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Abstract

After the justification of the maximum entropy priple for equilibrium mechanical
system from the principle of virtual work, i.e.gethirtual work of microscopic forces on the
elements of a mechanical system vanishes in themawmdic equilibrium, we present in this
paper an application of the same principle to dyimahsystems out of equilibrium. The aim
of this work is to justify a least action principéad the concurrent maximum path entropy

principle for nonequilibrium thermodynamic systems.

PACS numbers

05.70.Ln (Nonequilibrium and irreversible thermodymcs)

02.50.Ey (Stochastic processes)
02.30.Xx (Calculus of variations)

05.40.-a (Fluctuation phenomena)



1) Introduction

The least action principte(LAP) first developed by Maupertuis[1][2] is ongilly
formulated for regular dynamics of mechanical syst®ne naturally ask the question about
the destiny of the principle when the system igettlio noise so that the dynamics becomes
irregular and stochastic such as in a diffusioreréhhave been many efforts to answer this
guestion. One can count Onsager[3] and De Brogli@dong the first scientists who were
interested in developing least action principleiamilar approach for random dynamics. Other
efforts have also been made in the fields such aaslom dynamics[5][6], stochastic
mechanics[7][8], quantum theory[9] and quantum gyatheory[10]. A common feature of
these works is to mimic the mathematical formalismLAP using either the original
Lagrange action or some different effective actiout, without considering explicitly the role

of dynamical uncertainty in the optimization calesil For example, we sometimes see
expression such ad8R=AR concerning the variation of a random variaRleith expectation

R, where the variation of uncertainty due to thaatan of R and of probability distribution

is neglected, which is of course not true in gelnera

To amend this incompleteness of optimization, aeresion of the Maupertuis principle
using the Lagrange action (see definition below) waggested for describing stochastic
motion of mechanical system subject to noise[1]][A2new ingredient is the introduction of
informational entropy or probabilistic uncertaimtyvariational calculus. This approach led to

a so called stochastic action principle (SAP) gilgn

A=0 (1)

whereA is the Lagrange action and tda its variation averaged over all the possible paths
between two pointa andb in position space. When the noise is vanishing(ldpecomes
the usual principledA = 0. In fact, Eq.(1) is equivalent to a maximizatidmpath entropys.p
defined by

Fav=r]|5A-%) (2)

wherer is a characteristic constant of the dynamics[11].

! We continue to use the term "least action primtiplere considering its popularity in the scientfommunity.
We know nowadays that the term "optimal actiorthi@e suitable because the action of a mechaniste sy
can have a maximum, or a minimum, or a stationarydal paths[18].



This formalism seems useful from several pointgiefv. It has a diffusion probability in

exponential of actiori] € if the path entropy is of Shannon form[11], orpie@lently, if

the distribution of the perturbed system in positgpace is of Gaussian type such as the
numerical results obtain in [12]. For free diffugiparticles, this is the transition probability
of Brownian motion. For particles in arbitrary poti@l energy, a Fokker-Planck equation for
normal diffusion can be derived from this diffusiprobability[11].

This approach has many underlying basic assumptitiich are not always obvious from
physical point of view. Following questions can asked. 1) Why one should use the
Lagrange action instead of other ones already usedther formulation of stochastic
dynamics? 2) Why the variationA = (Jﬂ—asabm):o instead of JA=0 should be
considered for the perturbed mechanical systemWI8)S,,, as an information or uncertainty
measure, must be at maximum for equilibrium statsome special states out of equilibrium?
And, finally, why S, may take the Shannon form?

The last two questions are in fact related to tmgs$tanding questions around MEP since
the appearance of MEP by Jaynes for inference yfi]r i.e., the original version based on
the uniqueness of Shannon entropy as the maxingizafrmation measure. Although MEP,
as a variational method, is actually almost a dieetfor many and used often for equilibrium
as well as for nonequilibrium system, the justifica and the validity of MEP for inference
theory and physics are still subject to considerabikticism and controversy[13][14][15].

In the present work, we try to find answers to #imve questions for thermodynamic
system from the viewpoint of mechanics. Eq.(1) wi derived from a more obvious and
widely accepted principle of physics: the principievirtual work[16][17]. This latter is a
simple, palpable, successfully used principle ialgical mechanics theory and mechanical
engineering. One can find its origin in a very sienfact that a point is in static equilibrium
under the action of different forces who cancelntbelves, and that a body is in static
equilibrium when its potential energy is at minimulnis expected that the link to such a
basic principle will make MEP (as well as SAP) ledscure and mysterious as it appears
with so many polemics and controversies arounthitvhat follows, we look at mechanical
systems out of equilibrium. The term “entropy” ised as a measure of uncertainty or
randomness of stochastic motion. It will be indechif “entropy” is used in the sense of

equilibrium thermodynamics.



