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Radix-3 Algorithm for the Fast Computation
of Forward and Inverse MDCT

Huazhong Shu, Xudong Bao, Christine Toumoulin, and Limin Luo

Abstract—The modified discrete cosine transform (MDCT) and
the inverse MDCT (IMDCT) are two of the most computationally
intensive operations in layer III of MPEG audio coding standard.
In this letter, we present a radix-3 algorithm for efficiently com-
puting the MDCT and the corresponding IMDCT of a sequence
with length N = 2 x 3™. Comparison of the computational com-
plexity with some known algorithms shows that the proposed ap-
proach reduces significantly the number of arithmetic operations.

Index Terms—Modified discrete cosine transform (MDCT),
MPEG audio coding, radix-3 algorithm.

I. INTRODUCTION

HE MPEG audio coding standard uses the dynamically
windowed modified discrete cosine transform (MDCT) to
achieve high quality performance. However, the direct compu-
tation of the MDCT in MPEG coding and the inverse MDCT
(IMDCT) in MPEG decoding is a computationally intensive
task. Therefore, efficient algorithms are of great importance.
Since the introduction of MDCT by Princen et al. [1], many
fast algorithms have been reported in the literature for com-
puting the MDCT and IMDCT. Chiang and Liu [2] proposed
a recursive algorithm, which can be implemented by parallel
VLSI filters; this algorithm was further improved by Nikolajevic
and Fettweis [3]. Fan et al. [4] developed two algorithms based,
respectively, on type-II DCT and on the fast Hartley transform
for performing the IMDCT quickly. Britanak and Rao [5] devel-
oped an efficient implementation of MDCT and IMDCT based
on the N/4-point type-II DCT and corresponding NN/4-point
type-II DST. Lee [6] then suggested an improvement in the
computation speed of this algorithm. Recently, a systematic ap-
proach for investigating the MDCT and IMDCT, using a ma-
trix representation, has been presented by Cheng and Hsu [7].
Other recent works on this subject can be found in [8] and [9].
It is worth mentioning that the MDCT is equivalent to the mod-
ulated lapped transform introduced by Malvar [10].
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Some of the existing algorithms dealt with data sequences
whose length is a power of 2, but in layer III of MPEG-I and
MPEG-II, the length of the data blocks is N # 2™, so that the
data sequence must be zero-padded. Since the layer III speci-
fies two different MDCT block sizes: a long block (N = 36)
and a short block (N = 12), we present in this letter a radix-3
algorithm for efficiently computing the MDCT and IMDCT for
data sequences with length N = 2 x 3™, where m is a positive
integer. Such a strategy was recently adopted by Chan and Siu
[11] in the fast computation of type-II DCT.

II. DERIVATION OF THE MDCT ALGORITHM

Letting z(n), n = 0,1,2,..., N — 1, be an input data se-
quence, the MDCT of z(n) is defined as [1]

N-1
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Letting N = 2 x 3™, where m is a positive integer, we can
realize the following three formulations to obtain the MDCT
coefficients of z:(n) instead of computing (1) directly.

A. Computation of A(k) = X(3k + 1)
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For computation of A; (k), by making a change of variable n’ =
N/3 — 1 — n, we obtain
N/3-1

Z z(N/3 —=1—n)cos oy i (6)
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with ¢, ), = 2% (2n+ 1+ &) (2k + 1). Equation (6) shows
that A (k) is MDCT of a sequence with length N /3. Similarly,
we have
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Letting a,, = 2(n), b, = ¢(N/3+n),and ¢,, = 2(2N/3+n),
forn =0,1,...,N/3 — 1, (2) becomes
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Proceeding in a similar way as for A(k), we obtain
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C. Computation of C(k) = X (3k) — X (3k + 2)
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Fig. 1. Flowgraph of a 6-point MDCT.

thus

N/3-1
Ck) =(-1* ¥ [(2an+bn_cn)cos9n
n=0
+3(bn  +en) Sinen} cospp k. (13)

When B(k) and C(k) are computed, the values of X (3k) and
X (3k + 2) can be obtained by
X(3k) =5 [B(k) + C(k)]
k=0,1,...,N/6—1.

X3k +2) =5 [B(k) = C(k)]

N =N =

(14)
Since A(k), B(k), and C(k) are all the N/3-length MDCTs,
the above discussion shows that the coefficients X (k) can be ob-
tained from A(k), B(k),and C(k),k =0,1,...,N/6—1, with
N/3 additions. Hence, we can calculate an N -length MDCT via
the computation of three N/3-length MDCTs. Note that to ob-
tain the sequences (2¢/, — a/, +b’,) sin #,, —/3(a’, +-1,) cos b,
in (11) and (2a,, + by, — ¢p,) cos 0, + \/g(bn +¢,)sin b, in (13),
four multiplications are required for each n. However, when
n = (N/6 — 1)/2, we have 0,, = 7/6, cosf,, = /3/2,
sinf,, = 1/2. In this case, we can save three multiplications
and five additions. Fig. 1 shows the flowgraph of the realization
of 6-point MDCT.
The decomposition method described above is categorized
as “decimation in frequency.” Its computational complexity is
given in both recursive and nonrecursive forms as follows:

MyPCT =3MN BT +4N/3 -3
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TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED RADIX-3 ALGORITHM
AND THE FAST RADIX-2 ALGORITHM WITH ZERO-PADDING FOR THE
COMPUTATION OF MDCT OF LENGTH N = 2 x 3™

Britanak’s algorithm [5] Proposed method
N Mul Add Mul+Add Mul Add Mul+Add
2x3=6 8 24 32 5 15 20
2x9 =18 48 144 192 36 100 136
2x27 =54 112 336 448 177 475 652
2x81=162 576 1728 2304 744 1960 2704

In the recursive method proposed by Nikolajevic and Fettweis
[3], the computational complexity for computing an N-point
MDCT is

N
MMDCT _ (N +2), AMDCT _

g(2N+ 1. A7

Thus, our method appears more efficient than the recursive al-
gorithm. We also compare our algorithm with the fast radix-2 al-
gorithm presented in [5] for which the zero-padding is included.
Table I lists the arithmetic operations needed by the two ap-
proaches for N = 2 x 3" . It shows that these algorithms require
about the same computational complexity in terms of the total
number of arithmetic operations. However, for the radix-2 algo-
rithm based on DCT/DST, the input sequence needs to be rear-
ranged. Note that the proposed approach requires for N = 12,
28 multiplications and 52 additions, and for N = 36, 132 mul-
tiplications and 276 additions.

III. DERIVATION OF THE IMDCT ALGORITHM

The IMDCT is given by [1]

S e [ (2n 1+ X) )|

k=0
n=01,2,...,N —1.

z(n) =
(18)

To derive an efficient algorithm for fast computation of
IMDCT, we further suppose N is a multiple of 12, ie.,
N =4 x 3™

A. Computation of A'(n) = 2(3n + 1)
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Equation (20) shows that A/ (n) is the IMDCT of X (k) with
length N/6. For A}(n), we have
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Since N is a multiple of 12, we obtain
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Letting fr, = X (k), gr = X(N/6+k),and hy, = X(N/3+k),
fork =0,1,...,N/6 — 1, then we have
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B. Computation of B'(n) = z(3n) + z(3n + 2)
We have
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Proceeding with the computation of B’(n) in a similar way as
for A’(n), we obtain
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Since N is a multiple of 12,i.e., N = 12L, (29) becomes

(29)
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C'(n) = (=)™ 3 [VB (S +g0) costy
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Note that the assumption of NV being a multiple of 12 instead of a
multiple of 6 is only required in the computation of C’(n). Note
also that A’(n), B'(n), and C’(n) are all N/6-point IMDCTs.
Similarly to the previous section, we can obtain the sequence
Z(n) from A’(n), B'(n), and C’(n) with 2N/3 additions. The
computational complexity of the above method is given by

MEPCT 3 )IMPCT o /3
2
= §N10g3 N, for N=4x3™, m>1 (31)
ARIPCT _ 3 IMBCT |13y

13
= ENlog3 N, for N=4x3™, m>1. (32)

In the recursive method proposed by Nikolajevic and Fettweis
[3], the computational complexity for computing an N/2-point
IMDCT is

MRPPCT = N(N/24+1), AR™T = N(N 4+1). (33)

The above discussion shows that the proposed method is more
efficient than the recursive algorithm. Table II lists the com-
putational complexity of the proposed algorithm and the fast
radix-2 algorithm with zero-padding for computing the IMDCT.
It shows that in most cases, the proposed method needs fewer
arithmetic operations than the one required in the radix-2 algo-
rithm.

IV. CONCLUSIONS

In this letter, we present a new radix-3 algorithm for com-
puting the MDCT of a sequence with length 2 x 3™ and the
IMDCT for a sequence of length 4 x 3™. The computational

TABLE II
COMPUTATIONAL COMPLEXITY OF THE PROPOSED RADIX-3 ALGORITHM
AND THE FAST RADIX-2 ALGORITHM WITH ZERO-PADDING
FOR THE COMPUTATION OF IMDCT OF LENGTH N = 4 x 3™

Britanak’s algorithm [5] Proposed method
N Mul Add Mul+Add Mul Add Mul+Add
4x3 =12 20 42 62 20 42 62
4x9 =36 112 304 416 84 174 258
4x27 =108 256 704 960 324 756 1080
4x81=324 1280 3854 5134 1188 2970 4158

complexity of the new radix-3 algorithm is lower than some ex-
isting algorithms. Notice that the combination of the proposed
method with the existing algorithms provides more flexibility in
the choice of the sequence lengths for which the fast computa-
tion of MDCT and IMDCT can be easily realized.
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