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Abstract— The double vector quantization forecasting method or feature extraction tasks, but more scarcely in time serie
based. on Kohonen self-organizing maps is applied to predict prediction despite a few previous attempts [5], [6], [7]],[8
the missing values of the CATS Competition data set. As one [9], [10]. The DVQ method has been recently proved to be

of the features of the method is the ability to predict vectos table for | ¢ fi . dicti 1. ¢ dari
instead of scalar values in a single step, the compromise baten stable for long-term time series prediction [1]. Considgri

the size of the vector prediction and the number of repetitins that 20 values is a longer-term horizon than the usual ore ste
needed to reach the required prediction horizon is studiedThe ahead prediction framework, the method will be used here to

long-term stability of the double vector quantization method forecast the missing values of the CATS data set.
makes it possible to obtain reliable values on a rather longerm The DVQ method is also able to predict vectors of values
forecasting horizon. . s
instead of scalar ones: in the temporal context, vectorsamea

to predict several forecasts in a single operation, rathan t
repeating scalar forecasts and using predictions to préukc

Time series forecasting can be defined as the problemmfxt values. The size of the prediction vectors is a paramete
determining in advance the future values of a given timsf the method. In the CATS competition context where 20
series. This problem is of major interest in many fields ag, e.consecutive values have to be predicted, we have the choice
finance (forecasting returns or stock markets), hydrol@gg-( to predict a vector of 20 values, to repeat 20 times a scalar
dicting river floods), engineering (estimating future élieal forecast (in this case using the prediction at each stepeiiqir
consumption) or even in management (anticipating work)loadhe next one), or any intermediate situation (4 times a vecto
Many methods have been developed to solve this problem wihs values, etc.).
very different approaches, from statistics to system ifieat In the following of this paper, we first present an analysis
tion and more recently neural networks. All these method$ the CATS data set, the conclusions of this analysis ggidin
are usually classified in some general categories: (N)AR(¥he experiments. In section Il we briefly recall some basic
(N)ARMA(X), FIR, BJ, etc. Whatever the original problemconcepts about the SOM maps and then present the forecast-
and the used method may be, the methodological approacing method for the scalar case (for the sake of simplicity).
always the same: Given a time series data set, one triesSection IV is devoted to the description of the experimental
find a suited model of this series. This model is then used figethodology and section V presents the obtained results. A
forecast the future evolution of the series. In this papeA®N discussion will conclude this paper.
type model will be used, i.e. a non-liner (N) auto-regressiv
(AR) model, based on Kohonen maps. The X part is omitted
since no exogenous information will be used. As mentioned in the introduction, the model implemented

The CATS Competition Data Set is a time series predictidly the DVQ method is a NAR model. An important question
problem. The goal of this competition is to be able to predié® answer is the choice of the AR part, i.e. the size of the
100 values corresponding to five holes of twenty values fegressor. More formally, having at our disposal a timeeseri
the series, the fifth one being at the end. As each holedbz(t) values withl < ¢ < n, the prediction problem can be
preceded by 980 known values one approach to solve hefined as follows :
competition problem would be to fit five models, each on _
being specifically designed to predict the next twenty vs;xluee[ac(tJr D,z +d] = f@(t),...2(t=p+1),0)+e, (1)
In this paper however, a global model able to predict the 1@hered is the size of the vector of values to be predictgd,
missing values will be presented. is the model of the data generating processs the number

The model used here is derived from the double vectof past values to considet,are the model parameters and
guantization method (DVQ) [1]. This method is based ois the noise. The past values are gathered jadimensional
the use of two Kokonen’'s self-organizing maps (SOM) [2}ector calledregressor. Both p and d must be chosen. As
in parallel. The SOM is a tool usually used in classificatiomentioned aboved will result from a compromise between

|. INTRODUCTION

II. ANALYSIS OF THE CATS DATA SET
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scalar predictions with repetitions and a larger vectorabfies p of the regressors). The expected saturation effect exgdain
to predict as a whole; in practice the choice &fwill be in [12] is clear for values ofin(r) between 5 and 8; the
determined by extensive simulations. correlation dimension seems to be around 1.

