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Abstract

We present a family of decompositions of 2-structures generalizing the modular decompo-
sition, and O(n?) time algorithms to compute all these decompositions. These results can be
applied to non-oriented, oriented and directed graphs. Bi-join decomposition of non-oriented
graphs and of tournaments are two special cases of this family of decomposition. Two others
special cases are generalisations of the bi-join decomposition on directed graphs.

1 Introduction

The well-known modular decomposition of graph has many applications in graph theory and algo-
rithms. It is unique [8] and can be computed in linear time (i.e. in O(n + m)) on non-oriented
graphs [11], on directed graphs [10], and in linear time (i.e. in O(n?)) on 2-structures [9]. The bi-
join decomposition is a generalisation of the modular decomposition on non-oriented graphs [13, 14]
and on tournaments [2]. These two decompositions can be computed in linear time.

We present a family of decompositions of 2-structures which generalize the modular decomposi-
tion. We show that these decompositions are unique, and we present an algorithm to compute them
in time O(n3) (for a fixed decomposition in the family). We apply these results to oriented and
directed graphs. We give two new different decompositions for directed graphs which generalize the
bi-join decomposition of non-oriented graphs and tournaments, and we give a new decomposition
for oriented graphs. Bi-join decomposition of non oriented graphs and bi-join decomposition of
tournament are also special cases of this family of decompositions.

After some preliminaries in section 2, we introduce in section 3 the G-joins and show that G-
joins have the bipartitive property. In section 4 we define the G-join decomposition. For any fixed
abelian group with some properties, there is a different G-join decomposition. In section 5 we give
some special cases of decompositions on non-oriented, oriented and directed graphs. Finally, we
present an O(n?) algorithm to compute the G-join decomposition in section 6, for any fixed abelian
group.

2 Preliminaries

2.1 Graphs and 2-structures

A directed graph G = (V, A) is a pair of a set of vertices V and a set of arcs A CV x V \ {(u,u) :
u € V}. A non-oriented graph is a directed graph such that for all (u,v) € V2, with u # v, then
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(u,v) € A if and only if (v,u) € A. An oriented graph is a directed graph such that for all (u,v),
(u,v) € A= (v,u) € A. A tournament is a oriented graph such that either (u,v) € A or (v,u) € A.

Let D be a set. A 2-structure on D is a pair (V,e) such that e : V x V — D. In this paper,
every 2-structure is finite (i.e. V' is finite). A 2-structure is symmetric if e(u,v) = e(v,u) for all
u,v € V, u#v. Let o be an involution on D (i.e a bijection such that o(o(z)) = = for all x € D).
A 2-structure (V,e) on D is o-symmetric if e(u,v) = o(e(v,u)) for all u,v € D, u # v.

A directed graph can be viewed as a 2-structure on Zs, a non oriented graph as a symmetric
2-structure on Zs, and a tournament as a o-symmetric 2-structure on Zs with o = [ }]. There is
a way to transform a 2-structure on D into a o-symmetric 2-structure on D x D: take €'(u,v) =

(e(u,v),e(v,u)) and o((i,5)) = (j,4) for all 4,j € D. For example a directed graph can also be
(0,0) (0,1) (1,0) (1,1)

viewed as a og-symmetric 2-structure on Zo X Zs, with o = 0.0) (1.0) (0.1) (11) |-

2.2 Bipartitive families

A bipartition of a set V is a partition {X,Y} of V such that X # () and Y # (). We write sometimes
{X,—} instead of {X,V \ X}. Two bipartitions {X,Y} and {X', Y’} overlap (or {X,Y} overlaps
{X'YHUEXNX, XNY,YNX and Y NY’ are non empty. A family F of bipartitions of V' is
weakly bipartitive if:

o forallveV, {{v},V\{v}}isin F, and

e for all {X,Y} and {X', Y’} in F such that {X,Y} overlaps {X',Y'}, then {X N X", Y UY'},
{XNY ) YUX'HL{YNX  XUY'}and {Y NY', X U X'} are in F.

Moreover a weakly bipartitive family F is bipartitive if for all {X,Y} and {X’, Y’} which overlap
in F, {XAX', XAY'} is in F (where AAB = (A\ B)U (B \ A)). Bipartitive families are close to
partitive families |3, 12] but deals with bipartitions of V instead of subsets of V.

