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Abstract

The class of 2-interval graphs has been introduced for modelling scheduling and allocation
problems, and more recently for specific bioinformatic problems. Some of those applications
imply restrictions on the 2-interval graphs, and justify the introduction of a hierarchy of
subclasses of 2-interval graphs that generalize line graphs: balanced 2-interval graphs, unit
2-interval graphs, and (x,x)-interval graphs. We provide instances that show that all the
inclusions are strict. We extend the NP-completeness proof of recognizing 2-interval graphs
to the recognition of balanced 2-interval graphs. Finally we give hints on the complexity
of unit 2-interval graphs recognition, by studying relationships with other graph classes:
proper circular-arc, quasi-line graphs, K1,5-free graphs, . . .

Keywords: 2-interval graphs, graph classes, line graphs, quasi-line graphs, claw-free
graphs, circular interval graphs, proper circular-arc graphs, bioinformatics, scheduling.

1 2-interval graphs and restrictions

The interval number of a graph, and the classes of k-interval graphs have been introduced as a
generalization of the class of interval graphs by McGuigan [McG77] in the context of scheduling
and allocation problems. Recently, bioinformatics problems have renewed interest in the class
of 2-interval graphs (each vertex is associated to a pair of disjoint intervals and edges denote
intersection between two such pairs). Indeed, a pair of intervals can model two associated
tasks in scheduling [BYHN+06], but also two similar segments of DNA in the context of DNA
comparison [JMT92], or two complementary segments of RNA for RNA secondary structure
prediction and comparison [Via04].

(a) (b) (c)

Figure 1: Helices in a RNA secondary structure (a) can be modeled as a set of balanced 2-
intervals among all 2-intervals corresponding to complementary and inverted pairs of letter
sequences (b), or as an independent subset in the balanced associated 2-interval graph (c).
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RNA (ribonucleic acid) are polymers of nucleotides linked in a chain through phosphodiester
bonds. Unlike DNA, RNAs are usually single stranded, but many RNA molecules have sec-
ondary structure in which intramolecular loops are formed by complementary base pairing. RNA
secondary structure is generally divided into helices (contiguous base pairs), and various kinds
of loops (unpaired nucleotides surrounded by helices). The structural stability and function of
non-coding RNA (ncRNA) genes are largely determined by the formation of stable secondary
structures through complementary bases, and hence ncRNA genes across different species are
most similar in the pattern of nucleotide complementary rather than in the genomic sequence.
This motivates the use of 2-intervals for modelling RNA secondary structures: each helix of
the structure is modeled by a 2-interval. Moreover, the fact that these 2-intervals are usually
required to be disjoint in the structure naturally suggests the use of 2-interval graphs. Further-
more, aiming at better modelling RNA secondary structures, it was suggested in [CHLV05] to
focus on balanced 2-interval sets (each 2-interval is composed of two equally length intervals)
and their associated intersection graphs referred as balanced 2-interval graphs. Indeed, helices
in RNA secondary structures are most of the time composed of equally length contiguous base
pairs parts. To the best of our knowledge, nothing is known on the class of balanced 2-interval
graphs.

Sharper restrictions have also been introduced in scheduling, where it is possible to con-
sider tasks which all have the same duration, that is 2-interval whose intervals have the same
length [BYHN+06, Kar05]. This motivates the study of the classes of unit 2-interval graphs,
and (x, x)-interval graphs. In this paper, we consider these subclasses of interval graphs, and
in particular we address the problem of recognizing them.

A graph G = (V,E) of order n is a 2-interval graph if it is the intersection graph of a set of
n unions of two disjoint intervals on the real line, that is each vertex corresponds to a union of
two disjoint intervals Ik = Ik

l ∪ Ik
r , k ∈ J1, nK (l for “left” and r for “right”), and there is an

edge between Ij and Ik iff Ij ∩ Ik 6= ∅. Note that for the sake of simplicity we use the same
letter to denote a vertex and its corresponding 2-interval. A set of 2-intervals corresponding
to a graph G is called a realization of G. The set of all intervals,

⋃n
k=1{I

k
l , Ik

r }, is called the
ground set of G (or the ground set of {I1, . . . , In}).

