
HAL Id: hal-00141472
https://hal.science/hal-00141472

Submitted on 29 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Double quantization forecasting method for filling
missing data in the CATS Time Series

Geoffroy Simon, John Lee, Michel Verleysen, Marie Cottrell

To cite this version:
Geoffroy Simon, John Lee, Michel Verleysen, Marie Cottrell. Double quantization forecasting method
for filling missing data in the CATS Time Series. 2004 IEEE International Joint Conference on Neural
Networks, Jul 2024, Budapest, Hungary. pp.1635-1640. �hal-00141472�

https://hal.science/hal-00141472
https://hal.archives-ouvertes.fr


Double Quantization Forecasting Method for Filling
Missing Data in the CATS Time Series

Geoffroy Simon, John A. Lee, Michel Verleysen
Machine Learning Group
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Abstract— The double vector quantization forecasting method
based on Kohonen self-organizing maps is applied to predict
the missing values of the CATS Competition data set. As one
of the features of the method is the ability to predict vectors
instead of scalar values in a single step, the compromise between
the size of the vector prediction and the number of repetitions
needed to reach the required prediction horizon is studied.The
long-term stability of the double vector quantization method
makes it possible to obtain reliable values on a rather long-term
forecasting horizon.

I. I NTRODUCTION

Time series forecasting can be defined as the problem of
determining in advance the future values of a given time
series. This problem is of major interest in many fields as, e.g.,
finance (forecasting returns or stock markets), hydrology (pre-
dicting river floods), engineering (estimating future electrical
consumption) or even in management (anticipating work load).
Many methods have been developed to solve this problem with
very different approaches, from statistics to system identifica-
tion and more recently neural networks. All these methods
are usually classified in some general categories: (N)AR(X),
(N)ARMA(X), FIR, BJ, etc. Whatever the original problem
and the used method may be, the methodological approach is
always the same: Given a time series data set, one tries to
find a suited model of this series. This model is then used to
forecast the future evolution of the series. In this paper a NAR-
type model will be used, i.e. a non-liner (N) auto-regressive
(AR) model, based on Kohonen maps. The X part is omitted
since no exogenous information will be used.

The CATS Competition Data Set is a time series prediction
problem. The goal of this competition is to be able to predict
100 values corresponding to five holes of twenty values in
the series, the fifth one being at the end. As each hole is
preceded by 980 known values one approach to solve the
competition problem would be to fit five models, each one
being specifically designed to predict the next twenty values.
In this paper however, a global model able to predict the 100
missing values will be presented.

The model used here is derived from the double vector
quantization method (DVQ) [1]. This method is based on
the use of two Kokonen’s self-organizing maps (SOM) [2]
in parallel. The SOM is a tool usually used in classification

or feature extraction tasks, but more scarcely in time series
prediction despite a few previous attempts [5], [6], [7], [8],
[9], [10]. The DVQ method has been recently proved to be
stable for long-term time series prediction [1]. Considering
that 20 values is a longer-term horizon than the usual one step
ahead prediction framework, the method will be used here to
forecast the missing values of the CATS data set.

The DVQ method is also able to predict vectors of values
instead of scalar ones: in the temporal context, vectors mean
to predict several forecasts in a single operation, rather than
repeating scalar forecasts and using predictions to predict the
next values. The size of the prediction vectors is a parameter
of the method. In the CATS competition context where 20
consecutive values have to be predicted, we have the choice
to predict a vector of 20 values, to repeat 20 times a scalar
forecast (in this case using the prediction at each step to predict
the next one), or any intermediate situation (4 times a vector
of 5 values, etc.).

In the following of this paper, we first present an analysis
of the CATS data set, the conclusions of this analysis guiding
the experiments. In section III we briefly recall some basic
concepts about the SOM maps and then present the forecast-
ing method for the scalar case (for the sake of simplicity).
Section IV is devoted to the description of the experimental
methodology and section V presents the obtained results. A
discussion will conclude this paper.

II. A NALYSIS OF THE CATS DATA SET

As mentioned in the introduction, the model implemented
by the DVQ method is a NAR model. An important question
to answer is the choice of the AR part, i.e. the size of the
regressor. More formally, having at our disposal a time series
of x(t) values with1 ≤ t ≤ n, the prediction problem can be
defined as follows :

[x(t+1), ..., x(t+ d)] = f(x(t), ..., x(t− p+1), θ)+ εt, (1)

whered is the size of the vector of values to be predicted,f
is the model of the data generating process,p is the number
of past values to consider,θ are the model parameters andεt

is the noise. The past values are gathered in ap-dimensional
vector calledregressor. Both p and d must be chosen. As
mentioned above,d will result from a compromise between
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scalar predictions with repetitions and a larger vector of values
to predict as a whole; in practice the choice ofd will be
determined by extensive simulations.