A member of a bipartitive family is strong if it overlaps no other member in the family. A
member {X,Y'} is trivial if [ X| =1or |Y|=1. Let T'= (V, E) be a tree. We denote by Leaves(T)
the leaves of T. For B € V, let {Al,...,Az(ﬁ)} be the connected components of T'— (3. Let
Cé = A% N Leaves(T). For e € E, let Al and A? be the connected components of 7' — e, and let
{0}, C?} = {Al N Leaves(T), A2 N Leaves(T)}. The following result can be found in [14] or in [6]
using a different formalism. This result can also be easily showed from known results of weakly
partitive families [3, 12].

Theorem 1. [6, 14 Let F be a weakly bipartitive family F on V. Then there is a unique unrooted
tree T = (Vp, E), call the representative tree, such that Leaves(T') = V', and each internal node
has at least 3 neighbors and is marked degenerate, linear or prime, such that:

e Foralle € Ep, {C},C?} is a strong member of F and there is no other strong members in F.
e Let B € Vr be an internal node, and let k be the degree of [3.

— If 3 is degenerated, then for all ) C I C {1,...,k}, {Uie;CY,—} is in F.

— If B is linear, there is a ordering C’é,...,C’g such that for all a,b € {1,k} witha <b
and (a7b) 7é (1>k>: {Uie{a,...,b}céa _} isin F.

o There is no other members in F.



Furthermore if F is bipartitive, then T has no linear node.

Decompositions based on bipartitive families have been studied in [6] under a formalism called
decomposition frame with some properties. Some examples of this decomposition frame can be found
in [4, 5]. Bipartitive families based decompositions are interesting since the bipartitivity imply an
unique decomposition. Furthermore, this imply that a greedy algorithm to decompose the structure
will always work: if we can find in polynomial time a decomposable bipartition in the structure,
then we can decompose the whole structure in polynomial time.

2.3 Modular decomposition and bi-join decomposition

A module in a 2-structure G = (V, e) is a non-empty X C V such that for all v ¢ X and u,u’ € X,
e(v,u) = e(v,u’) and e(u,v) = e(v',v). The family of modules of a 2-structure is weakly partitive,
and is partitive if the 2-structure is symmetric [7]. If a structure G has a non-trivial module X, then
it can be decomposed into G[X] and G[V \ X U {z}|, where x € X. Note that the structure G can
be easily reconstructed from G[X] and G[V \ X U {z}]. The modular decomposition is defined by
recursively decompose the structure by a non-trivial module. It can be represented by a tree, call
the modular decomposition tree, which is exactly the representative tree of the family of modules.
A bi-join in a non-oriented graph G = (V, E) is a bipartition {X,Y} of V such that for all
v, € X, {N(Ww)NY, Y\ N(v)} ={N@')NY, Y\ N(')}. A bi-join in a tournament G = (V, A) is
a bipartition {X,Y} of V such that for all v,v' € X, {NT(v)NY,Y \ NT(v)} = {NT()nY, Y\

N*()}.
]
[ =]

Figure 1: A bi-join in a non-oriented graph and a tournament. X = X; U Xs and Y =Y, UYs.

]
.
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If X C V is a module of G, then it is a bi-join of G. The family of bi-joins of a undirected graph
is bipartitive [13], and the family of bi-joins of a tournament is weakly bipartitive [2]. If a graph has
a non-trivial bi-join, then it can be decomposed into two graphs, and the bi-join decomposition is
the recursive decomposition by a strong non-trivial bi-join. Since the family of bi-join is bipartitive,
the bi-join decomposition tree is unique (and is isomorphic to the representative tree).

2.4 Abelian group

We recall axioms of an abelian group (D, +).

Neutral element: There is an element 0 in D such that for all ¢ in D, 0+ a=a 4 0 = a.

Inverse element: For each a in D there is an element ¢! in D such that a+a ' =a "' +a =0,
where 0 is the neutral element. (We will wrote —a for a™!.)

Associativity: For all a, band cin D, (a+b)+c=a+ (b+¢).
Commutativity: For all @ and bin D, a+b=0>b+a.