2) Principle of least action

The least action principle is well formulated foomdissipative Hamiltonian system

satisfying following equations [2]:

. 3
Kk:a—H andlzgkiz—a—H with k=1,2, ..g @)
0B, 0%
wherex, is the coordinate$)x the momentuntd the Hamiltonian given b =T +V , T the
kinetic energy) the potential energy, amgthe number of degrees of freedom of the system.

The Lagrangian is defined lhy=T -V .

The least action principle stipulates that thecactf a motion between two poiatandb

b
in the configuration space defined by the timedgraé A= [Ldt on a given path froratob

a
must be a stationary on the unique true path fegrgperiod of timer of the motion between
the two points, i.e.,

A =0 (4)

In what follows, we will drop the index of the variation and the action variation is always
calculated for fixed period of tinte. This principle yield the famous Lagrange-Eulenatpn

given by

9 oL L ~0 (5)

With % =%. These above equations underlie a completely m@testic dynamic process:

if the time period of the motion is given, thereoidly one path between two given points so
that all the states of the systems are completetigrchined by Eq.(5) for every moment of the
motion. However, this deterministic character & ttynamics does not exist any more when
the motion becomes random and stochastic[11]. iEhise physical situation we encounter in

the case of thermodynamic systems either in egihio or out of equilibrium.

3) Principle of virtual work
In mechanics, a virtual displacement of a systena ikind of hypothetical infinitesimal

displacement with no time passage and no influemcthe forces. It should be perpendicular

to the constraint forces. The principle of virtwabrk says that the total work done by all



forces acting on a system in static equilibriunzeso for any possible virtual displacement.
Let us suppose a simple case of a systeid pbints of mass in equilibrium under the action
of N forcesF; (i=1,2,..N) with F; on the point, and imagine virtual displacement of each

point a?f for the pointi. According to the principle, the virtual wordVN of all the forces;

on all é,* vanishes for static equilibrium, i.e.

=3 Bl ®

This principle for static equilibrium problem wagtended to "dynamical equilibrium” by

d’Alembert[17] who added the initial forceméﬁ’ on each point of the system in motion

an =3 (F, -m&) &= )

i=1
wherem is the mass of the pointand é\,“ its acceleration. From this principle, we can not
only derive Newtonian equation of dynamics, bubatther fundamental principles such as

least action principle. This principle has beenduse give a derivation of MEP for

equilibrium system[19] which we recapitulate akofes.

4) Maximum entropy for equilibrium system
Due to the randomness of the dynamics, the detesticircharacter of Eqg.(7) must be
changed in order to introduce the probabilisticcdgsion of the system in random motion.

This is to be done by using the notion of stat@tiensemble. SupposdV; is the virtual

work of all the forces acting on every element ofigen system at a microstagiein a

canonical ensemble, it can be proven that[19]

N (8)
AW, = —_Zld‘q =-J;
i= j
which is the variation of enerdy of a system of the ensemble at microsjatieie to the

virtual work. Hence the average virtual work foe tiwhole ensemble is given by

: : _ ©
W = _ZOIO,-dN,- =—_ZOIO,-£,- =—-E
J: J:



where p=p(E;) is the probability that the system is found a¢ tatej. Since we have

8y p,Ej=3 p,&;+ > E;p,, Eq.(9) can still be changed indE =SE - > E;Jp,
j=0 j=0 j=0 i=o

— W
where E = ¥, P, E; is the usual internal energy. This relationship ba seen as a virtual
j=0
W
version of the first law of thermodynamics if werdify ¥ E; X to the heat transfer, i.e.,
j=0

E=IE-X. (10)

where Q = % E; d)j is a well known relationship derived within thauasBoltzmann-Gibbs
j=0

statistical mechanics with Shannon entropy and eapwal p,. Here it is derived from the
microscopic virtual works on each particle with yndne constraint: the first law of
thermodynamics or the conservation of energy. Npothesis is considered about the

probability and entropy property. If we further poge a reversible virtual process, we can

use the second law to Wri%=ﬂ@=ﬁ§l E;jdp; whereSis the thermodynamic entropy.
j=0

Application of the principle of virtual work Eq.(7¢ Eq.(10) yields

an =52 -E) =0 )
B

This equation must be considered as the conditiothe dynamical equilibriumof the
canonical ensemble. It is an optimization of thactional (S-£E) for thermodynamic