The class of 2-interval graphs is a generalization of interval graphs, and also contains all
circular-arc graphs (intersection graphs of arcs of a circle), outerplanar graphs (have a planar
embedding with all vertices around one of the faces [KW99]), cubic graphs (maximum degree
3 [GW80]), and line graphs (intersection graphs of edges of a graph).

Unfortunately, most classical graph combinatorial problems turn out to be NP-complete
for 2-interval graphs: recognition [WS84], maximum independent set [BNR96, Via01], col-
oration [Via01], . . . Surprisingly enough, the complexity of the maximum clique problem for
2-interval graphs is still open (although it has been recently proven to be NP-complete for
3-interval graphs [BHLR07]).

For practical application, restricted 2-interval graphs are needed. A 2-interval graph is
said to be balanced if it has a 2-interval realization in which each 2-interval is composed of
two intervals of the same length [CHLV05], unit if it has a 2-interval realization in which all
intervals of the ground set have length 1 [BFV04], and is called a (x, x)-interval graph if it has
a 2-interval realization in which all intervals of the ground set are open, have integer endpoints,
and length x [BYHN+06, Kar05]. In the following sections, we will study those restrictions of
2-interval graphs, and their position in the hierarchy of graph classes illustrated in Figure 2.

Note that all (x, x)-interval graphs are unit 2-interval graphs, and that all unit 2-interval
graphs are balanced 2-interval graphs. We can also notice that (1, 1)-interval graphs are exactly
line graphs: each interval of length 1 of the ground set can be considered as the vertex of a
root graph and each 2-interval as an edge in the root graph. This implies for example that the
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Figure 2: Graph classes related to 2-interval graphs and its restrictions. A class pointing
towards another strictly contains it, and the dashed lines mean that there is no inclusion re-
lationship between the two. Dark classes correspond to classes not yet present in the ISGCI
Database [BLS+].

coloration problem is also NP-complete for (2, 2)-interval graphs and wider classes of graphs.
It is also known that the complexity of the maximum independent set problem is NP-complete
on (2, 2)-interval graphs [BNR96].

2 Useful gadgets for 2-interval graphs and restrictions

For proving hardness of recognizing 2-interval graphs, West and Shmoys considered in [WS84]
the complete bipartite graph K5,3 as a useful 2-interval gadget. Indeed, all realizations of this
graph are contiguous, that is, for any realization, the union of all intervals in its ground set is an
interval. Thus, by putting edges between some vertices of a K5,3 and another vertex v, we can
force one interval of the 2-interval v (or just one extremity of this interval) to be blocked inside
the realization of K5,3. It is not difficult to see that K5,3 has a balanced 2-interval realization,
for example the one in Figure 3.

(a) (b) (c)

Figure 3: The complete bipartite graph K5,3 (a,b) has a balanced 2-interval realization (c):
vertices of S5 are associated to balanced 2-intervals of length 7, and vertices of S3 are associated
to balanced 2-intervals of length 11. Any realization of this graph is contiguous, i.e., the union
of all 2-intervals is an interval.
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However, K5,3 is not a unit 2-interval graph. Indeed, each 2-interval I = Il∪Ir corresponding
to a degree 5 vertex intersect 5 disjoint 2-intervals, and hence one of Il or Ir intersect at least 3
intervals, which is impossible for unit intervals. Therefore, we introduce the new gadget K4,4−e

which is a (2, 2)-interval graph with only contiguous realizations.

(a) (b) (c)

Figure 4: The graph K4,4 − e (a), a nicer representation (b), and a 2-interval realization with
open intervals of length 2 (c).

Property 1. Any 2-interval realization of K4,4 − e is contiguous.

Proof. Write G = (V,E) the graph K4,4−e. To study all possible realizations of G, let us study
all possible realizations of G[V − I8].