3 G-joins
3.1 Definition

Throughout this section, we fix an abelian group (D, +). Let (V,e) be a 2-structure on D. A pair
(X, Y)with X 20, Y #Qand V=X WY (i.e. XUY =V and X NY = () is a G-join if there is
pairwise disjoin X; and Y; (for i € D) such that X = #,cp Xi, Y = W;cp ¥j, and for all (i, ) € D?
and (u,v) € (X;,Y;), e(u,v) =i+ j. We start with some easy observations.

Proposition 2. If (X,Y) is a G-join of G and V' CV such that V'NX £ 0 and V' NY # 0, then
(X NV Yy nV') is a G-join of G[V'].

Proposition 3. If M is a module of (V,e), then (M,V \ M) and (V \ M, M) are G-joins of (V,e).

Proposition 4. For every pairwise different a,b,c,d € V' such that there is a G-join {X,Y} with
{a,c} C X and {b,d} CY, then e(c,d) = e(c,b) + e(a,d)—e(a,b).

Lemma 5. Let (V,e) be a 2-structure on D. Let (X,Y) and (X', Y") be two G-joins of (V,e) such
that XN X' # 0 and Y NY' £ 0. Then (X N X", Y UY’) is a G-join of (V,e).

Proof. Let X; and Y; (for i € D) such that X = ,cp Xi, Y = W;cp Yj, and for all (u,v) € (X;,Y)),
e(u,v) =i+ j . Similarly let X and Y/ (i € D) such that X' = f),cp X[, Y' = J,cp Y], and for
all (u,v) € (X0, Y7), elu,v) =i+ j

Since Y NY" is non-empty, let v € Y NY’, and let j,j° € D such that v € ¥; NY],. Suppose
that w € X N X', and let ¢,7' € D such that w € X; N X],. Then e(w,v) =i+ j =1+ 5.
Thus X N X' = ¥;.p Xi ﬂ Xl{-i-j;j,' Moreover, forall u e Y NY', e(w,u) =i+ k =14+ k' (with
weY,NY)), thus i’ =i—i' +k=j—j+kand Y NY' = Y,cp Y N Yk’ﬂ.,;j.

For all k € D, let X;' = X;; N Xl/H—j;j” and let Y = Y3, U Yk/-Fj’-Fj‘l' XNX' =cp X/ and
YUY = WuepY,. Forallue X and v € Y/, e(u,v) =i+ k. Thus (X N X', YUY')is a
G-join. O

3.2 G-joins in o-symmetric 2-structures

A function f is a isomorphism for (D,+) if f(a +b) = f(a) + f(b) for all (a,b) € D?. From now

o will denote an involution on D such that the function f : a — o(a)—c(0) is an isomorphism for
(D,+) (where 0 is the neutral element).

Lemma 6. Let (V,e) is a o-symmetric 2-structure, and let X and Y such that V = X WY . Then
(X,Y) is a G-join if and only if (Y, X) is a G-join.

Proof. Let X, and Y, (for a € D) such that X = |Y,cp Xa, ¥ = W,ep Ya, and for all (u,v) €
(Xa, Ya), e(u,v) = a+b. Let X, = X, ;) and Y, = Ya/(a);a(('))’ for all a € D. Since o is a bijection,
X =W,ep X, and Y = ¥,p Yo. Moreover, for all u € X/, and v € Yy, e(u,v) = o(a)+o(b)—0o(0) =

f(a)+ f(0) +0(0) = f(a+b) +0(0) = o(a+b), and e(v,u) = a+b. Thus (Y, X) is a G-join. O

We say that {X,Y } is a G-join of (V,e) if (X,Y") is a G-join of (V,e). Lemmas 5 and 6 show that
if {X,Y} and {X', Y’} are two G-joins such that {X,Y} overlaps {X’,Y'}, then {X N X" YUY’}
is a G-join. Therefore we have:

Corollary 7. The family of G-joins of a o-symmetric 2-structure is weakly bipartitive.



3.3 G-joins in symmetric 2-structures

Lemma 8. Let (V,e) be a symmetric 2-structure. Let {X,Y} and {X',Y'} be two G-joins of (V,e)
such that {X,Y} overlaps {X',Y'}. Then {XAX', XAY'} is a G-join of (V,e).

