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ENTROPY OF EIGENFUNCTIONS

NALINI ANANTHARAMAN, HERBERT KOCH, AND STÉPHANE NONNENMACHER

Abstract. We study the high–energy limit for eigenfunctions of the laplacian, on a
compact negatively curved manifold. We review the recent result of Anantharaman–
Nonnenmacher [4] giving a lower bound on the Kolmogorov–Sinai entropy of semiclassical
measures. The bound proved here improves the result of [4] in the case of variable negative
curvature.

1. Motivations

The theory of quantum chaos tries to understand how the chaotic behaviour of a classi-
cal Hamiltonian system is reflected in its quantum counterpart. For instance, let M be a
compact Riemannian C∞ manifold, with negative sectional curvatures. The geodesic flow
has the Anosov property, which is considered as the ideal chaotic behaviour in the theory
of dynamical systems. The corresponding quantum dynamics is the unitary flow gener-
ated by the Laplace-Beltrami operator on L2(M). One expects that the chaotic properties
of the geodesic flow influence the spectral theory of the Laplacian. The Random Matrix
conjecture [7] asserts that the large eigenvalues should, after proper unfolding, statisti-
cally resemble those of a large random matrix, at least for a generic Anosov metric. The
Quantum Unique Ergodicity conjecture [26] (see also [6, 30]) describes the corresponding
eigenfunctions ψk: it claims that the probability measure |ψk(x)|2dx should approach (in
the weak topology) the Riemannian volume, when the eigenvalue tends to infinity. In fact
a stronger property should hold for the Wigner transform Wψ, a function on the cotangent
bundle T ∗M , (the classical phase space) which simultaneously describes the localization of
the wave function ψ in position and momentum.

We will adopt a semiclassical point of view, that is consider the eigenstates of eigenvalue
unity of the semiclassical Laplacian −~2△, thereby replacing the high-energy limit by the
semiclassical limit ~ → 0. We denote by (ψk)k∈N an orthonormal basis of L2(M) made of
eigenfunctions of the Laplacian, and by (− 1

~2
k

)k∈N the corresponding eigenvalues:

(1.1) −~
2
k△ψk = ψk, with ~k+1 ≤ ~k .

We are interested in the high-energy eigenfunctions of −△, in other words the semiclassical
limit ~k → 0.

The Wigner distribution associated to an eigenfunction ψk is defined by

Wk(a) = 〈Op~k
(a)ψk, ψk〉L2(M), a ∈ C∞

c (T ∗M) .

Here Op
~k

is a quantization procedure, set at the scale (wavelength) ~k, which associates to
any smooth phase space function a (with nice behaviour at infinity) a bounded operator on
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L2(M). See for instance [13] or [14] for various quantizations Op~ on Rd. On a manifold,
one can use local coordinates to define Op in a finite system of charts, then glue the objects
defined locally thanks to a smooth partition of unity [11]. For standard quantizations Op

~k
,

the Wigner distribution is of the form Wk(x, ξ) dx dξ, where Wk(x, ξ) is a smooth function
on T ∗M , called the Wigner transform of ψ. If a is a function on the manifold M , Op~(a)
can be taken as the multiplication by a, and thus we have Wk(a) =

∫

M
a(x)|ψk(x)|2dx: the

Wigner transform is thus a microlocal lift of the density |ψk(x)|2. Although the definition
of Wk depends on a certain number of choices, like the choice of local coordinates, or of the
quantization procedure (Weyl, anti-Wick, “right” or “left” quantization...), its asymptotic
behaviour when ~k −→ 0 does not. Accordingly, we call semiclassical measures the limit
points of the sequence (Wk)k∈N, in the distribution topology.

In the semiclassical limit, “quantum mechanics converges to classical mechanics”. We
will denote |·|x the norm on T ∗

xM given by the metric. The geodesic flow (gt)t∈R is the

Hamiltonian flow on T ∗M generated by the Hamiltonian H(x, ξ) = |ξ|2x
2

. A quantization

of this Hamiltonian is given by the rescaled Laplacian −~
2△
2

, which generates the unitary

flow (U t
~
) = (exp(it~△

2
)) acting on L2(M). The semiclassical correspondence of the flows

(U t
~
) and (gt) is expressed through the Egorov Theorem :

Theorem 1.1. Let a ∈ C∞
c (T ∗M). Then, for any given t in R,

(1.2) ‖U−t
~

Op~(a)U t
~
− Op~(a ◦ gt)‖L2(M) = O(~) , ~ → 0 .

