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The Magnetic Field Diffusion Equation Including
Dynamic Hysteresis: A Linear Formulation
of the Problem

M. A. Raulet, B. Ducharne, J. P. Masson, and G. Bayada

Abstract—The introduction of accurate material modeling such
as hysteresis phenomenon in numerical field calculation leads to
numerical problems induced by the nonlinear properties of the ini-
tial system. We focus on the solution of the magnetic field diffusion
equation, which contains such problems. This paper presents a new
formulation of the diffusion equation including dynamic hysteresis.
The resulting formulation leads to a linear system to solve. A nu-
merical implementation of the problem and an experimental vali-
dation are also presented.

Index Terms—Diffusion equations, dynamics, hysteresis, linear
systems.

1. INTRODUCTION

EVERAL works are effected on the coupling of accurate

material laws with Maxwell’s equations. The integration
of a hysteretic model in a magnetostatic or magnetodynamic
problem needs the use of particular techniques such as the fixed-
point or the Newton—Raphson methods [1]-[3].

In our team, we focus on the magnetic field diffusion in the
cross section of a magnetic lamination.

We already implemented a hysteretic dynamic model in the
diffusion equation of the magnetic excitation field [4]. The reso-
lution of the whole diffusion model leads to accurate results, but
numerical problems of convergence appear in particular cases.

In this paper, we present how a new formulation of the diffu-
sion problem coupled to a hysteretic dynamic material law leads
to a linear system to be solved.

A numerical formulation of this problem is detailed in this
paper. The implementation must be modular, flexible, and must
necessitate low memory allocation and short calculation time.

Several simulation results and an experimental validation of
this new diffusion model are presented.

II. PROBLEM

A. Hypothesis

The diffusion equation is solved through a cross section sheet
of an Epstein frame. The design assumptions are those of the

Manuscript received July 1, 2003.

M. A. Raulet, B. Ducharne, and J. P. Masson are with CEGELY, C.N.R.S.
UPRESA 5005, Université Claude Bernard, 69622 Villeurbanne Cedex, France
(raulet@cegely.univ-lyon.fr).

G. Bayada is with MAPLY, C.N.R.S. UMR 5585, INSA de Lyon, 69621
Villeurbanne Cedex, France.

Digital Object Identifier 10.1109/TMAG.2004.824816

Fig. 1.

Lamination on study.

Epstein frame (Fig. 1): unidirectional and homogeneous surface
excitation field (according to the depth of the sheet). In addition,
we can consider the conductivity o of the magnetic sheet as
constant and homogeneous.

Taking into account the dimensions of the studied sheets
[width (wi) much more significant than the thickness (th)], a
one-dimensional (1-D) study according to the thickness of the
sheet is carried out [5]. Symmetry considerations lead to limit
the studied area to the half thickness (th/2) of the sheet. This
1-D study is especially effected in order to limit the number of
the variables of the problem. This simplification constitutes a
significant profit with the integration of a hysteresis model in
a field computation.

B. Dynamic Material Law

If a static reversible material law B(H ) is considered in the
diffusion equation, the resolution is easy but leads to inaccurate
results. In this case, the dynamic effects related to the wall mo-
tions and the hysteretic phenomenon are neglected.

In a previous work, we have shown that, considering in the
same manner the eddy-current effects and the wall motion ef-
fects, it is possible to describe the dynamical behavior of a mag-
netic flux tube (with constant cross section) using a state repre-
sentation with a static feedback [6]. This feedback represents the
static characteristic of the circuit. This model needs only one pa-
rameter, which is in low dependence of the magnetic excitation
conditions (waveforms, frequency, amplitude).

A lot of experiments have shown that the accuracy of
this representation is increased when wall motion effects are
preponderant.

As the distribution of magnetic domains is statistically dis-
tributed in all directions of polycrystalline material, we propose
to use the same representation to describe the dynamic effects
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due to the wall motions. In the purpose, we use the differential
equation

T = G~ Haw(B) M
where B represents the local magnetic field, and H is the local
magnetic resulting excitation field.