Concerning the sizep of the regressor, it is possible to have
insights about a plausible value (or range of values) by an
in-depth examination of the series. In this paper, the search
for the regressor sizep is based on Grassberger-Proccacia’s
[11] correlation dimension; the procedure is for example
summarized in [12].

Grassberger-Proccacia’s procedure allows to estimate the
correlation dimensionDc [11] of a time series. Then, accord-
ing to Takens theorem [13], a regressor of sizep = 2 ∗Dc +1
will describe the data in an embedding space containing
enough information to allow a correct modeling of the series.

In short, the Grassberger-Procaccia procedure computes the
correlation dimensionDc according to:

Dc = lim
r→0

ln(Cm(r))

ln(r)
, (2)

whereCm(r) is thecorrelation integral [11] defined as:

Cm(r) = lim
n→∞

2

n(n − 1)

∑

1≤t<t′≤n

I(‖x(t) − x(t′)‖ ≤ r).

(3)
FunctionI(.) takes a value equal to 1 if its expression into
parenthesis is true, and 0 otherwise.

Intuitively, the idea in relation (2) is to count the number
of pointsx(t′) in a hyper sphere centred inx(t) with radius
r. The limit whenn tends to∞ is taken in relation (3), i.e.
the definition is given for an infinite number of data (in the
series). Then, the ratio between the log of this number of
points and the corresponding radius is observed, as the radius
tends to zero. In other words ones tries to count the number
of data that are at a distance of at mostr one from another,
given an infinite number of data, while considering smaller and
smaller values forr. In practice of course, we do not have an
infinite number of data at our disposal. Therefore the left and
right parts of theln(Cm(r)) againstln(r) diagram will not
be reliable, so that the most informative slopes between those
extremes in the diagram have to be identified.

Figure 1 shows the results obtained with the 4900 known
values of the CATS time series. With respect to Grassberger-
Proccacia’s procedure described above, the data are now the
p-dimensional regressors defined in (1). As mentioned in [12]
the correlation dimension is given by the slope in the linear
part of the curves. When the size of the data space (sizep
of the regressor) increases, it will reach the dimension where
it is effectively possible to compute the correlation dimension
(obviously, working in a too low dimensional space does not
allow to estimate a large dimension!). As this dimension is
unknown, the experience must be carried out for increasing
dimensions of the data space; when the required level is
reached and above, the estimated correlation dimensions will
remain identical (i.e. the curves will be parallel).

Figure 1 shows a plot ofln(Cm(r)) against ln(r) for
increasing dimensions of the data space (i.e. increasing sizes

p of the regressors). The expected saturation effect explained
in [12] is clear for values ofln(r) between 5 and 8; the
correlation dimension seems to be around 1.

Another representation of the correlation dimension can be
given in plotting the estimation of the correlation dimension
as in Figure 2. A flat region can be seen aroundln(r) = 6 to
7 where the correlation dimension is again approximately one.
In conclusion, according to Taken’s theorem, any regressorfor
the CATS time series should be at most of size 3.
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Fig. 1. Estimation of the correlation dimension using the Grassberger-
Procaccia procedure, log of the correlation integralCm(r) against the log
of the hyper-sphere radiusr.
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Fig. 2. Correlation dimension obtained for various values of the hyper sphere
radiusr (in log scale).

Note that this correlation dimension estimation is only a
preliminary rough calculation, in order to get a first insight
on the series. Indeed, because of the high correlation be-
tween successive values in the series (or in other words its
’smoothness’), it may happen that the correlation dimension
estimation just catches this correlation, and not the dynamics
of the series. On Figure 1, this could be seen in the form
of two saturation effects in the slopes, as detailed above: one
when the correlation between successive values is catch, the
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other one when the true dimensionality is. According to the
very low value (one) found for the correlation dimension in
the CATS series, this risk doesn’t have to be underestimated.
Nevertheless, as no other reasonable value can be found, we
will consider in the following that the value found for the
correlation dimension is reliable, and a regressor of size 3
will thus be used.