equilibrium. In other words, for a random dynamtosbe in equilibrium, the difference
between the heat (or entropy as a measure of @gaadd internal energy must be optimized.
This variational method is to be used with the t@mst associated with the normalization

w w .
> p;=lor X p;=01le,
j=0 j=0

w w 12
as+a’¥ p-B3. p,E)=0 (12)

j=0 j=0
which is nothing but the variational approach MER&ynes. However, it should be noticed
that in the variational method of Eq.(11) or (1tRgre is no restriction on the functional form

of entropyS,which is an essential differenbetween the MEP by virtual work principle and



its original version by Jaynes who argued for tese af Shannon entropy in MEP from the
inferential point of view and based his arguments the subjective character of the
probability notion. For Jaynes, MEP is only an neatlatical principle without physics in
it[13][15]. But in the present framework, 1) MEPadaw of physics since it can be derived or
justified from a most fundamental physics princj@ad 2) the entropy in this MEP can take
in principle whatever form if any for equilibriunystem.Sis of Shannon form if and only if
the probability distribution of energy is exponahtias in the Boltzmann-Gibbs
statistics[19][20].

We would like to stress that the above conclus®ronly valid for the ensemble of
equilibrium system and th& must be the entropy the second law of thermodycsisince
the second laws with reversible virtual process haen considered in the derivation.
However, the mathematical formalism itself is nestricted to equilibrium ensemble. The
reason for this is in EQ.(9), a natural consequesicEq.(8) for the virtual work calculated

from microscopic consideration. As discussed abBge(9) can be written as

O =-JE + X (13)

W
here Q=Y E;P; is not necessarily the heat transfé@ if the system is not in
j=0

equilibrium. Applying the principle of virtual woref d’Alembert to Eq.(13), we obtain

5(Q-E) =0. (14)

This is the optimization of the quanti{{2 —E) for any system at any moment whether or not
it is in equilibrium, since the principle of virtuaork of d’Alembert does apply for a moving
system at any moment. For nonequilibrium systeraioatsly one cannot talk about variation
of Q in connection with the thermodynamic entrofy or heat transferdQ. A detailed
discussion of this approach needs careful defmitiban entropy or information as a measure
of nonequilibrium disorder in taking into accoumeatual heat transfedQ, which will be
reported in another paper.

In what follows, we still consider a statisticalsemble of mechanical systems out of

equilibrium. But unlike the above treatment of dipuium system where the virtual work

principle was used for a given moment of the evoiytwe will consider the trajectories of



the ensemble in the position space. The virtualkwaitl be calculated for an ensemble of

points on the trajectories.

5) Stochastic least action principle

We have an ensemble of Hamiltonian systems (withengrgy dissipation) out of
equilibrium. A system is composed bf particles moving in the B dimensional position
space starting from a poiat If the motion was regular, all the systems ineheemble would
follow a single Bl-dimensional trajectory froma to a given poinb according to the least
action principle. But due to the random motiontdd particles, every system in the ensemble
is subject to irregular motion with some fluctuatias if there were random forces perturbing
the systems. In this case, the systems can talezatif paths frona to b as shown in [11] and
[12].

Now let us look at the random dynamics of a sirsyletem following a trajectory, sal,

from atob. At a given timet, the total force on a particlen the system is denoted tp‘;’/ti’(t)
and the acceleration by’(t With an inertial force—mé{f(t )where my is its mass. The

virtual work at this moment on a virtual displacemg, of the particlé on the trajectork

should be

IV (1) =[F; (©) -m &), & (15)

Summing this work over all the particles, we obtain

A, () = X (7 -m#&), 12 (o)
Remember that the principle of virtual work of dAlbert can readily be applied at this
moment as the principle is valid for any momenaahotion. But taking into account the fact
that the system is in evolution on a trajectory,csatinue the calculation of virtual work on
that trajectory over which the system travels dyitime periodr. The virtual work in Eq.(16)
can be calculated for any moment ovesr any point over the trajectoky Thus one has a
series of equations like Eq.(16) for a finite numbgpoints arbitrarily close one to another
over the whole trajectory. For an infinitesimal é#irmterval fromt to t+dt in which the force
and acceleration on each particle do not changeyittual work duringdt at timet on a small

segment ok must be proportional taW (t)dt. Thus the total virtual work over the trajectory

k can be roughly given by



AW, 0], (@)dt =[P 0 - m B0, @t )