As 2-intervals I1, I2, I3 and I4 are disjoints, their ground set Ifixed = {[li, ri], 1 ≤ i ≤ 8,
ri < li+1} is a set of eight disjoint intervals. The ground set Imobile of I5, I6 and I7 is a set of
six disjoint intervals. Let xi be the number of intervals of Imobile intersecting i ≤ 8 intervals of
Ifixed. We have directly:

x0 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 = |Imobile| = 6. (1)

As there are 12 edges in G[V \{v8}] which is bipartite, we also have:

x1 + 2x2 + 3x3 + 4x4 + 5x5 + 6x6 + 7x7 + 8x8 = 12. (2)

Finally, to build a realization of G from a realization of G[V \{v8}] , one must place I8 so as
to intersect three disjoint intervals of Ifixed. Thus one of the intervals of I8 intersects at least
two intervals ]lk, rk[ and ]ll, rl[ (k < l) of Ifixed. So there is “a hole between those two intervals”,
for example [rk, lk+1], which is included in one of the intervals of I8. So we notice that I8 has
to fill one of the seven holes of Ifixed. Thus, the intervals of Imobile can not fill more than six
holes, and the observation that an interval intersecting i consecutive intervals (for i ≥ 1) fills
i − 1 holes, we get:

x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 7x8 ≤ 6. (3)

Equations 1, 2 and 3 are necessary for any valid realization of G[V \{v8}] which gives a valid
realization of G.

Let’s suppose by contradiction that the union of all intervals of the ground set of G is not an
interval. Then there is a hole, that is an interval included in the covering interval of {I1, . . . , I8},
which intersect no Ii. We proceed like for equation 3, with the constraint that another hole
cannot be filled by the intervals of Imobile, so we get instead:

x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 7x8 ≤ 5. (4)

By adding 1 and 4, and subtracting 2, we get x0 ≤ −1 : impossible! So we have proved that
the union of all intervals of the ground set of any realization of G is indeed an interval.
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3 Balanced 2-interval graphs

We show in this section that the class of balanced 2-interval graphs is strictly included in the
class of 2-interval graphs, and strictly contains circular-arc graphs. Moreover, we prove that
recognizing balanced 2-interval graphs is as hard as recognizing (general) 2-interval graphs.

Property 2. The class of balanced 2-interval graphs is strictly included in the class of 2-interval
graphs.

Proof. We build a 2-interval graph that has no balanced 2-interval realization. Let’s consider
a chain of gadgets K5,3 (introduced in previous section) to which we add three vertices I1, I2,
and I3 as illustrated in Figure 5.

(a)

(b)

Figure 5: An example of unbalanced 2-interval graph (a) : any realization groups intervals of
the seven K5,3 in a block, and the chain of seven blocks creates six “holes” between them, which
make it impossible to balance the lengths of the three 2-intervals I1, I2, and I3.

In any realization, the presence of holes showed by crosses in the Figure gives the following
inequalities for any realization: l(Il

2) < l(Il
1), l(Il

3) < l(Ir
2), and l(Ir

1) < l(Ir
3) (or if the

realization of the chain of K5,3 appears in the symmetrical order: l(Il
1) < l(Il

3), l(Ir
3) < l(Il

2),
and l(Ir

2) < l(Ir
1)). If this realization was balanced, then we would have l(Il

1) = l(Ir
1) <

l(Ir
3) = l(Il

3) < l(Ir
2) = l(Il

2) (or for the symmetrical case: l(Ir
1) = l(Il

1) < l(Il
3) = l(Ir

3) <

l(Il
2) = l(Ir

2)) : impossible! So this graph has no balanced 2-interval realization although it
has a 2-interval generalization.

Theorem 1. Recognizing balanced 2-interval graphs is an NP-complete problem.

Proof. We just adapt the proof of West and Shmoys [WS84, GW95]. The problem of deter-
mining if there is a Hamiltonian cycle in a 3-regular triangle-free graph is proven NP-complete,
by reduction from the more general problem without the no triangle restriction. So we re-
duce the problem of Hamiltonian cycle in a 3-regular triangle-free graph to balanced 2-interval
recognition.

Let G = (V,E) be a 3-regular triangle-free graph. We build a graph G′ which has a 2-
interval realization (a special one, very specific, called H-representation and which we prove to
be balanced) iff G has a Hamiltonian cycle.