The problem of a time series with a very low correlation
dimension is that each value only depends of the few preceding
ones. Any model built according to the above principles is
therefore restricted to a very limited amount of information,
and the prediction becomes hard and unstable. This is for
example the case in financial time series prediction: the high
sampling frequency of financial indexes makes them extremely
smooth at short term. In such context, one usually model
pre-processed series instead of the original ones; the pre-
processing can consist in differences, returns, etc. Because
of the similarities between the correlation dimension results
on such financial series and on the CATS one, the same
kind of pre-processing is developed here. In addition to the
original series, two pre-processed ones will be used in the
experiments: the series obtained by differences and by returns.
The difference time series is obtained as:

xd(t) = x(t + 1) − x(t), (4)

while the return time series is computed as:

xr(t) =
x(t + 1) − x(t)

x(t)
. (5)

The correlation dimension of these two new time series
can also be computed, using the same Grassberger-Procaccia
procedure. It must be mentioned that the results obtained in
these cases are not conclusive (no visible saturating slopein
the ln(Cm(r)) againstln(r) diagrams). The results found on
the original series will thus be kept as a rough estimation.

III. T HE DOUBLE QUANTIZATION FORECASTING METHOD

A. Self-organizing Maps

The Self-Organizing Map (SOM) is an unsupervised clas-
sification algorithm introduced in the 80’s by Teuvo Kohonen
[2]. Since its first description, Self-Organizing Maps havebeen
applied in many different fields to solve various problems.
Their theoretical properties are well established [3], [4].

In a few words, a SOM map has a fixed number of units
quantifying the data space. Those units, also called proto-
types or centroids, are linked by predefined neighbourhood
relationships that can be represented graphically througha 1-
or 2-dimensional grid. After learning, the grid of prototypes
has two properties. First, it defines a vector quantization of
the input space, as any other vector quantization algorithm.
Secondly, because the grid relationships are used in the learn-
ing algorithm itself, the grid representation has a topological
property: two close inputs will be projected on either the
same or close prototypes in the grid. The Kohonen map
can thus be seen as an unfolding procedure, or a nonlinear
projection from the data space on a 1- or 2-dimensional

grid. The prototypes in a Kohonen map can also be seen as
representatives of their associated class (the set of data nearer
from a specific prototype than from any other one), turning the
algorithm into a classification (or at least a clustering) tool.
One of the main features of Kohonen maps is their ability to
easily project data in a 2-dimensional representation, allowing
intuitive interpretations.

B. The double vector quantization method (DVQ)

Though the SOM are usually considered as a classification,
feature extraction or recognition tool, there exist a few works
where SOM are used in time series prediction problems, as [5],
[6], [7], [8], [9], [10]. In most of these situations however, the
goal is to reach a reliable one step ahead prediction. In this
work we are specifically looking for longer-term ones, and
more precisely to 20 steps ahead prediction in the context of
the CATS Competition.

A complete description of the DVQ method is given in [1],
together with a full proof of the method stability for long-term
predictions. A brief description of the method will be given
here in the simple case of a scalar time series prediction. Full
details for the vector case can be found in [1].

The goal of the method is to extract long-term information
or trends of a time series. The method is based on the SOM
algorithm used tocharacterize (or learn) the past of the series.
Afterwards aforecasting step allows to predict future values.

1) Characterization: According to the formulation of a
nonlinear auto-regressive model (1), the method uses regres-
sors of past values to predict the future evolution of a time
series. Having at disposal a scalar time series ofn values, the
correlation dimensionDc is evaluated, leading to the choice
of p-dimensional regressors. Then known values of the time
series are then transformed intop-dimensional regressors:

xt = {x(t − p + 1), . . . , x(t − 1), x(t)}, (6)

wherep ≤ t ≤ n, andx(t) is the original time series at our
disposal. As one may expectn − p + 1 such regressors are
obtained from the original time series.

The original regressorsxt are then manipulated such that
other regressors are created, according to:

yt = xt+1 − xt. (7)

The yt vectors are called thedeformation regressors, or the
deformations in short. By definition each deformationyt

is associated to a single regressorxt. Of course,n − p
deformations are obtained from a time series ofn values.

At this stage of the method there exist two sets of regressors.
The first one contains thext regressors and is representative of
the original space (of regressors). The space containing the yt

deformations is representative of the deformation space. Those
two sets of vectors, of the same dimensionp, will be the data
manipulated by the SOM maps.