Hga1(B) is a fictitious value calculated from a static model
of material law. A static hysteretic model is integrated in (1).

Several static hysteretic models exist. For the first time, we
have chosen Preisach-Néel’s model.

The parameter [ is identified with only one dynamic B(H)
characteristic performed in any experimental conditions.

Specific works have shown that this 3 parameter can be
considered as independent of the geometry and of the studied
sample and of its excitation. A lot of experimental validations
have shown that this dynamic material law constitutes a good
description of dynamic effects due to Bloch’s wall motions [7].

This material law represents a statistical behavior of the wall
motions. It can then be considered as isotropic and characteristic
of the material.

A coupled resolution of dynamic material law and the mag-
netic field diffusion equation must be effected. The magnetic
diffusion equation (2) results from Maxwell’s equations and a
law, which describes the conductive property of the material

— - OB
t (rot H) = —o0——. 2
rot (rot H) o 2)
As the magnetic field is always perpendicular to the cross
section, div(H) = 0, so (2) becomes
0*H (y,t) dB(y, 1)
=0- . 3)
0y? ot

In a previous work, the temporal material law (1), indepen-
dent of excitation conditions, has been integrated in (3) using
the permeability © = B/H. The local permeability p(y, t) was
calculated from the resolution of (1).

A discretization of the second term of (3) led to

% =2 (uly.t) - H(y, 1)

E.
_ljf(y7t - dt) : H(y7t - dt)) @

The finite-element formulation of the problem leads to obtain
a nonlinear system.

The Newton—Raphson’s algorithm has solved this system.
The resolution gives accurate results but sometimes presents nu-
merical problems of convergence related to the nonlinearity [4].

III. NEW FORMULATION OF THE DIFFUSION PROBLEM
A. Principle

The idea of the new formulation comes from (1), which de-
fines the law of the material dynamic property. The dB/dt term
of (1) constitutes also a part of the second term of the diffusion
equation (3).

Dirichlet
\ / Hs

z
‘ : € J/ H1
X H2
PRt
Thickness/2

® H4

dH/dn=0

Fig. 2. One-dimensional problem.

It is natural to replace the dB/dt term of (3) by the second
member of (1), which gives a new formulation of the diffusion
equation

0?H (y,t) 1
'L =0 = [H(y,t) — Hyat(B(y, 1))]. 5
5 =7 5 .0~ Haw(Bu0)l )
This equation coupled with (1), which defines the dynamic
material law, does not reveal any more the term of permeability
1, which is responsible of the nonlinearity of the system to be
solved.

B. Reduction of the Nonlinearity Effect

Taking into account the simplicity of the study domain (half
thickness th/2 of the sheet illustrated on Fig. 2), a formulation
by finite difference method of the diffusion equation is carried
out.

The new system obtained is

[M] - [H] = [S1] + [S] (6)
where
"T +2 -1 0 0
2
-1 oe” 49 -1 0
[M] = s

0 -1 7+ 2 -1
0 0 2 € 49

6]

is the stiffness matrix. It contains only constant terms, so its
inversion is performed only once.

[H] is the vector of the unknown excitation fields at each node
of the mesh

Hsurf UE ) Hlstat(Bl)
7€’ H2...(B
[S1] = 8 1S5 = | 7, stat (B2)
0 B Hgstat(B3)
2
(TE ‘ H4stat(B4)

[S1] only depends on the excitation field Hg,,s on the surface
of the sheet and on the initial conditions.

[S2] is a term made up of values Ht(B1%), which come from
a static hysteretic model. The nonlinearity of the problem is in-
cluded in this term.

The solution of the system can be reached without iteration
when implicit Euler’s method is chosen for [Ss] calculation. So
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dB/dt

Integrator

Hstat(B)

Fig. 3. Dynamic material law block diagram.

convergence problems are eliminated and the computation time
is reduced.