Concerning the sizp of the regressor, it is possible to have Another representation of the correlation dimension can be
insights about a plausible value (or range of values) by @iven in plotting the estimation of the correlation dimeamsi
in-depth examination of the series. In this paper, the seams in Figure 2. A flat region can be seen arodn) = 6 to
for the regressor sizp is based on Grassberger-Proccacia where the correlation dimension is again approximates/ on
[11] correlation dimension; the procedure is for exampleln conclusion, according to Taken’s theorem, any regrefesor

summarized in [12]. the CATS time series should be at most of size 3.
Grassberger-Proccacia’s procedure allows to estimate the
correlation dimensiotD, [11] of a time series. Then, accord- o—orretation dimension for CATS me series Lo08 points)
B . , :

ing to Takens theorem [13], a regressor of gize 2« D.+ 1 amension 1
will describe the data in an embedding space containing i .
enough information to allow a correct modeling of the series 2|

In short, the Grassberger-Procaccia procedure compuges th
correlation dimensiorD, according to:

g 4 dimension 20
. n(Cm(r)) 5
De =1 —n(r) @)
whereC,,,(r) is the correlation integral [11] defined as: p
. 2 7
Con(r) = lim. n(n =1) > I(lx(t) — @)l < 7). | | |
1<t<t’'<n 3 4 5 6 7 5 9
(3) In(r)
Function(.) takes a value equal to 1 if its expression into o _ ' _ _
parenthesis is true, and 0 otherwise. Fig. 1. Estimation of the correlation dimension using theas3berger-

. . . . . Procaccia procedure, log of the correlation integral, (r) against the log
Intuitively, the idea in relation (2) is to count the numbegs the hyper-sphere radius r)

of pointsz(¢') in a hyper sphere centred ir(¢t) with radius
r. The limit whenn tends toco is taken in relation (3), i.e.
the definition is given for an infinite number of data (in the Correlation dimension for CATS time series (4900 points)
series). Then, the ratio between the log of this number of ‘ ‘ ‘ ‘ ‘
points and the corresponding radius is observed, as thaesradi
tends to zero. In other words ones tries to count the number
of data that are at a distance of at mosbne from another,
given an infinite number of data, while considering smalfet a
smaller values for. In practice of course, we do not have an
infinite number of data at our disposal. Therefore the left an
right parts of theln(C,,(r)) againstin(r) diagram will not

c

Correlation dimension D
>

be reliable, so that the most informative slopes betweesetho al
extremes in the diagram have to be identified. oL
Figure 1 shows the results obtained with the 4900 known A

values of the CATS time series. With respect to Grassberger-
Proccacia’s procedure described above, the data are now the
p-dimensional regressors defined in (1). As mentioned in [12]
the correlation dimension is given by the slope in the linegfg. 2. correlation dimension obtained for various valukthe hyper sphere
part of the curves. When the size of the data space (sizeadiusr (in log scale).
of the regressor) increases, it will reach the dimensionrethe
it is effectively possible to compute the correlation dirsien Note that this correlation dimension estimation is only a
(obviously, working in a too low dimensional space does n@teliminary rough calculation, in order to get a first indigh
allow to estimate a large dimension!). As this dimension sn the series. Indeed, because of the high correlation be-
unknown, the experience must be carried out for increasitgeen successive values in the series (or in other words its
dimensions of the data space; when the required level'ssnoothness’), it may happen that the correlation dimensio
reached and above, the estimated correlation dimensidhs wstimation just catches this correlation, and not the dycam
remain identical (i.e. the curves will be parallel). of the series. On Figure 1, this could be seen in the form
Figure 1 shows a plot ofn(C,,(r)) againstin(r) for of two saturation effects in the slopes, as detailed above: o
increasing dimensions of the data space (i.e. increasi&s siwhen the correlation between successive values is cateh, th
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other one when the true dimensionality is. According to thgrid. The prototypes in a Kohonen map can also be seen as
very low value (one) found for the correlation dimension imepresentatives of their associated class (the set of @aiieen
the CATS series, this risk doesn’t have to be underestimatémbm a specific prototype than from any other one), turnirgg th
Nevertheless, as no other reasonable value can be found,algorithm into a classification (or at least a clustering)lto
will consider in the following that the value found for theOne of the main features of Kohonen maps is their ability to
correlation dimension is reliable, and a regressor of sizeeasily project data in a 2-dimensional representatioowdtig
will thus be used. intuitive interpretations.