Applying the SOM algorithm to each one of these two sets
results in two sets of prototypes, denoted respectivelyx̄i, with
1 ≤ i ≤ n1, and ȳj, with 1 ≤ j ≤ n2. The classes associated
to those prototypes are denoted respectivelyci andc′j .
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Characterizing the two time series through the quantization
of the regressors and deformations is a static-only process.
The dynamics of the past evolution of the series has to be
modelled too. In fact, this is possible because the dynamics
is implicitly recorded in the deformations. The issue is thus
to build a representation of the existing relations betweenthe
original regressors and the deformations. For this purpose, a
matrix f(ij) is defined according to:

fij =
#{xt ∈ ci and yt ∈ c′j}

#{xt ∈ ci}
, (8)

with 1 ≤ i ≤ n1, 1 ≤ j ≤ n2. Intuitively the probability of
having a certain deformationj associated to a given regressori
is approximated by the empirical frequencies (8) measured on
the data at disposal. Each row of thef(ij) matrix (1 ≤ j ≤ n2)
in (8) is in fact the conditional probability thatyt belongs to
c′j given the fact thatxt belongs toci. Of course, elements
fij (1 ≤ j ≤ n2) sum to one for eachi.

2) Forecasting: Now that the past evolution of the time
series has been modelled, predictions can be performed. Letus
define the last known valuex(t) at timet, with corresponding
regressorxt. The prototypex̄k closest toxt in the original
space is searched. According to the conditional probability
distribution defined by rowk, a deformation prototypēyl is
then chosen randomly among thēyj , according to thefkj

probability law. The prediction for instantt + 1 is finally
obtained according to relation (7):

x̂t+1 = xt + ȳl, (9)

wherex̂t+1 is the estimate ofxt+1 given by the model. In fact
x̂t+1 is ap-dimensional vector, and only one of its components
corresponds to a prediction̂x(t+1) at timet+1; this value is
thus extracted from thêxt+1 vector and taken as the prediction.

Once a one step ahead prediction (horizonh = 1) is
computed, the whole procedure can be repeated to obtain
predictions for higher values ofh. In practice, prediction
x̂(t + 1) is used to computêxt+2 through its corresponding
regressor̂xt+1. x̂(t+2) is then extracted from̂xt+2, and so on
up to horizonh. This recursive procedure is the standard way
to obtain long-term forecasts from a one step ahead method.
The whole procedure up to horizonh is called asimulation.

3) Comments: The goal of the DVQ method is to provide
insights over the possible long-term evolution of a series,and
not necessarily a single accurate prediction. The long-term
(horizonh) simulations are then repeated using a Monte-Carlo
procedure. The simulations distribution can be observed, and
statistical information such as variance, confidence intervals,
etc can be determined too. The obtained long-term predictions
have been proven to be stable [1].

Another important comment is that the method can easily
be generalized to the prediction of vectors. With respect to
the procedure described in the previous subsection, the only
difference is that deformations (7) must be computed by
differences ofd-spaced values:

yt = xt+d − xt, (10)

a direct generalization of thed = 1 case in (7). Then,d scalar
values have to be extracted from thex̂t+d vector, and so on.
For example, two values could be extracted (corresponding to
x̂(t + 1) and x̂(t + 2)). In this case, repeating the procedure
means to inject̂x(t + 1) and x̂(t + 2) to predictx̂(t + 3) and
x̂(t + 4). More details about the vector case can be found in
[1].

A third comment concerns the numbersn1 andn2 of pro-
totypes respectively in the regressor and deformation spaces.
The major concern is that different values ofn1 (n2) lead to
different segmentations of the regressor and the deformation
spaces which in turn lead to different models of the time series.
Many possibilities can therefore be considered for constants
n1 and n2 and only an optimal one, in terms of model
adequateness with regards to the time series, should be kept.

Finally, since the only property of the SOM used here is
the vector quantization, any other vector quantization method
could have been chosen to implement the above procedure.
The SOM maps have been chosen since they seem more
efficient and faster compared to other VQ methods despite a
limited complexity [14]. Furthermore, they provide an intuitive
and helpful graphical representation. Note that in practice any
kind of SOM map could be used, but that one-dimensional
maps, or strings, are preferred here.

IV. M ETHODOLOGICAL ASPECTS OF THE DOUBLE

QUANTIZATION FOR THE CATS DATA SET

As mentioned in section III-B the goal of the DVQ method
is to provide insights over the possible long-term evolution
of a series, and not necessarily a single accurate prediction.
In this section the methodology for the experiments will be
described having in mind that the method has now to predict
accurate values.