The construction of G′, illustrated in Figure 6(a) is almost identical to the one by West
and Shmoys, so we just prove that G′ has a balanced realization, shown in Figure 6 (b), by
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Figure 6: There is a balanced 2-interval of G′ (which has been dilated in the drawing to remain
readable) iff there is an H-representation (that is a realization where the left intervals of all
2-intervals are grouped together in a contiguous block) for its induced subgraph G iff there is a
Hamiltonian cycle in G.

computing lengths for each interval to ensure it. All K5,3 have a balanced realization as shown
in section 1 of total length 79, in particular H3. We can thus affect length 83 to the intervals of
v0. The intervals of the other vi can have length 3, and their M(vi) length 79, so through the
computation illustrated in Figure 6, intervals of z can have length 80 + 82 + 2(n − 1) + 3, that
is 163 + 2n. We dilate H1 until a hole between two consecutive intervals of its S3 can contain
an interval of z, that is until the hole has length 165 + 2n : so after this dilating, H1 has length
79(165 + 2n). Finally if G has a Hamiltonian cycle, then we have found a balanced 2-interval
realization of G of total length 13, 273 + 241n.

It is known that circular-arc graphs are 2-interval graphs, they are also balanced 2-interval.

Property 3. The class of circular-arc graphs is strictly included in the class of balanced 2-
interval graphs.

Proof. The transformation is simple: if we have a circular-arc representation of a graph G =
(V,E), then we choose some point P of the circle. We partition V in V1∪V2, where P intersects
all the arcs corresponding to vertices of V1 and none of the arcs of the vertices of V2. Then
we cut the circle at point P to map it to a line segment: every arc of V2 becomes an interval,
and every arc of V1 becomes a 2-interval. To obtain a balanced realization we just cut in half
the intervals of V2 to obtain two intervals of equal length for each. And for each 2-interval
[g(Il), d(Il)] ∪ [g(Ir), d(Ir)] of V1, as both intervals are located on one of the extremities of the
realization, we can increase the length of the shortest so that it reaches the length of the longest
without changing intersections with the other intervals. The inclusion is strict because K2,3 is a
balanced 2-interval graph (as a subgraph of K5,3 for example) but is not a circular-arc graph (we
can find two C4 in K2,3, and only one can be realized with a circular-arc representation).
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4 Unit 2-interval and (x,x)-interval graphs

Property 4. Let x ∈ N, x ≥ 2. The class of (x, x)-interval graphs is strictly included in the
class of (x + 1, x + 1)-interval graphs.

Proof. We first prove that an interval graph with a representation where all intervals have length
k (and integer open bounds) has a representation where all intervals have length k + 1.

We use the following algorithm. Let S be initialized as the set of all intervals of length k,
and let T be initially the empty set. As long as S is not empty, let I = [a, b] be the left-most
interval of S, remove from S each interval [α, β] such that α < b (including I), add [α, β + 1] to
T , and translate by +1 all the remaining intervals in S.

When S is empty, the intersection graph of T , where all intervals have length k+1 is the same
as the intersection graph for the original S. We also build for each x ≥ 2 a (x+1, x+1)-interval
graph which is not a (x, x)-interval graph. We consider the bipartite graph K2x and a perfect
matching {(vi, v

′

i), i ∈ J1, xK}. We call K ′

x the graph obtained from K2x with the following
transformations, illustrated in Figure 7(a): remove edges (vi, v

′

i) of the perfect matching, add
four graphs K4,4 − e called X1, X2, X3, X4 (for each Xi, we call vi

l and vi
r the vertices of degree

3), link v2
r and v3

l , link all vi to v1
r and v4

l , link all v′i to v2
l and v3

r , and finally add a vertex a

(resp. b) linked to all vi, v′i, and to two adjacent vertices of X1 (resp. X4) of degree 4. We
illustrate in Figure 7(b) that K ′

x has a realization with intervals of length x + 1. We can prove
by induction on x that K ′

x has no realization with intervals of length x: it is rather technical,
so we just give the idea. Any realization of K ′

x forces the block X2 to share an extremity with
the block X3, so each 2-interval v′i has one interval intersecting the other extremity of X2, and
the other intersecting the other extremity of X3. Then constraints on the position of vertices vi

force their intervals to appear as two “stairways” as shown in Figure 7(b). So v1
r must contain

x extremities of intervals which have to be different, so it must have length x + 1.