The problem of a time series with a very low correlatio o
dimens?on is that each value only depends o?the few preged%‘ The double vector quantization method (DVQ)
ones. Any model built according to the above principles is Though the SOM are usually considered as a classification,
therefore restricted to a very limited amount of informatio feature extraction or recognition tool, there exist a fewkso
and the prediction becomes hard and unstable. This is f#$pere SOM are used in time series prediction problems, as [5]
example the case in financial time series prediction: thé hifpl. [7], [8], [9], [10]. In most of these situations howeyéne
Samp”ng frequency of financial indexes makes them extrﬁmgoal is to reach a reliable one Step ahead prediCtion. In this
smooth at short term. In such context, one usually mod&prk we are specifically looking for longer-term ones, and
pre-processed series instead of the original ones; the phare precisely to 20 steps ahead prediction in the context of
processing can consist in differences, returns, etc. Becathe CATS Competition.
of the similarities between the correlation dimension itssu A complete description of the DVQ method is given in [1],
on such financial series and on the CATS one, the Samether with a full prOOf of the method Stablllty for IOngFtn
kind of pre-processing is deve|oped here. In addition to thjediCtions. A brief description of the method will be given
0|’igina| series, two pre-processed ones will be used in thére in the Simple case of a scalar time series pred|Ct|dh Fu
experiments: the series obtained by differences and bynetu details for the vector case can be found in [1].

The difference time series is obtained as: The goal of the method is to extract |0ng'term information
or trends of a time series. The method is based on the SOM
zq(t) = x(t + 1) — z(t), (4)  algorithm used teharacterize (or learn) the past of the series.
while the return time series is computed as: Afterwards afo_rece_lsting step aI_Iows to predict futur_e values.
1) Characterization: According to the formulation of a
() = z(t+1)— x(t). (5) nonlinear auto-regressive model (1), the method uses egre
z() sors of past values to predict the future evolution of a time

The correlation dimension of these two new time seriggries. Having at disposal a scalar time series wélues, the
can also be computed, using the same Grassberger-Procae@igglation dimensiorD.. is evaluated, leading to the choice
procedure. It must be mentioned that the results obtaineddhp-dimensional regressors. Theknown values of the time
these cases are not conclusive (no visible saturating stopeseries are then transformed intedimensional regressors:
theln(Qm(r)) qgain;dn(r) diagrams). The results f_oun_d on pe = {axlt—p+1),... 2t — 1), (), ©)
the original series will thus be kept as a rough estimation.

wherep < t < n, andz(t) is the original time series at our

Ill. THE DOUBLE QUANTIZATION FORECASTING METHOD disposal. As one may expest— p + 1 such regressors are
A. Self-organizing Maps obtained from the original time series.

The Self-Organizing Map (SOM) is an unsupervised clas- The original regressors; are then manipulated such that
sification algorithm introduced in the 80’s by Teuvo Kohonefther regressors are created, according to:
[2]. Since its first description, Self-Organizing Maps haeen .

. . . . . Yt = Tg41 — L. (7)

applied in many different fields to solve various problems.
Their theoretical properties are well established [3], [4] The y; vectors are called thdeformation regressors, or the