Now we have to taken into account the fact that tdoinsidered system is only one of a large
number of systems of a statistical ensemble, altefing froma to b during 7 following
different paths. So for the ensemble, the totaluairwork is the statistical average of the
virtual works for every system. Without loss of geality, we consider discrete paths denoted
by k=1,2 ...w (if the variation of path is continuous, the sumeik must be replaced by path
integral betweera and b[9]). Supposey is the probability that the pathis taken by the
systems frona to b, the average virtual work is given by

18
AW = ZpkAWkDZpku(F. m &) [ dt. 18)

k=1 ai=1

In what follows, for the sake of simplicity, we der only one degree of freedom in
Eq.(18), sayx. It follows that

ST o (19)
AWDZPKI_Z(FM m&kdﬁkdt_zpjj.Z(__ F&) d(lkdt
k=1 ai=1 -1 'ai;1 OX
w o Nb gL N b
=2 Pe I(—é(.’f( jd&)kdt‘Zkajd_,kdt—&
k=1 i=la O k=1 i=la
o - , OH; _ L
where we used, for the partidlavith HamiltonianH; and Lagrangiah;, F,; =- " a—'
X 0%

b b
m &= = 9L ji(d(j 6_Lj :(d(j %j =0 due to the zero variation atandb, and
at 0)& ot 0% 0%/,

_ b
the following definitions:0A= % P and A =[L.dt (action calculated on the trajectory
k=1 a

N
K). Hence oA, = Zjd_,kdt—é'j L dt with L, =3 L, being the total Lagrangian of a system
i=1

i=la

following the trajectory.

We remember that Eq.(19) has been calculated asnao$ all the virtual works over a
large but finite number of points during the perioalver the trajectories betwearandb. As
a matter of fact, at each moment of the motion,ptheciple of virtual work of d'Alembert
applies, which implies that the virtual work of tkesemble at a given momenshould
vanish, just as in the case of equilibrium systeith wanishing virtual work given by Eq.(9).

We have



AN = 3 pa () = 3 p, SIF O -m FO), 2% =0. (20)

This reasoning certainly leads to vanishing totatual work betweena and b since
b

AW = [JdN(t)dt =0. By virtue of Eq.(19), we get the stochastic attinciple of Eq.(1):
a

MA=0. This is a derivation of SAP from the principlevaftual work.

6) Maximum path entropy

As mentioned above, Eq.(1) implies in fact an gmnreariational approach. To see this,
we calculate

— W 21
A= ;A &)
w w
=0T P A T XA
=1 j=1
= 0A-X,,

— W
where A= 3 p; A is the ensemble mean of actidnand &, can be written as
j=1

X, =0A-OA. (22)

which can be considered as the definition of a eatinopy, a measure of uncertainty of a the
action on different possible trajectories. In mikmg the first law,dQ,, = OA-A looks like

a generalized “heat”, a measure of the disordempaths. If we introduce an ‘inverse

temperature’; such that

5 (23)
Then from Eq.(1) and Eq.(21) , we get
ASab-nA=0. (24)

This is a variational calculus for a nonequilibrimiandom dynamics which optimizes the

quantity (Q,, — A) and (S,, —#7A). If the normalization condition is added as a st

Eq.(24) becomes :

10



ASy —NEXpjAtaXp]l=0 (25)
I I

which is the maxent applied to path entropy witlo thagrange multiplierse and 77, an

approach originally proposed and investigated m réferences [11][12]. In these previous
works, it was shown that, is the path entropy tatkes Shannon form, EQq.(25) yields an
exponential path probability distribution of actidhwas also shown in [12] that if the system
is distributed in position space in the Gaussiary,whe path probability is necessarily
exponential and the path entropy defined by Eq.(23)ecessarily of Shannon form. This
means that if, in a diffusion problem, the partctistribution is different, path entropy may

take different forms. This is investigated in dietdiway in reference [20].

7) Concluding remarks
After recapitulating an application of virtual wopkinciple to equilibrium system in order
to justify maxent with thermodynamic entropy, wegented an extension of this principle to

thermodynamic system out of equilibrium in orderjustify a least action principleﬁzo

for the stochastic dynamics (SAP) or diffusion peof. This is carried out for Hamiltonian
systems. One of the conclusions is that, in randoethanical system, the maximum
thermodynamic entropy for equilibrium system or imaxm path entropy for nonequilibrium
system are the consequences of vanishing virtuak wbthe microscopic forces on every
element of the system. Another conclusion of thkwis that maxent in physics is not
necessarily an inference method. It is a law ofsptsydue to its tight correlation with a

fundamental principle of physics.
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