The constant implied in the remainder grows (often exponentially) with t, which rep-
resents a notorious problem when one wants to study the large time behaviour of (U t

~
).

Typically, the quantum-classical correspondence will break down for times t of the order
of the Ehrenfest time (3.25).

Using (1.2) and other standard semiclassical arguments, one shows the following :

Proposition 1.2. Any semiclassical measure is a probability measure carried on the energy
layer E = H−1(1

2
) (which coincides with the unit cotangent bundle S∗M). This measure is

invariant under the geodesic flow.

Let us call M the set of gt-invariant probability measures on E . This set is convex
and compact for the weak topology. If the geodesic flow has the Anosov property — for
instance if M has negative sectional curvature — that set is very large. The geodesic
flow has countably many periodic orbits, each of them carrying an invariant probability
measure. There are many other invariant measures, like the equilibrium states obtained
by variational principles [19], among them the Liouville measure µLiouv, and the measure
of maximal entropy. Note that, for all these examples of measures, the geodesic flow
acts ergodically, meaning that these examples are extremal points in M. Our aim is to
determine, at least partially, the set Msc formed by all possible semiclassical measures. By
its definition, Msc is a closed subset of M, in the weak topology.

For manifolds such that the geodesic flow is ergodic with respect to the Liouville measure,
it has been known for some time that almost all eigenfunctions become equidistributed over
E , in the semiclassical limit. This property is dubbed as Quantum Ergodicity :
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Theorem 1.3. [27, 32, 11] Let M be a compact Riemannian manifold, assume that the
action of the geodesic flow on E = S∗M is ergodic with respect to the Liouville measure.
Let (ψk)k∈N be an orthonormal basis of L2(M) consisting of eigenfunctions of the Laplacian
(1.1), and let (Wk) be the associated Wigner distributions on T ∗M .

Then, there exists a subset S ⊂ N of density 1, such that

(1.3) Wk −→µLiouv, k → ∞, k ∈ S.

The question of existence of “exceptional” subsequences of eigenstates with a different
behaviour is still open. On a negatively curved manifold, the geodesic flow satisfies the
ergodicity assumption, and in fact much stronger properties : mixing, K–property, etc.
For such manifolds, it has been postulated in the Quantum Unique Ergodicity conjecture
[26] that the full sequence of eigenstates becomes semiclassically equidistributed over E :
one can take S = N in the limit (1.3). In other words, this conjecture states that there
exists a unique semiclassical measure, and Msc = {µLiouv}.

So far the most precise results on this question were obtained for manifolds M with
constant negative curvature and arithmetic properties: see Rudnick–Sarnak [26], Wolpert
[31]. In that very particular situation, there exists a countable commutative family of
self–adjoint operators commuting with the Laplacian : the Hecke operators. One may thus
decide to restrict the attention to common bases of eigenfunctions, often called “arithmetic”
eigenstates, or Hecke eigenstates. A few years ago, Lindenstrauss [24] proved that any
sequence of arithmetic eigenstates become asymptotically equidistributed. If there is some
degeneracy in the spectrum of the Laplacian, note that it could be possible that the
Quantum Unique Ergodicity conjectured by Rudnick and Sarnak holds for one orthonormal
basis but not for another. On such arithmetic manifolds, it is believed that the spectrum
of the Laplacian has bounded multiplicity: if this is really the case, then the semiclassical
equidistribution easily extends to any sequence of eigenstates.

Nevertheless, one may be less optimistic when extending the Quantum Unique Ergod-
icity conjecture to more general systems. One of the simplest example of a symplectic
Anosov dynamical system is given by linear hyperbolic automorphisms of the 2-torus, e.g.

Arnold’s “cat map”

(

2 1
1 1

)