In a few words, a SOM map has a fixed number of unideformations in short. By definition each deformatiop,
qguantifying the data space. Those units, also called proie- associated to a single regressar. Of course,n — p
types or centroids, are linked by predefined neighbourhoddformations are obtained from a time series:ofalues.
relationships that can be represented graphically threuggh At this stage of the method there exist two sets of regressors
or 2-dimensional grid. After learning, the grid of protogg The first one contains the, regressors and is representative of
has two properties. First, it defines a vector quantizatibn the original space (of regressors). The space containimg;th
the input space, as any other vector quantization algorithdeformations is representative of the deformation spalces&
Secondly, because the grid relationships are used in the-ledawo sets of vectors, of the same dimensjgrwill be the data
ing algorithm itself, the grid representation has a topmlaly manipulated by the SOM maps.
property: two close inputs will be projected on either the Applying the SOM algorithm to each one of these two sets
same or close prototypes in the grid. The Kohonen maesults in two sets of prototypes, denoted respectiwglyvith
can thus be seen as an unfolding procedure, or a nonlingéat i < n;, andy;, with 1 < j < n,. The classes associated
projection from the data space on a 1- or 2-dimension those prototypes are denoted respectivelgnd c;.
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Characterizing the two time series through the quantimatia direct generalization of thé = 1 case in (7). Thend scalar
of the regressors and deformations is a static-only procegalues have to be extracted from thg , vector, and so on.
The dynamics of the past evolution of the series has to Ber example, two values could be extracted (corresponding t
modelled too. In fact, this is possible because the dynamieg + 1) and Z(¢ + 2)). In this case, repeating the procedure
is implicitly recorded in the deformations. The issue isshumeans to inject (¢ + 1) and (¢ + 2) to predictz (¢ + 3) and
to build a representation of the existing relations betwien (¢ + 4). More details about the vector case can be found in
original regressors and the deformations. For this purpase[l].
matrix f(ij) is defined according to: A third comment concerns the numbers andnsy of pro-

i , totypes respectively in the regressor and deformationespac
fij = #{ws € ¢i and y; € Cj}’ (8) The major concer is that different valuessof (n,) lead to
e € e} different segmentations of the regressor and the defoomati
with 1 < i < nq, 1 < j < no. Intuitively the probability of spaces which in turn lead to different models of the timeeseri
having a certain deformatighassociated to a given regressor Many possibilities can therefore be considered for constan
is approximated by the empirical frequencies (8) measured@: and n, and only an optimal one, in terms of model
the data at disposal. Each row of tfigj) matrix (1 < j < n,) adequateness with regards to the time series, should be kept
in (8) is in fact the conditional probability that belongs to  Finally, since the only property of the SOM used here is
¢ given the fact that:, belongs toc;. Of course, elements the vector quantization, any other vector quantizationhoet
fij (1 <4 < ny) sum to one for each could have been chosen to implement the above procedure.

2) Forecasting: Now that the past evolution of the timeThe SOM maps have been chosen since they seem more
series has been modelled, predictions can be performedsLegfficient and faster compared to other VQ methods despite a
define the last known valug(t) at timet, with corresponding limited complexity [14]. Furthermore, they provide an iititte
regressorz,. The prototypez; closest toz, in the original and helpful graphical representation. Note that in praciicy
space is searched. According to the conditional probgbilkind of SOM map could be used, but that one-dimensional
distribution defined by rowk, a deformation prototypg, is Maps, or strings, are preferred here.

then chosen randomly among the, according to thefy; IV. METHODOLOGICAL ASPECTS OF THE DOUBLE

prob_ability law. _The predigtion for instant + 1 is finally QUANTIZATION FOR THE CATS DATA SET
obtained according to relation (7):

As mentioned in section IlI-B the goal of the DVQ method
Tey1 = o + 1, (9) is to provide insights over the possible long-term evolutio

o . , of a series, and not necessarily a single accurate predlictio

wherez;, is the estimate of;, given by the model. In fact |, s section the methodology for the experiments will be

Z1+1 s ap-dimensional vector, and only one of its COmpPONent§egcribed having in mind that the method has now to predict
corresponds to a predictiat(t + 1) at timet +1; this value is  5-.urate values.

thus extracted from the,, ; vector and taken as the prediction. o

Once a one step ahead prediction (horizon= 1) is A Scalar and vector predictions
computed, the whole procedure can be repeated to obtaifrrom section Il we know that regressof for nonlinear
predictions for higher values of. In practice, prediction models should contains at most 3 past values:
Z(t + 1) is used to compute, 5 through its corresponding o
re(gress)ole. #(t+2) is then extracted front;, 5, and so on o= {a(t = 2),2(t = 1), 2(8)}- (11)
up to horizonk. This recursive procedure is the standard waks this expression has the same form as relation (6), it allow
to obtain long-term forecasts from a one step ahead methaddirect application of the DVQ method on those regressors
The whole procedure up to horizdnis called asimulation.  to predictz(¢ + 1). This direct application of the method is

