the total virtual work at any moment of time on a virtual displacement ri
vδ  of the 

particle i should be  

rRamFW iiiii
vvvv
δδ ⋅+−= )(       (9) 

where mRFa ii i /)(
vvv +=  is the total acceleration of the particle. Remember that we are looking at 

an ensemble of nonequilibrium systems on their way from a to b, and some of them are not on 

the least action path. So the Lagrange-D’Alembert principle does not apply to all the particles, 

i.e., Eq.(9) does not vanish in general.  

In order to overcome this difficulty, the following reasoning of virtual work will be based 

on the ensemble of the trajectories instead of a configuration point, i.e., the virtual 

displacement ri
vδ  on a point will be replaced by an ensemble of point displacements forming 

a virtual deformation of the trajectory on a small time interval dt. rRamFW iiiii
vvvv
δδ ⋅+−= )(  is 

interpreted now as the virtual work on the particle i during dt. So the mean virtual work on the 

particle i from a to b can be written as  

∫ ⋅+−=∫=
b

a
iiii

b

a
ii dtrRamFdtdWW vvvv

δ
ττ

)(11 .  
     (10) 

Finally, the total virtual work on all the N particles  

∑ ∫ ⋅+−=∑=
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N
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11
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δ

τ
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which will be written below in terms of paths. Without loss of generality, the following 

discussion will be made with discrete paths denoted by j=1,2 … w (if the variation of path is 
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continuous, the sum over j should be replaced by the path integral[9]). By using pj as the 

probability that the path j is taken by the particles from a to b, Eq.(11) can be given by 

∑ ∫ ⋅+−=
=

w

j

b

a
jjjjj dtrRamFpW

1
)(1 vvvv
δ

τ
.  

     (12) 

Now in order to proceed, we have to make two important extensions. 

1) The first one is the extension of the Lagrange-D’Alembert principle, which is no 

more valid for single path, to the total virtual work W on the ensemble of paths 

between a and b, i.e., 0=W . This is equivalent to say that the ensemble of particles 

can neither obtain from nor lose energy to the noise. In other words, a Hamiltonian 

system will statistically remains Hamiltonian. This condition is crucial for our 

work, because the least action principle, originally formulated for conservative 

system, can be used here in a mean way over an ensemble of systems. If the mean 

Hamiltonian is given by VTH +=  and the mean Lagrangian by VTL −=  where 

T  is the means kinetic energy and V  the potential one, the Lagrangian action on a 

given path is given by ∫=
b

a
LdtA  as defined in the Lagrangian mechanics.  

2) The second one is to extend the Lagrange principle of random virtual work 

0
1

=∑ ⋅=
=

w

j
jjj rRpW vv

δδ  for thermodynamic equilibrium[15] to nonequilibrium case 

in Eq.(12). This implies that the randomness of the motion is at maximum at any 

moment of time. The essential reason for this has been discussed in [15].  

 

The rest of the deduction is straightforward. For the sake of simplicity, let us consider only 

one degree of freedom in Eq.(12), say x. We get 
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where we used the integral 0=⎟
⎠
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t &&
δδ  due to the constraints of zero 

variation at a and b. Considering our generalization of Lagrange-D’Alembert principle, i.e., 

W=0, we finally get the stochastic least action principle : 

0=Aδ .       (14) 

5) Maximum path entropy principle 
Eq(14) can be easily written as follows  
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where ∑=
=

w

j
jj ApA

1
δ  is the ensemble mean of action Aj, and abQδ  is defined by 

AAQab δδδ −= .     (16) 

 

Eq.    (16) is a definition of entropy as a measure of uncertainty of random variable (action 

in the present case). It mimics the first law of thermodynamics dEEddQ −=  where 

EpE i
i

i∑=  is the average energy,  Ei the energy of the state i with probability pi,  and 

dWdx
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on a displacment dxk of extensive variables xk such as volume, surface, magnetic moment etc. 

Eq.    (16) defines a generalized “heat” Q as a measure the randomness of action. If we 

introduce an ‘inverse temperature’ η  such that 

 
η
δδ ab

ab
SQ = , 

(17) 

 

Eqs.(14) and (15) means 

0)( =− ASab ηδ . (18) 
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This is a variational calculus with the constraint related to average action A . One can add the 

normalization condition as aother constraint, Eq.(18) then becomes: 

0][ =∑+∑−
j

jj
j

jab pApS αηδ  (19) 

which is nothing but the usual Jaynes principle of maximum entropy applied to path entropy 

defined in Eqs.(16) and (17) with two Lagrange multipliers α  and β . Sab is a measure of the 

uncertainty of the probability distribution of action and has been investigated in a detailed 

way in reference [16]. 

6) Concluding remarks 
Recently, it was shown that the maximum entropy principle for equilibrium mechanical 

system is a consequence of the principle of virtual work. This work is an extension of that one 

to dynamical systems out of equilibrium. For this purpose, we have generalized the Lagrange-

D’Alembert principle of virtual work with point virtual displacement to the case of virtual 

deformation of trajectories. The objective is to justify a stochastic least action principle 

0=Aδ  postulated previously for mechanical systems in random motion. The conclusion of 

the present work is that this stochastic action principle is required by the statistically 

vanishing virtual work of random forces on nonequilibrium Hamiltonian (conservative) 

systems. The approach can be applied to many stationary diffusion processes in which the 

diffusing particles have statistically the same velocity in time even there is dissipation (in 

stationary Brownian motion or stationary electrical currant for instance). However, when it is 

necessary to include dissipative effects and how to do it in the present variational approach to 

random dynamics are still matter of investigation.   
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