Proof. Let v € YNY' we XNY’ and let (4,5',1,I') € D* such that v € YjﬂYj’, and w € X;NY).
Asiwe S.hO.W in proof of Lemma 5, X N X' = [H,.p Xi N X]’C_.H.;j, and Y NY' =,cp Y N Yk’ﬂ.,;j.
Using s1m/1,1ar argumen’,c, YNX' =Wpep YN Xl/c—,i-l;l’ and X ﬂ”Y/ = LﬂkeD/Xk NY/ -

Let Xk = (Xk N Xk—i—]f]/) U (Yk—i-j;j’-i-l/;l N Yk—j—l’;l) and Yk = (Yk N Xk—i—l;l/) U (Xk_i_j/;j_i_l;l/ N
Yk/-'rj'éj)‘ For all u € X} and v € Y/, e(u,v) = k +1. Thus {H,cp X}, Wpep Yy} is @ G-join. [

With Lemma 5, we obtain:

Corollary 9. The family of G-joins of a symmetric 2-structure is bipartitive.

4 G-join decomposition

In this section, we fix an abelian group (D, +) and an involution ¢ such that f: a — o(a)—0o(0) is
an isomorphism for (D, +). For most part, our terminology follows terminology used in [4, 6].

4.1 Simple decomposition

A G-join {X,Y } is trivial if | X| = 1 or |Y| = 1. Since every singleton is a module, every bipartition
{X,Y} with | X|=1or |Y]| =11is a G-join.

Let G = (V,e) be a o-symmetric 2 structure and {X,Y } be a non-trivial G-join. Let x € X
and y € Y. A simple decomposition of (V,e) by the G-join (X,Y") is the decomposition into G; =
(X U{y},elxuqyy) and G2 = (Y U {x},elyugy)) with an additional marker triplet (z,y, «), where
a = e(z,y) (e|x represents the function e induced by X x X). We write G — (G1, G2, (z,y, «)).
Note that this decomposition is not unique for a fixed {X,Y}.

The simple composition of (Vi,e1), (Va,e2) and the marker triplet (z,y,a), with Vi NVy =
{z,y}, is the 2-structure (V; U Va,e) where e(a,b) = e1(a,b) for all a,b € V1 \ {y}, e(a,b) = ea(a,b)
for all a,b € V5 \ {z}, and e(a,b) = ei(a,y)—a + es(z,b) for all a € V1 \ {y} and b € V5 \ {z}.
By Proposition 4, if ((Vi,e1), (Va,e2), (z,y,a)) is a simple decomposition of (V,e), then the simple
composition of (V1,e1), (Va,e2) and (z,y,a) is (V,e).

Lemma 10. Let {X,Y} be a G-join of G, and (G1, G2, (x,y,«)) be the simple decomposition of G
by (X,Y). Let {X',Y'} be a bipartition of V withY' CY. Then {X',Y'} is a G-join of G if and
only if {{z}UY \ Y'Y’} is a G-join of Gs.

Proof. If {X',Y'} is a G-join of G then by Proposition 2 {{z} UY \ Y'Y’} is a G-join of Gj.
Now suppose that {{z} UY \ Y'Y’} is a G-join of G2. Let X/ and Y, (for a € D) such that
{23 UY\Y")Y") = (Woep Xis Waep Ya) and e(u,v) = a+bfor allu € X} and v € Y} Since {X,Y}
is a G-join of G, let X, and Y, such that (X,Y) = (H,ep Xa: Weep Ya) and e(u,v) = a + b for all
u € Xqand v €Y. Let ¢,d € Dsuch that v € X/ and y € Yy. Let X = (X, \{z})UX, -4 .i, and
Y,/ =Y, Letue X]and v eV,’. If u e X then e(u,v) = a+b. Otherwise u € X,- ;- .1, and by
definition of simple decomposition, e(u,v) = e(u,y)—a+e(z,v) = a+bsince e(u,y) = a—d—c+a+d
and e(z,v) = ¢+ b. Then {),cp X7, Waep Yo'} = {X', Y’} is a G-join of G. O



A G-join {X,Y'} is strong if it is a strong member of the bipartitive family of G-joins of G (i.e.
there is no G-join {X’, Y’} such that {X,Y} overlaps {X’,Y’}). A simple decomposition is strong
if it is induced by a strong G-join. The following Corollary follows from previous Lemma.