3) Comments: The goal of the DVQ method is to providean illustration of the scalar prediction with the DVQ method
insights over the possible long-term evolution of a serdes] Now it should be explained how the method can predict
not necessarily a single accurate prediction. The longrtervectors in the particular case of the CATS data set. The
(horizonh) simulations are then repeated using a Monte-Canf@tural approach is thus to consider that each value should
procedure. The simulations distribution can be observed, abe predicted using its last 3 past values. As a consequence if
statistical information such as variance, confidence walsr one wants to predict, for example, a vectordof= 2 values,
etc can be determined too. The obtained long-term predisticnamely {Z (¢t + 1), Z(t 4+ 2)}, the following regressors should
have been proven to be stable [1]. be used:

Another important comment is that the method can easil A
be generalize% to the prediction of vectors. With respect t)(; {a(t =2),2(t = 1),x(t)} to predl-ctxA(t +1), (12)
the procedure described in the previous subsection, the onl  {Z(t —1),z(t),z(t + 1)} to predicti(t + 2). (13)
difference is that deformations (7) must be computed hi order to make possible the use of a vector prediction ntetho
differences ofd-spaced values: as DVQ, it is suggested to merge the two regressors and use:

Yt = Tiya — T, (10) {z(t =2),2(t = 1), 2(t), 2(t + 1)} (14)
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to predict{z(¢ + 1), Z(t + 2)}. Of course this is impossible where V'S’ represents a validation set of 300 new missing
asxz(t+ 1) is unknown at time. Using the vector prediction values. The best model will be the one which has the lowest
property of DVQ, the size (four) of regressor (14) will be kep averageM SE over the 20 validations sets.
but the last four known values will be used: ) o

D. Final predictions

{o(t =3),a(t - 2),a(t — 1), 2(t)} (15) Once the optimal:; and n, numbers are found, a new
instead of (14) to predidti(t+1), 2(t+2)} as a single vector. learning stage is done using now all the available data (i.e.
All these operations can be performed easily using the DV@mbining the previous learning and validation sets). Taichv
method. Indeed it only suffices to computeaccording to:  problems due to the random initialisation of the prototypes
several learnings are performed, and the best one is sglecte
(a(t — 1), 2(t), 2(t + 1), 2(t +2)} (16) islccording to the validation sets, even i_f using the Iattey_ ma
—{a(t = 3), 2t — 2), 2(t — 1), 2(1)}. ed to a small amount of ove_rflttmg. Simulations at horizon
h = 21 are then repeated 100 times, and the mean is computed.
The above description illustrates tde= 2 case; vectors of  To refine this first result, a specific heuristic is developgd b
predictions of sizel > 2 can of course be considered too. Ofeversing the time series. Indeed, for the four blocks ofifen
course, as the series is known until tienly, equation (16) 20 inside the series, the prediction can be performed frght ri
is only appliedt — d times. to left (decreasing values of time). For those four blocks, t

To summarize, the DVQ method is directly applicable iCATS Competition is a missing value problem rather than a
the scalar case. Some care must be taken in the vector casgjrécasting one. Again, simulations at horizan= 21 are

vectors ofd values have to be predicted then the correspondifgpeated 100 times, and the mean value is taken.

regressors have to be merged into a single vector. Only thenThe final predictions are derived from the two sets of
the DVQ method in vector case can be applied. simulations. For the first four blocks of 20 missing values,
B. 20 step ahead prediction strategies predi_cting up to horizorh = 21 (instead ofh = 20) makes it
SpeOSS|bIe to compare the 21st value to the true (known) one. As
some error in long-term trend of the prediction is unavoldab
mis error can be compensated at first order through a linear
¥Srrection of the simulations making the 21st value equal to
the true one. This is done both for the original and reverse
8rder simulations. Finally, the mean of the two sets of lihea
corrected values, in original and reverse order, is takdéiis T
constitutes the final prediction.