(a)

(b)

Figure 7: The graph K ′

4 (a) is (5,5)-interval but not (4,4)-interval.

The complexity of recognizing unit 2-interval graphs and (x, x)-interval graphs remains open,
however the following shows a relationship between those complexities.
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Lemma 1. {unit 2-interval graphs} =
⋃

x∈N∗

{(x, x)-interval graphs}.

Proof. The ⊃ part is trivial. To prove ⊂, let G = (V,E) be a unit 2-interval graph. Then it has
a realization with |V | = n 2-intervals, that is 2n 2-intervals of the ground set. So we consider
the interval graph of the ground set, which is a unit interval graph. There is a linear time
algorithm based on breadth-first search to compute a realization of such a graph where interval
endpoints are rational, with denominator 2n [CKN+95]. So by dilating by a factor 2n such a
realization, we obtain a realization of G where intervals of the ground set have length 2n.

Theorem 2. If recognizing (x, x)-interval graphs is polynomial for any integer x then recognizing
unit 2-interval graphs is polynomial.

5 Investigating the complexity of unit 2-interval graphs

In this section we show that all proper circular-arc graphs (circular-arc graphs such that no arc
is included in another in the representation) are unit 2-interval graphs, and we study a class of
graphs which generalizes quasi-line graphs and contains unit 2-interval graphs.

Recall that, according to Property 3, circular-arc graphs are balanced 2-interval graphs.
However, circular-arc graphs are not necessarily unit 2-interval graphs.

Property 5. The class of proper circular-arc graphs is strictly included in the class of unit
2-interval graphs.

Proof. As in the proof of Property 3, we choose a point P on the circle of the representation of
a proper circular-arc graph G, and maps the cut circle into a line segment. We extend the outer
extremities of intervals that have been cut so that no interval contains another. Thus we obtain
a set of 2-intervals for arcs containing P , and a set I of intervals for arcs not containing P . For
each interval of I, we add a new interval disjoint of any other to get a 2-interval. If we consider
the intersection graph of the ground set of such a representation, it is a proper interval graph.
So it is also a unit interval graph [Rob69], which provides a unit 2-interval representation of G.

To complete the proof, we notice that the domino (two cycles C4 having an edge in common)
is a unit 2-interval graph but not a circular-arc graph.

Quasi-line graphs are those graphs whose vertices are bisimplicial, i.e., the closed neighbor-
hood of each vertex is the union of two cliques. This graph class has been introduced as a gener-
alization of line graphs and a useful subclass of claw-free graphs [Ben81, FFR97, CS05, KR07].
Following the example of quasi-line graphs that generalize line graphs, we introduce here a new
class of graphs for generalizing unit 2-interval graphs. Let k ∈ N

∗. A graph G = (V,E) is
all-k-simplicial if the neighborhood of each vertex v ∈ V can be partitioned into at most k

cliques. The class of quasi-line graphs is thus exactly the class of all-2-simplicial graphs. Notice
that this definition is equivalent to the following: in the complement graph of G, for each vertex
u, the vertices that are not in the neighborhood of u are k-colorable.

Property 6. The class of unit 2-interval graphs is strictly included in the class of all-4-simplicial
graphs.

Proof. The inclusion is trivial. What is left is to show that the inclusion is strict. Consider the
following graph which is all-4-simplicial but not unit 2-interval: start with the cycle C4, call its
vertices vi, i ∈ J1, 4K, add add four K4,4 − e gadgets called Xi, and for each i we connect the
vertex vi to two connected vertices of degree 4 in Xi. This graph is certainly all-4-simplicial.
But if we try to build a 2-interval realization of this graph, then each of the 2-intervals vk has
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an interval trapped into the block Xk. So each 2-interval vk has only one interval to realize
the intersections with the other vi: this is impossible as we have to realize a C4 which has no
interval representation.

Property 7. The class of claw-free graphs is not included in the class of all-4-simplicial graphs.