. This system can be quantized into a sequence of N × N

unitary matrices — the propagators, where N ∼ ~−1 [18]. The eigenstates of these matri-
ces satisfy a Quantum Ergodicity theorem similar with Theorem 1.3, meaning that almost
all eigenstates become equidistributed on the torus in the semiclassical limit [9]. Besides,
one can choose orthonormal eigenbases of the propagators, such that the whole sequence of
eigenstates is semiclassically equidistributed [22]. Still, because the spectra of the propaga-
tors are highly degenerate, one can also construct sequences of eigenstates with a different
limit measure [15], for instance, a semiclassical measure consisting in two ergodic com-
ponents: half of it is the Liouville measure, while the other half is a Dirac peak on a
single (unstable) periodic orbit. It was also shown that this half-localization is maximal
for this model [16] : a semiclassical measure cannot have more than half its mass carried
by a countable union of periodic orbits. The same type of half-localized eigenstates were
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constructed by two of the authors for another solvable model, namely the “Walsh quanti-
zation” of the baker’s map on the torus [3]; for that model, there exist ergodic semiclassical
measures of purely fractal type (that is, without any Liouville component). Another type
of semiclassical measure was recently obtained by Kelmer for quantized hyperbolic auto-
morphisms on higher-dimensional tori [20]: it consists in the Lebesgue measure on some
invariant co-isotropic subspace of the torus.

For these Anosov models on tori, the construction of exceptional eigenstates strongly
uses nongeneric algebraic properties of the classical and quantized systems, and cannot be
generalized to nonlinear systems.

2. Main result.

In order to understand the set Msc, we will attempt to compute the Kolmogorov–Sinai
entropies of semiclassical measures. We work on a compact Riemannian manifold M of
arbitrary dimension, and assume that the geodesic flow has the Anosov property. Actually,
our method can without doubt be adapted to more general Anosov Hamiltonian systems.

The Kolmogorov–Sinai entropy, also called metric entropy, of a (gt)-invariant probability
measure µ is a nonnegative number hKS(µ) that describes, in some sense, the complexity of
a µ-typical orbit of the flow. The precise definition will be given later, but for the moment
let us just give a few facts. A measure carried on a closed geodesic has vanishing entropy.
In constant curvature, the entropy is maximal for the Liouville measure. More generally,
for any Anosov flow, the energy layer E is foliated into unstable manifolds of the flow. An
upper bound on the entropy of an invariant probability measure is then provided by the
Ruelle inequality:

(2.1) hKS(µ) ≤

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.

In this inequality, Ju(ρ) is the unstable Jacobian of the flow at the point ρ ∈ E , defined
as the Jacobian of the map g−1 restricted to the unstable manifold at the point g1ρ (note
that the average of log Ju over any invariant measure is negative). The equality holds in
(2.1) if and only if µ is the Liouville measure on E [23]. If M has dimension d and has
constant sectional curvature −1, the above inequality just reads hKS(µ) ≤ d− 1.

Finally, an important property of the metric entropy is that it is an affine functional on
M. According to the Birkhoff ergodic theorem, for any µ ∈ M and for µ–almost every
ρ ∈ E , the weak limit

µρ = lim
|t|−→∞

1

t

∫ t

0

δgsρds

exists, and is an ergodic probability measure. We can then write

µ =

∫

E

µρdµ(ρ),
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which realizes the ergodic decomposition of µ. The affineness of the KS entropy means
that

hKS(µ) =

∫

E

hKS(µρ)dµ(ρ).

An obvious consequence is the fact that the range of hKS on M is an interval [0, hmax].

In the whole article, we consider a certain subsequence of eigenstates (ψkj
)j∈N of the

Laplacian, such that the corresponding sequence of Wigner distributions (Wkj
) converges

to a semiclassical measure µ. In the following, the subsequence (ψkj
)j∈N will simply be

denoted by (ψ~)~→0, using the slightly abusive notation ψ~ = ψ~kj
for the eigenstate ψkj

.

Each eigenstate ψ~ thus satisfies

(2.2) (−~
2 △−1)ψ~ = 0 .

In [2] the first author proved that the entropy of any µ ∈ Msc is strictly positive. In [4],
more explicit lower bounds were obtained. The aim of this paper is to improve the lower
bounds of [4] into the following

Theorem 2.1. Let µ be a semiclassical measure associated to the eigenfunctions of the
Laplacian on M . Then its metric entropy satisfies

(2.3) hKS(µ) ≥

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

−
(d− 1)

2
λmax ,

where d = dimM and λmax = limt→±∞
1
t

log supρ∈E |dg
t
ρ| is the maximal expansion rate of

the geodesic flow on E .
In particular, if M has constant sectional curvature −1, we have

(2.4) hKS(µ) ≥
d− 1

2
.

In dimension d, we always have
∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

≤ (d− 1)λmax ,

so the above bound is an improvement over the one obtained in [4],

(2.5) hKS(µ) ≥
3

2

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

− (d− 1)λmax .