Corollary 11. Let {X,Y} be a G-join of G, and (G1, G2, (x,y,a)) be the simple decomposition of
G by (X,Y). Let {X',Y'} be a bipartition of V with Y' NY. Then {X',Y'} is a strong G-join of
G if and only if {{z} UY \ Y'Y} is a strong G-join of Gs.

4.2 G-join decompositions

A 2-structure is prime if all its G-joins are trivial. A 2-structure is degenerated if every bipartition
is a G-join. A 2-structure G = (V, E) is linear if there is a ordering vy, ..., v, of the vertices such
that for all 4,5 € {1,...,n} with ¢ < j and (7,7) # (1,n), {{vi,...v;},—} is a G-join of G, and G
has no others G-join. Every 2-structure with at most 3 vertices is degenerated, linear and prime,
and every 2-structure with at least 4 vertices is either prime, degenerated, linear or none of these
three cases. The following Lemma comes immediately from the bipartitivity of G-joins.

Lemma 12. Let G be a 2-structure. G has no strong non-trivial G-join if and only if G is either
prime, degenerated or linear

Proof. If G has no strong non-trivial G-join, then representative tree of G has only one internal node
(. Then G is prime, degenerated or linear if (3 is prime, degenerate or linear, respectively. O

The following Lemma gives a characterisation of degenerated graphs. Its straightforward induc-
tive proof is given in appendix.

Lemma 13. Suppose o(0) = 0. A o-symmetric 2-structure with at least 4 vertices is degenerated
if and only if there is an a € D such that o(a) = «, and a function f : V — D such that for all
w,v €V, utv, e(u,v) =a+ f(u) +o(f(v)

Let G be a 2-structure. G-join decompositions of G are defined recursively: ({G},0) is a G-join
decomposition of G' and if (D, M) is a G-join decomposition of G, H € D, and Hy, Hs is a simple
decomposition of H with marker triplet (u,v, o), then (D\{H})U{H1, H2}, M U{(u,v,a)}) is a G-
join decomposition of G. In this case we say that (D', M') = (D\{H})U{H1, Ha}, M U{(u,v,a)})
is a simple decomposition of (D, M), and we write (D, M) — (D', M'").

A G-join decomposition (D, M) is minimal if every 2-structure in D is prime. A G-join de-
composition (D, M) is good if no H € D has a strong non-trivial G-join. A G-join decomposition
(D, M) is standard if it can be obtained from ({G},0) by a sequence of simple strong decompo-
sitions, and no H € D has a strong non-trivial G-join. Note that minimal decompositions and
standard decompositions are goods. The proof of the following lemma is similar to the proof given
in [6].

Lemma 14. Let (D, M) be a good decomposition of G. If there is no good decomposition (D', M")
such that (D', M') — (D, M), then (D, M) is a standard decomposition of G.

Proof. If (D, M) is not a standard decomposition then there is a simple decomposition in the
sequence of decompositions which is not strong. Let (Dy, M) — (D2, M) = (D1 \ {H}) U
{Hi, H2}, M1 U{m}) be the last non-strong decomposition in the sequence. All the decompositions
after (D1, M) — (Dq, My) are strong and correspond to unique strong G-joins of G. We construct



the decomposition (D', M’) from (D, M;) after simple decompositions of these strong G-joins.
(D', M) is good since there is a simple decomposition for every strong G-join in G and (D', M') —
(D, M) by the simple decomposition of the G-join corresponding to (Dy, M) — (Do, Ms). O

The previous Lemma tells us that a standard decomposition can be obtained from a minimal de-
composition by a sequence of simple compositions. This will be used in the decomposition algorithm
presented in a next section.

A decomposition (D, M) of G induces a unrooted tree of vertex set D and H; is adjacent to Hy
if there is a (z,y,«) € M such that x is a vertex of H; and y is a vertex of Hy. The decomposition
tree of a standard decomposition is isomorphic to the representative tree of the weakly bipartitive
family of G-joins and thus is unique. We call it the standard decomposition tree.