Proof. The Kneser Graph KG(7, 2) is triangle-free, but not 4-colorable [Lov78]. We consider
the graph obtained by adding an isolated vertex v and then taking the complement graph,
i.e., KG(7, 2) ⊎ {v}. It is claw-free as KG(7, 2) is triangle-free. And if it was all-4-simplicial,
then the neighborhood of v in KG(7, 2) ⊎ {v}, that is KG(7, 2), would be a union of at most
four cliques, so KG(7, 2) would be 4-colorable: impossible so this graph is claw-free but not
all-4-simplicial.

Property 8. The class of all-k-simplicial graphs is strictly included in the class of K1,k+1-free
graphs.

Proof. If a graph G contains K1,k+1, then it has a vertex with k + 1 independent neighbors,
and hence G is not all-k-simplicial. The wheel W2k+1 is a simple example of a graph which is
K1,k+1-free but in which the center can not have its neighborhood (a C2k+1) partitioned into k

cliques or less.

Unfortunately, all-k-simplicial graphs do not have a nice structure which could help unit
2-interval graph recognition.

Theorem 3. Recognizing all-k-simplicial graphs is NP-complete for k ≥ 3.

Proof. We reduce from the Graph k-colorability problem, which is known to be NP-
complete for k ≥ 3 [Kar72]. Let G = (V,E) be a graph, and let G′ be the complement graph of
G to which we add a universal vertex v. We claim that G is k-colorable iff G′ is all-k-simplicial.

If G is k-colorable, then the non-neighborhood of any vertex in G is k-colorable, so the
neighborhood of any vertex in G is a union of at most k cliques. And the neighborhood of v is
also a union of at most k cliques, so G′ is all-k-simplicial.

Conversely, if G′ is all-k-simplicial, then in particular the neighborhood of v is a union of
at most k cliques. Let’s partition it into k vertex-disjoint cliques X1, . . . ,Xk. Then, coloring G

such that two vertices have the same color iff they are in the same Xi leads to a valid k-coloring
of G.

6 Conclusion

Motivated by practical applications in scheduling and computational biology, we focused in
this paper on balanced 2-interval graphs and unit 2-intervals graphs. Also, we introduced two
natural new classes: (x, x)-interval graphs and all-k-simplicial graphs.

We mention here some directions for future works. First, the complexity of recognizing unit
2-interval graphs and (x, x)-interval graphs remains open. Second, the relationships between
quasi-line graphs and subclasses of balanced 2-intervals graphs still have to be investigated.
Last, since most problems remains NP-hard for balanced 2-interval graphs, there is thus a
natural interest in investigating the complexity and approximation of classical optimization
problems on unit 2-interval graphs and (x, x)-interval graphs.
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7 Appendix

We give the detailed proofs of Theorem 1 and Property 4.

Proof of Theorem 1. Let G = (V,E) be a 3-regular triangle-free graph. We build a graph
G′ which has a 2-interval realization (a special one, very specific, and which we prove to be
balanced) iff G has a Hamiltonian cycle.

First we will detail how we build G′ starting from the graph G, and adding some vertices,
in particular K5,3 gadgets. The idea is that the edges of G will partition into a Hamiltonian
cycle and a perfect matching iff all 2-intervals of the realization of G′ can have their left interval
realizing the Hamiltonian cycle, and their right interval realizing the perfect matching. A
realization with such a placement of the intervals is called an “H-representation” of G.

We proceed as illustrated in Figure 6. We choose some vertex of G that we call v0 (which
will be the “origin” of the Hamiltonian cycle), and the other are called v1, . . . , vn. For each
vertex vi of G we link it to a vertex of the S5 of a K5,3 called M(vi) (which will block one of the
four extremities of the 2-interval vi). We link all vertices to a new vertex z, which is linked to
no M(v) except M(v0) (thus the interval of each vi intersecting M(vi), for i 6= 0, won’t intersect
z). We add three K5,3, H1, H2 and H3 : two vertices of the S5 of H1 are linked to z, a third
one is linked to one vertex of the S5 of H2, one vertex of the S5 of H3 is linked to z, and all
vertices of H3 to v0.

To explain this construction in detail, we study the realization of G′, if we suppose it is a
(balanced) 2-interval graph, and we prove that it leads us to find a Hamiltonian cycle in G.