A. Scalar and vector predictions

From section II we know that regressorxt for nonlinear
models should contains at most 3 past values:

xt = {x(t − 2), x(t − 1), x(t)}. (11)

As this expression has the same form as relation (6), it allows
a direct application of the DVQ method on those regressors
to predictx(t + 1). This direct application of the method is
an illustration of the scalar prediction with the DVQ method.

Now it should be explained how the method can predict
vectors in the particular case of the CATS data set. The
natural approach is thus to consider that each value should
be predicted using its last 3 past values. As a consequence if
one wants to predict, for example, a vector ofd = 2 values,
namely{x̂(t + 1), x̂(t + 2)}, the following regressors should
be used:

{x(t − 2), x(t − 1), x(t)} to predictx̂(t + 1), (12)

{x(t − 1), x(t), x(t + 1)} to predictx̂(t + 2). (13)

In order to make possible the use of a vector prediction method
as DVQ, it is suggested to merge the two regressors and use:

{x(t − 2), x(t − 1), x(t), x(t + 1)} (14)
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to predict{x̂(t + 1), x̂(t + 2)}. Of course this is impossible
asx(t + 1) is unknown at timet. Using the vector prediction
property of DVQ, the size (four) of regressor (14) will be kept,
but the last four known values will be used:

{x(t − 3), x(t − 2), x(t − 1), x(t)} (15)

instead of (14) to predict{x̂(t+1), x̂(t+2)} as a single vector.
All these operations can be performed easily using the DVQ
method. Indeed it only suffices to computeyt according to:

yt = xt+d − xt

= {x(t − 1), x(t), x(t + 1), x(t + 2)}
−{x(t − 3), x(t − 2), x(t − 1), x(t)}.

(16)

The above description illustrates thed = 2 case; vectors of
predictions of sized > 2 can of course be considered too. Of
course, as the series is known until timet only, equation (16)
is only appliedt − d times.

To summarize, the DVQ method is directly applicable in
the scalar case. Some care must be taken in the vector case: if
vectors ofd values have to be predicted then the corresponding
regressors have to be merged into a single vector. Only then,
the DVQ method in vector case can be applied.

B. 20 step ahead prediction strategies

As the DVQ method can be applied in the vector case
the influence of the prediction time horizon in the particular
case of the CATS data set can be observed. At least two
alternatives can be depicted: therecursive strategy and the
bloc strategy. The first one is the usual strategy that allows to
predict recursively the values until the final horizonh, using
the last prediction̂x(t+k) to predict the next onêx(t+k+1).
The second one allows to predict all theh future values in
one single vector. A mixed approach would be arecursive-
bloc strategy, where blocs of intermediate sized are predicted
through a limited recursive procedure ofh/d steps (whereh
is supposed to be a multiple ofd for simplicity).

C. Number of prototypes

As mentioned in section III-B, numbersn1 and n2 of
prototypes in respectively the regressor and the deformation
spaces have to be fixed. A cross-validation procedure is
therefore used. This cross-validation procedure mimics the
competition problem. Fifteen new holes of length 20 are
created randomly in the available data. As the true values
are known for those 300 new missing values they can serve
as validation set for models learned on the remaining values.
Twenty such validation sets are constructed to avoid any bias
that could appear due to the random choice of the validation
data.

To compare the different models that will be learned on the
various learning sets a mean square errorMSE validation
criterion is used. This criterion is comparable to the one
proposed in the CATS competition and is defined as:

MSE =

∑

yt∈V S

(yt − ŷt)
2

#V S
, (17)

where V S represents a validation set of 300 new missing
values. The best model will be the one which has the lowest
averageMSE over the 20 validations sets.

D. Final predictions

Once the optimaln1 and n2 numbers are found, a new
learning stage is done using now all the available data (i.e.
combining the previous learning and validation sets). To avoid
problems due to the random initialisation of the prototypes,
several learnings are performed, and the best one is selected
according to the validation sets, even if using the latter may
led to a small amount of overfitting. Simulations at horizon
h = 21 are then repeated 100 times, and the mean is computed.

To refine this first result, a specific heuristic is developed by
reversing the time series. Indeed, for the four blocks of length
20 inside the series, the prediction can be performed from right
to left (decreasing values of time). For those four blocks, the
CATS Competition is a missing value problem rather than a
forecasting one. Again, simulations at horizonh = 21 are
repeated 100 times, and the mean value is taken.