Yt = Ti4d — Tt

As the DVQ method can be applied in the vector ca
the influence of the prediction time horizon in the particul
case of the CATS data set can be observed. At least
alternatives can be depicted: thecursive strategy and the
bloc strategy. The first one is the usual strategy that allows t
predict recursively the values until the final horizbnusing
the last predictiort: (¢ + k) to predict the next ong(t+k+1).
The second one allows to predict all thefuture values in
one single vector. A mixed approach would beeaursive- V. EXPERIMENTAL RESULTS
bloc strategy, where blocs of intermediate sizare predicted
through a limited recursive procedure bfd steps (wheré:
is supposed to be a multiple dffor simplicity).

According to the ’financial-like’ behaviour of the CATS
time series, as discussed in section 2, three time series are
considered in all our experiments: the initial CATS, thdeafif
C. Number of prototypes ences and the returns time series. Furthermore, this 'fiaBnc

As mentioned in section IlI-B, numbers, and ny of like’ behaviour alread_y sugggsts that a recursive strategy
prototypes in respectively the regressor and the defoomatP€have poorly for a time horizon of 20 values. Consequently,
spaces have to be fixed. A cross-validation procedure 'fs addition to the recursive strategy, where predlctloms ar
therefore used. This cross-validation procedure mimies tfEPeated 20 times, a bloc strategy is used, with blocs of size
competition problem. Fifteen new holes of length 20 aré > 10 and 20. The time horizon of 20 values therefore
created randomly in the available data. As the true valug@rrespond to predict 10 blocs of size= 2, 4 blocs of size
are known for those 300 new missing values they can sefe 9, ete. o )
as validation set for models learned on the remaining valuesFOr €ach one of the three studied time series, for each one
Twenty such validation sets are constructed to avoid any bif the considered bloc size, a cross-validation using the 20
that could appear due to the random choice of the validatiflidation sets has been performed. For comparison puspose
data. the new missing values in the 20 validation sets are the same

To compare the different models that will be learned on tH@r €ach experiment (i.e. each time series and each blof. size
various learning sets a mean square ed6§E validation Models with n; and n, both ranging from 5 to 100 by
criterion is used. This criterion is comparable to the ori@cremental step of 5 are learned in each experiment. The

proposed in the CATS competition and is defined as: MSE criterion (17) has been used to estimate the models
generalization ability on the validation sets.
Z (ye — 9¢)* Table | gives a summary of the experiments. For each time
MSE = yi€VS series, for each bloc sizey; and ny corresponding to the

#VS ’ (17) best model in average are given, together with its average
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MSE. For the differences and returns series &' E is of

These three time series have been modelled using various

course computed by coming back to the original values (tiseze for blocs of predictions corresponding to longer-time
inverse transformations are applied on the predictionsrieef horizons, in order to take the most of the vector prediction
computing theM SE on the validation sets).

Time series| # step(s) ahead n1 | no MSE

Initial 1 90 | 5 | 1.66 10°
2 50 | 5 1.32 102
5 25| 5 1.36 102
10 20 | 15 | 1.70 10*
20 65 | 10 | 2.98 10*

Differences 1 25| 5 2.59 102
2 90 | 5 | 1.90 10°
5 80 | 5 | 1.86 10*
10 55| 5 4.67 10*
20 55 | 60 | 7.43 10*

Returns 1 10 | 5 3.39 10°
2 5 5 | 2.04 10°
5 55 | 5 1.83 10°
10 15 | 95 | 2.67 1010
20 45 | 55 | 4.01 1010

TABLE |

EXPERIMENTS SUMMARY. n1 AND na FOR THE BEST MODEL IN AVERAGE
OVER THE 20 CROSSVALIDATIONS AND CORRESPONDINGMSE.

ability of the double vector quantization method.

The number of units in the SOM maps has been discussed
and selected using a cross-validation procedure on nevs hole
created randomly on the CATS data set. This procedure,
together with the chosen validation criterion, has been im-
plemented to select the best model in average in conditiens a
close as possible to the Competition ones.

An heuristic specifically designed in the CATS Competition
context is also described.
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