As the realization of H1 and H2 are two contiguous blocks of intervals then one of their
extremities must intersect. As z is linked to two disjoint vertices of H1, both intervals of z are
used to realize those intersections. But one interval of z that we call zr, also has to intersect
one vertex of H3 which is not linked to H1, so zr intersects the second extremity of the block
H1 (the first extremity being occupied by the extremity of H2). And as zr intersects only one
interval of H3, it must be the extremity of H3. The other interval of z is contained in the block
H1, thus can’t intersect M(v0) neither all the vertices vi, so all those 2-intervals intersect zr.
And as none of them intersect H3 except v0, all of them except v0 have an interval contained
in zr, that we call vi,g. The other interval of each vi is linked to a K5,3 so it has one extremity
occupied by K5,3, and the other one is free.

Conversely, if G has a Hamiltonian cycle, then it is possible to find a H-representation,
such that all the constraints induced by the edges of G′ are respected, as illustrated with the
realization in Figure 6. We have already proved that this realization can be balanced.

Proof of Property 4. In the following, as we only considering the interval of vi
l or vi

r located at
one extremity of the block Xi, and not the one inside, we will use vi

l and vi
r to denote those

extremity intervals. For each vertex vi, we call vi,l its left interval and vi,r its right interval. We
do the same for v′i, and call l(I) the left extremity of any interval I.

We prove by induction that the graph K ′

x is (x + 1, x + 1)-interval but not (x, x)-interval,
and that for any unit 2-interval realization, there exists an order σ ∈ Sx such that :

• either l(vσ(x),l) < . . . < l(vσ(1),l) < l(v′
σ(x),l) < . . . < l(v′

σ(1),l) and l(v′
σ(x),r) < . . . <

l(v′
σ(1),r) < l(vσ(x),r) < . . . < l(vσ(1),r),

• or the symmetric case: l(vσ(1),l) < . . . < l(vσ(x),l) < l(v′
σ(1),l) < . . . < l(v′

σ(x),l) and

l(v′
σ(1),r) < . . . < l(v′

σ(x),r) < l(vσ(1),r) < . . . < l(vσ(x),r).

Those two equalities correspond in fact to the “two stairways structure” which appears in
Figure 7.
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Base case : we study all possible unit 2-interval realizations of K ′

2 to prove that one of the
expected inequalities is always true. We also prove that K ′

2 has no (2,2)-interval realization.
First recall that realizations of Xi subgraphs can only be blocks of contiguous intervals. The

edge between v2
r and v3

l forces the two blocks of X2 and X3 to be contiguous, with intervals
v2
l and v3

r at their extremities. Each 2-interval v′i must intersect both v2
l and v3

r , so one of its
intervals intersects v2

l and the other intersects v3
r . Thus, one same interval of v′i can not intersect

both a and b which are disjoint, so a intersects one interval of v′i (say the one intersecting v2
l , the

other case being treated symmetrically) and b intersects the other one (so, the one intersecting
v3
r ). Each vi has to intersect both a and b, so it has to intersect a with its first interval and b

with the second. But 2-interval vi must also intersect v1
r and v4

l which are both disjoint and
disjoint to a and b. So one interval of each vi must intersect v1

r and the other one must intersect
v4
l .

So we have shown that any unit 2-interval realization of K ′

2 has the following aspect (or the
symmetric) : the extremity of the block X1 intersecting all vi which intersect a (or b) which
intersects all v′i, which intersect the extremity X2 (or X3) which intersects the extremity of X3

(or X2), which intersects all v′i, which intersect b (or a), which intersects all vi, which intersect
the extremity of X4.

Now we suppose, by contradiction, that there exists a (2,2)-interval realization of K ′

2. v1
r is

an interval of length 2, but one of its two parts of length one has to intersect an element of X1.
The other has to intersect both v1 and v2. As neither v1 nor v2 can intersect other intervals of
X1, then the first interval of v1 and v2 is the same interval. By proceeding the same way on X4

and v4
l , we obtain that the second interval of v1 and v2 is the same interval, so v1 and v2 should

correspond to the same 2-interval: it contradicts with the fact that vertices v1 and v2 have a
different neighborhood. So K ′

2 has no (2,2)-interval realization.
To obtain the expected inequalities, we have to analyze the possible positions of all vi and

v′i. We only treat the first two inequalities as the second case is symmetric.
Suppose that l(v2,l) < l(v1,l). As v1 and v′1 are non adjacent, then interval v1,l is strictly on

the left of v′1,l, so v2,l is strictly on the left of v′1,l. Thus those two intervals do not intersect.
But v2 and v′1 are adjacent, so v2 and v′1 must have intersecting right intervals. But then we
have l(v′2,r) < l(v′1,r) < l(v2,r) < l(v1,r), and the right intervals of v′2 and v1 can not intersect.
We deduce their left intervals intersect, so l(v2,l) < l(v1,l) < l(v′2,l) < l(v′1,l).