The final predictions are derived from the two sets of
simulations. For the first four blocks of 20 missing values,
predicting up to horizonh = 21 (instead ofh = 20) makes it
possible to compare the 21st value to the true (known) one. As
some error in long-term trend of the prediction is unavoidable,
this error can be compensated at first order through a linear
correction of the simulations making the 21st value equal to
the true one. This is done both for the original and reverse
order simulations. Finally, the mean of the two sets of linearly
corrected values, in original and reverse order, is taken. This
constitutes the final prediction.

V. EXPERIMENTAL RESULTS

According to the ’financial-like’ behaviour of the CATS
time series, as discussed in section 2, three time series are
considered in all our experiments: the initial CATS, the differ-
ences and the returns time series. Furthermore, this ’financial-
like’ behaviour already suggests that a recursive strategymay
behave poorly for a time horizon of 20 values. Consequently,
in addition to the recursive strategy, where predictions are
repeated 20 times, a bloc strategy is used, with blocs of size
2, 5, 10 and 20. The time horizon of 20 values therefore
correspond to predict 10 blocs of sized = 2, 4 blocs of size
d = 5, etc.

For each one of the three studied time series, for each one
of the considered bloc size, a cross-validation using the 20
validation sets has been performed. For comparison purposes
the new missing values in the 20 validation sets are the same
for each experiment (i.e. each time series and each bloc size).
Models with n1 and n2 both ranging from 5 to 100 by
incremental step of 5 are learned in each experiment. The
MSE criterion (17) has been used to estimate the models
generalization ability on the validation sets.

Table I gives a summary of the experiments. For each time
series, for each bloc size,n1 and n2 corresponding to the
best model in average are given, together with its average
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MSE. For the differences and returns series theMSE is of
course computed by coming back to the original values (the
inverse transformations are applied on the predictions before
computing theMSE on the validation sets).

Time series # step(s) ahead n1 n2 MSE
Initial 1 90 5 1.66 103

2 50 5 1.32 103

5 25 5 1.36 103

10 20 15 1.70 104

20 65 10 2.98 104

Differences 1 25 5 2.59 103

2 90 5 1.90 103

5 80 5 1.86 104

10 55 5 4.67 104

20 55 60 7.43 104

Returns 1 10 5 3.39 105

2 5 5 2.04 105

5 55 5 1.83 105

10 15 95 2.67 1010

20 45 55 4.01 1010

TABLE I

EXPERIMENTS SUMMARY: n1 AND n2 FOR THE BEST MODEL IN AVERAGE

OVER THE 20 CROSS-VALIDATIONS AND CORRESPONDINGMSE.

From this table it seems clear that a model learned on
the initial time series is adequate. This rather surprisingfact
could be explained as follows. The deformations computed
according to relation (7) are in fact the differences time series.
Thanks to its definition this method thus allows in one single
computation to model both the initial time series and the
differences time series. None of the two pre-processing used
here has proved to be relevant in this particular case of the
CATS data set.

Furthermore it is obvious that there exists a compromise
between the 20 repetitions of a one step ahead prediction
(recursive strategy) and a single prediction of a vector con-
taining the 20 next values (bloc strategy). This compromise
seems to be somewhere between 10 predictions of blocs of
2 values and 4 predictions of blocs of 5 values. Nowadays
the MSE criterion is the lowest for blocs of sized = 2.
The corresponding model, with 50 prototypes in the regressors
space and 5 in the deformations space, is selected to give
the final prediction of the 100 missing values of the CATS
Competition according to the heuristic described in section
IV-D.

VI. CONCLUSION

In this paper the double vector quantization method, based
on the SOM maps, has been applied to the CATS data set.

An analysis of the data shows some interesting aspects of
the time series. Its correlation dimension seems to be as low
as one. To take into account this particular aspect potentially
limiting for nonlinear models other time series have been
defined, i.e. the differences and the returns of the initial CATS
series.

These three time series have been modelled using various
size for blocs of predictions corresponding to longer-time
horizons, in order to take the most of the vector prediction
ability of the double vector quantization method.

The number of units in the SOM maps has been discussed
and selected using a cross-validation procedure on new holes
created randomly on the CATS data set. This procedure,
together with the chosen validation criterion, has been im-
plemented to select the best model in average in conditions as
close as possible to the Competition ones.

An heuristic specifically designed in the CATS Competition
context is also described.
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