5 Specials cases of G-join decomposition

5.1 Bi-join decomposition

The bi-join decomposition [13, 14] is a special case with (D,+) = (Z2,+). Lemma 13 says that
degenerated graphs are disjoint union of two cliques if & = 1 and complete bipartite graphs if o = 0.
This decomposition has no linear node since the structure is symmetric. The bi-join decomposition
of tournaments [2] is the decomposition, with (D, +) = (Z2,+) and o = [} }].

5.2 Decomposition of oriented graphs

A directed graph G can be viewed as an o-symmetric 2-structure on the set {(0,0),(1,0),(0,1)},
with o((¢,7)) = (4,9) for (4,5) € {(0,0),(1,0),(0,1)}. There is one abelian group on D such that
a — o(a)—c(0) is an isomorphism. This abelian group, isomorphic to (Zs,+), is given in figure 2.

5.3 Decompositions of directed graphs

A directed graph G is a 2-structure on Zo, and can be viewed as a o-symmetric 2-structure (V) e)
on Zo X Zo, with o((i,7)) = (j,i). There are two abelian groups such that a — o(a)~c(0) is an
isomorphism. The first one (isomorphic to (Z3,+)) is given in figure 3, and the second (isomor-
phic to (Z4,+)) is given in figure 4. These two decompositions are generalizations of the bi-join
decomposition on both non-oriented graphs and on tournament. They are mutually exclusive, that
is there is a graph prime for the first one and completely decomposable for the other one, and wice
versa.

6 Decomposition algorithm

From now, we fix an abelian group (D, +) and an involution o such that f : a — o(a)—0c(0) is an
isomorphism for (D, +).

6.1 Find a non trivial G-join

We give in this section a O(n?) algorithm for the following problem: given a 2-structure G = (V, e)
and u,v € V, output a non trivial G-join {X,Y} such that v € X and v € Y, or output “No” if
there is no such partition.
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A directed graph G = (V, A) is strongly connected if for every u,v € V there is a path from u to
v (i.e. there is a sequence up = u,uy,...u; = v such that for all i € {0,... &k — 1}, (u;,ui+1) € A).
A strongly connected component is a maximal subset W C V such that G[W] is strongly connected.
The strongly connected components form a partition of the vertices of GG, and can be found in linear
time [1]. Moreover, there is always a strongly connected component W such that there is no arcs
from W to V' \ W, since the incidence graph of strongly connected components is acyclic.

We transform our problem into a 2-SAT problem. We suppose w.l.o.g. that u € X; and thus
v € Yo(uw)- If avertex w € {u,v} is in X then it is in Xe(wv)—e(up), and if wisin Y, it isin Yo, ).
Let the 2-SAT problem with variable set V' \ {u, v}, and w = t if e(w,v)—e(u,v) + e(u,t) # e(w, t).
A variable w is true means that w € X. Then there is a non trivial G-join if and only is there is
a non trivial solution for the 2-SAT problem. Let Gy = (V \ {u,v}, Ey) with Ef = {(w,t) : w,t €
V\ {u,v} and e(w,v)—e(u,v) + e(u,t) # e(w,t)}. The 2-SAT problem has a non trivial solution if
and only if the graph G is not strongly connected. In this case {X U {u},V \ (X U{u})} is a non
trivial G-join of G. All these operations can be done in time O(n?). (Algorithms in pseudo-code
are given in appendix.)

6.2 Compute a minimal G-join decomposition

If a 2-structure is not prime, then a G-join can be found in O(n?) time using the previous algorithm
for a fixed u € V' and for all v # u. So a naive algorithm to compute a minimal decomposition take
O(n*) time. We can reach O(n?®) by the following way. We remember the set P of subsets of V'
such that there is no non-trivial G-join which overlaps U for all U € P. P is a partition of V, and
at each call of the sub-routine, either it succeed and we decompose the 2-structure, either it fails
and we merge two sets in P. So a minimal decomposition can be obtained with O(n) call to the
algorithm of section 6.1, and can computed in O(n?).

6.3 Compute a standard G-join decomposition

Lemma 14 says that a standard decomposition of G can be computed from a minimal decomposition,
after some re-compositions. We show that we can test in time O(n?) if a composition of two 2-
structures degenerated or linear is degenerated or linear.