If we suppose that l(v1,l) < l(v2,l), we get as well that l(v′1,r) < l(v′2,r) < l(v1,r) < l(v2,r)
and l(v1,l) < l(v2,l) < l(v′1,l) < l(v′2,l). So for any unit 2-interval realization of K ′

2 there exists
an order σ = 12 or σ = 21 such that:

• either l(vσ(2),l) < l(vσ(1),l) < l(v′
σ(2),l) < l(v′

σ(1),l) and l(v′
σ(2),r) < l(v′

σ(1),r) < l(vσ(2),r) <

l(vσ(1),r),

• or the symmetric inequalities.

Recursion: suppose that for some x, K ′

x−1 is not (x−1, x−1)-interval but is (x, x)-interval,
and that any (x, x)-interval realization verifies one of the expected inequalities.

Graph K ′

x−1 is an induce subgraph of K ′

x = (V,E) : K ′

x−1 = K ′

x[V \ {vx, v′x}]. So by the
induction hypothesis, there exists an order σ ∈ Sx−1 such that for any unit 2-interval realization
of K ′

x :

• either l(vσ(x−1),l) < . . . < l(vσ(1),l) < l(v′
σ(x−1),l) < . . . < l(v′

σ(1),l) and l(v′
σ(x−1),r) < . . . <

l(v′
σ(1),r) < l(vσ(x−1),r) < . . . < l(vσ(1),r),
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• or the symmetric case: l(vσ(1),l) < . . . < l(vσ(x−1),l) < l(v′
σ(1),l) < . . . < l(v′

σ(x−1),l) and

l(v′
σ(1),r) < . . . < l(v′

σ(x−1),r) < l(vσ(1),r) < . . . < l(vσ(x−1),r).

The position of vx and v′x remains to be determined. We treat only the case where the first
two inequalities are true, as the second case is symmetric.

As vx and v1
r are adjacent, and v′

σ(x−1) and v1
r are not, then l(v1

r ) < l(vx,l) < l(v′
σ(x−1),l).

So we define j the following way: vσ(j),l is the leftmost interval such that l(vx,l) ≤ l(vσ(j),l). if
there is none, we say j = 0. Then we call σ′ ∈ Sx the permutation defined by:







σ′(i) = σ(i) if i < j,

σ′(j + 1) = x,

σ′(i) = σ(i − 1) if i > j.

Then we directly get inequalities:

• l(v1
r ) < l(vσ′(x),l) < . . . < l(vσ′(j+1),l) ≤ l(vx,l) < l(vσ′(j−1),l) < . . . < l(vσ′(1),l) <

l(v′
σ′(x),l) < . . . < l(v′

σ′(j+1),l) < l(v′
σ′(j−1),l) < . . . < l(v′

σ′(1),l)

• l(v′
σ′(x),r) < . . . < l(v′

σ′(j+1),r) < l(v′
σ′(j−1),r) < . . . < l(v′

σ′(1),r) < l(vσ′(x),r) < . . . <

l(vσ′(j+1),r) < l(vσ′(j−1),r) < . . . < l(vσ′(1),r)

We obtain the expected inequalities by reasoning the same way as in the end of the base
case.

So in particular we have l(vσ(x),l) < . . . < l(vσ(1),l) and v1
r must intersect all those vi for

i ∈ J1, xK, but also an interval of X1 which intersects none of the vi. So it must have length
x + 1, thus K ′

x is not a (x, x)-interval graph
Conclusion: As the base case and the recursion has been proved, expected properties of

the graph K ′

x are true for any x ≥ 2.
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