IV. NUMERICAL IMPLEMENTATION

The new formulation of the full diffusion problem implies to
solve a linear system which couples partial derivative equations
and differential equations. We detail now, how an implementa-
tion of the whole diffusion model can be effected.

We chose Matlab for several reasons: first, its broad distribu-
tion throughout the world; second, because it is convivial and
many preprogrammed blocks already exist.

The complete problem programming is carried out in several
stages. Each stage is concluded by the development of subsys-
tems materialized by blocks known as “macro-block;” the as-
sembly of these macro-blocks allows the development of the
final model.

A. Programming of the Differential Equation “Dynamic
Material Law”

The installation of the differential equation (1) known as “dy-
namic material law” requires the use of a static hysteresis model
H stat (B ) .

This static model is compacted in a single Simulink block
in order to facilitate its integration in the dynamic material law
model and to not overload the diagram final block.

Fig. 3 presents the resolution Simulink block diagram for the
dynamical material law.

B. Programming of the Complete Model

System (6) is linear and the stiffness matrix is positive defi-
nite. This condition is sufficient to allow us to use a Cholesky
resolution method directly available in the Matlab library.

The output of the block “Cholesky resolution” generates a
vector corresponding to the magnetic excitation fields of each
node of the mesh. These excitation fields are used then as exci-
tation for the various blocks “dynamic material law.”

From these blocks “dynamic material law,” we have local in-
duction corresponding to each node of the grid. Finally, a cal-
culation function allows to determinate the averaged induction
through the section.

Moreover, if we consider the surface field Hg,,t as the mag-
netic excitation, it then becomes possible to return the material
hysteresis loop.
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Fig. 4. Modeling of the whole system.
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Fig. 5. Dynamic loops with 50 Hz sine wave excitation with harmonic 3.

Fig. 4 presents the complete model before its integration
in a single block, facilitating its implementation in the whole
system.

V. EXPERIMENTAL VALIDATION

In order to test the results of simulations corresponding to the
new formulation of the whole diffusion equation, we carried out
tests on Epstein frame sheets. These sheets are low silicon iron
electrical alloy referenced M700P65. The thickness is 0.65 mm;
the width is 30 mm. The o conductivity is identified to the value
of 425 x 10 (Q-m)~L.

The resolution of the diffusion equation gives the local values
of B(y, t), which can be used to calculate the whole flux. Only
this last value can be compared with experimental data.

Fig. 5 shows the superimposition of simulated and measured
averaged dynamic loops when the surface excitation field Hgy,¢
is 50 Hz frequency sine wave with 50% of harmonic 3. We can
note the accuracy of a temporal model.

This simulation case had been tested with the old formulation
of the diffusion equation. The new resolution eliminates any
convergence problem.

For this case, the field distribution is strongly inhomogeneous
in the cross section of the lamination. Figs. 6 and 7 superimpose
the temporal evolution and the corresponding loops for points
situated on the surface and in the center of the lamination.

As the averaged results are in good correlation with experi-
mental results, we assume that the local distribution is accurate.

Considering this assumption, we dispose of local evaluation
inaccessible to the direct measurement.

The calculation time, for the simulation presented, in
Figs. 5-7 needs only 30 s for 10 nodes of the mesh on a PC
with a 800 MHz Pentium IV processor.
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Fig. 6. Excitation field on the surface and in the center of the sheet.
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Fig. 7. Local loops on the surface and in the center of the sheet.

VI. CONCLUSION

A new formulation of the diffusion equation including dy-
namic hysteresis is presented. This new formulation leads to

the resolution of a linear system, which avoids many numer-
ical problems. Local results are available. The global results are
validated with experimental data. A numerical implementation
of the diffusion model using flexible software is realized. The
resolution is fast and modular.

The present work concerns 1-D formulation; it suits to the
classical magnetic laminations. For two-dimensional uniaxial
problems, a similar formulation is in progress in our team. A
three-dimensional formulation is hardly justified without con-
sidering the material anisotropy. It leads to a huge problem.
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