Let G; = (Vi,e1) and Go = (V,e3) and a marker triplet (z,y,«), such that G; and G have
no strong non-trivial G-join. If G’ has no strong non-trivial G-join, then by Lemma 12, G is either
degenerated or linear (since it cannot be prime). If G7 or Gy is not degenerated, then G must

be linear. Moreover if G; and G4 are linear, let vy,...,v; be a linear ordering of the vertex of
G1, and let vi,...,v;, be a linear ordering of Go. W.lo.g. v; = y and v{ = x. Then if G is
linear, va,...,Vk, Uy, ...,V OF V2,...,Vk, V), ...,V must be a linear ordering of G, and so either

{{va,v5}, =} or {v2, v}, }, —} must be a G-join of G.

Let G; and G35 be two 2-structures without strong non-trivial G-join. We want to known if the
composition G of G; and G9 with the marker triplet (z,y, ) is degenerated or linear (and to know a
ordering of G if it is linear). Case 1: |V;| = |Va| = 3. All bipartitions of G can be tested in constant
time, so the type of G (and a ordering if G is linear) can be computed in O(1). Case 2: |Vi| # 3
or |Va| # 3. Then GG or Gy is non degenerated, or non linear. If G; and G2 are degenerated, then
G is degenerated if and only if {{z,y},—} is a G-join of G. If G; and G4 are linear, with ordering
{vi=y,...,v} and {v] = x,..., v}, then G is linear if {{vy,v5}, —} or {{v2, v}, },—} is a G-join
of G. In this case, vg, ..., V4, V), ...,V OF V2, ..., Uk, Vs, .., V5 is ordering of G. In others cases, GG



is neither degenerate nor linear. Moreover, to test if a bipartition is a G-join of a 2-structure can
be done in O(n?).

There is at most O(n) re-compositions (at most one for each edge in the decomposition tree).

To summarize, we obtain:

Theorem 15. A standard G-join decomposition can be computed in time O(n3).
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7 Appendix

7.1 Proof of lemma 13

Let (V,e) be a 2-structure such that thereisa f : V — D and a «a with o(a) = a and e(u,v) = a+
fu)+o(f(v)) forall u,v € V, u # v. It is easy to see that (V,e) is o-symmetric since o(0) = 0 and
thus o is a isomorphism for (D, +). Let {X, Y} be a bipartition of V. Let X, ={ve X :a = f(v)}
andY, ={veY:a=a+o(f(v))}. Forallue X, and b € Y}, a+b= f(u)+ato(f(v)) = e(u,v),
thus {X,Y} is a G-join.

On the other hand, let (V,e) be a degenerated 2-structure such that |V| > 4.
Claim 1. For every pairwise different a,b,c,d € V, e(c,d) = e(c,b) + e(a,d)—e(a, b).

Proof. Since (V) e) is degenerated, {{a, ¢}, —} is a G-join. By Proposition 4 we have the equality. [
Claim 2. For every pairwise different a,b,c € V:

e(a,b) +e(b,c) + e(c,a) = e(b,a) + e(c,b) + e(a, ).
Proof. Let d € V' \ {a,b,c}. Applying Claim 1, we get:

e(d,a)—e(d,b) = e(c,a)—e(c,b)
e(d,b)—e(d,c) = e(a,b)—e(a,c)
e(d,c)—e(d,a) = e(b,c)—e(b,a).

S
)

2]

Thus

e(a,b) +e(b,c) +e(c,a) = e(b,a) + e(c,b) + e(a, )
= o(e(a,b)) + o(e(b,c)) + ole(c, a)).

Case 1: |[V|=4. Wlo.g V ={a,b,c,d}. Let:

a=e(a,b)+e(b,c)+eca)

fla) = ~e(b,c)

f(b) = ~e(a,c)

f(c) = —e(b,a)—e(a,c) + e(c,a)
f(d) =e(d,a) + e(c,b)—a

11



From Claim 2, o(a) = a. We get:

fla) +o(f() +a= —e(b,c)—e(c,a) + e(a,b) + e(b, c) + e(c, a)
= e(a,b)
f(a)+o(f(c)) + a= —e(b,c)—e(a,b)—e(c,a) + e(a,c) + e(a,b) + e(b, c) + e(c,a)
= e(a,c)
fO)+o(f(c) + a= —e(a,c)—e(a,b)—e(c,a) + e(a,c) + e(a,b) + e(b, c) + e(c,a)
=e(b,c)
fla) +o(f(d) +a= —e(bc)+ela,d) +elb c)—a+a
= e(a,d)
f(b) +o(f(d) +a= —e(a,c)+e(a,d) + e(b,c)—a+
=e(b,d) (by Claim 1)
f(e) +o(f(d) +a=—e(ba)~e(a,c) +e(c,a) + e(a,d) + e(b,c) ~a + o
= e(a,d) + e(c,b)—e(a,b) (by Claim 2)
=e(c,d) (by Claim 1.)

Thus f and « have the required property.
Case 2: |[V| > 4. Let v € V. (V \ {v},e) is degenerated and thus there is a f': V' \ {v} — D
and an « € D such that for all u,v € V' \ {v}, e(u,v) = f'(u) + o(f'(v)) + a. Let u # v, and let f

such that f(w) = f/(w) if z € V'\ {v} and f(v) = e(v,u)—o(f' (u))—a.
fw) +o(f(v)+a=f(u)+e(uv)~alc(f(v)~a+a

= e(u,v)

Let w € V\{u,v} and z € V \ {u, v, w}.

Fw) + o(f(0) +a= f(w) + e(uw,0) o (o(f(w)~a+a
= /@) f'(w) +e(u ) + e(w,v)“e(w,x) (by Claim 1)
— e(w,v) + /(w)=f(u) + f'(u) + o(f(2)) + o f (w) o (f' (@) ~a

= e(w,v).

Thus f and «a have the required property.
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7.2 Algorithm to find a non trivial G-join

Function FINDGJOIN(G = (V,e),u,v)
Input: a 2-structure G = (V,e) and u,v € V, u # v
Output: a non trivial G-join {X,Y} of G such that u € X and v €Y,
or “No” is there is no such G-join
begin
fi(u) =

fa(v) = (U v)
For every w € V\ {u,v}

fi(w) = e(w,v)=e(u,v)
folw) = e(u,w)
By = {(w,t) :w,t € V\ {u,0} and fi(w) + folt) # e(w, 1)}
Gy = (V\ {u.v}, By)
if G is strongly connected
output “No”
Otherwise
Let W be a strongly connected component of G
such that there is no arc in G from W to V \ W'\ {u,v}
output {{u} UW,V \ {u} \ W}
end {FINDGJOIN}

7.3 Algorithm to compute a minimal G-join decomposition

Function DECOMPOSEP (G, P)
Input: a 2-structure G = (V,e) and a partition P of V
Output: a minimal G-join decomposition G
begin
If |P| =1 then
return ({G},0)
Let ABeP,ac Aandbe B
If FINDGJOIN(G, a, b) returns “no” then
P:={AUB}U(P\{A,B})
return DECOMPOSEP (G, P)
Let {X,Y} be the G-join returned by FINDGJOIN
Decompose G into G; and Go by the G-join {X, Y} with marker triplet (z,y, )
P:={PeP:PCX}
Py:={PecP:PCY}
(D1, My) :== DECOMPOSEP (G1, P1)
(Dy, M) := DECOMPOSEP (G2, Ps)
return (D; U Dy, My U My U (z,y, )
end {DECOMPOSEP}
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Function DECOMPOSE(G)
Input: a 2-structure G = (V,e)
Output: a minimal G-join decomposition G
begin
P :={{v}:veV}
return DECOMPOSEP (G, P)
end {DECOMPOSE}

7.4 Algorithm to compute a standard G-join decomposition

Function DECOMPOSESTANDARD((D, M))
Input: a minimal G-join decomposition
Output: a standard G-join decomposition
begin
for all H € D
if H has exactly 3 vertices then
mark H degenerated and linear, and set an arbitrary linear ordering for H
for all (z,y,a) € M
let H, € D having vertex z, and let Hy € D having vertex y
compute the composition H of Hy and Hs
if H is degenerated or linear then
(D, M) = (D\ {Hy, Hy} U{H}, M\ {(z,.)}))
mark H degenerated or linear, and set the linear ordering of H if H is linear
return (D, M)
end {DECOMPOSESTANDARD}
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