In the case of constant or little-varying curvature, the bound (2.4) is much sharper than
the one proved in [2]. On the other hand, if the curvature varies a lot (still being negative
everywhere), the right hand side of (2.3) may actually be negative, in which case the bound
is trivial. We believe this “problem” to be a technical shortcoming of our method, and
actually conjecture the following bound:

(2.6) hKS(µ) ≥
1

2

∣

∣

∣

∣

∫

E

log Ju(ρ)dµ(ρ)

∣

∣

∣

∣

.

Extended to the case of the quantized torus automorphisms or the Walsh-quantized baker’s
map, this bound is saturated for the half-localized semiclassical measures constructed in
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[15], as well as those obtained in [20, 3]. This bound allows certain ergodic components
to be carried by closed geodesics, as long as other components have positive entropy. This
may be compared with the following result obtained by Bourgain and Lindenstrauss in the
case of arithmetic surfaces :

Theorem 2.2. [8] Let M be a congruence arithmetic surface, and (ψj) an orthonormal
basis of eigenfunctions for the Laplacian and the Hecke operators.

Let µ be a corresponding semiclassical measure, with ergodic decomposition µ =
∫

E µ
ρdµ(ρ).

Then, for µ-almost all ergodic components we have hKS(µρ) ≥ 1
9
.

As discussed above, the Liouville measure is the only one satisfying hKS(µ) =
∣

∣

∫

E
log Ju(ρ) dµ(ρ)

∣

∣

[23], so the Quantum Unique Ergodicity would be proven in one could replace 1/2 by 1 on
the right hand side of (2.6). However, we believe that (2.6) is the optimal result that can
be obtained without using much more precise information, like for instance a sharp control
on the spectral degeneracies, or fine information on the lengths of closed geodesics.

Indeed, in the above mentioned examples of Anosov systems where the Quantum Unique
Ergodicity conjecture is wrong and the bound (2.6) sharp, the quantum spectrum has very
high degeneracies, which could be responsible for the possibility to construct exceptional
eigenstates. Such high degeneracies are not expected in the case of the Laplacian on a neg-
atively curved manifold. For the moment, however, there is no clear understanding of the
precise relation between spectral degeneracies and failure of Quantum Unique Ergodicity.

Acknowledgements. N.A and S.N. were partially supported by the Agence Nationale
de la Recherche, under the grant ANR-05-JCJC-0107-01. They benefited from numerous
discussions with Y. Colin de Verdière and M. Zworski. S.N. is grateful to the Mathematical
Department in Bonn for its hospitality in December 2006.

3. Outline of the proof

We start by recalling the definition and some properties of the metric entropy associated
with a probability measure on T ∗M , invariant through the geodesic flow. In §3.2 we extend
the notion of entropy to the quantum framework. Our approach is semiclassical, so we want
the classical and quantum entropies to be connected in some way when ~ → 0. The weights
appearing in our quantum entropy are estimated in Thm. 3.1, which was proven and used
in [2]. In §3.2.1 we also compare our quantum entropy with several “quantum dynamical
entropies” previously defined in the literature. The proof of Thm. 2.1 actually starts in
§3.3, where we present the algebraic tool allowing us to take advantage of our estimates
(3.9) (or their optimized version given in Thm. 3.5), namely an “entropic uncertainty
principle” specific of the quantum framework. From §3.4 on, we apply this “principle” to
the quantum entropies appearing in our problem, and proceed to prove Thm. 2.1. Although
the method is basically the same as in [4], several small modifications allow to finally obtain
the improved lower bound (2.3), and also simplify some intermediate proofs, as explained
in Remark 3.6.
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3.1. Definition of the metric entropy. In this paper we will meet several types of
entropies, all of which are defined using the function η(s) = −s log s, for s ∈ [0, 1]. We
start with the Kolmogorov-Sinai entropy of the geodesic flow with respect to an invariant
probability measure.

Let µ be a probability measure on the cotangent bundle T ∗M . Let P = (E1, . . . , EK) be

a finite measurable partition of T ∗M : T ∗M =
⊔K
i=1Ei. We will denote the set of indices

{1, . . . , K} = [[1, K]]. The Shannon entropy of µ with respect to the partition P is defined
as

hP(µ) = −
K

∑

k=1

µ(Ek) logµ(Ek) =

K
∑

k=1

η
(

µ(Ek)
)

.

For any integer n ≥ 1, we denote by P∨n the partition formed by the sets

(3.1) Eα = Eα0 ∩ g
−1Eα1 . . . ∩ g

−n+1Eαn−1 ,

where α = (α0, . . . , αn−1) can be any sequence in [[1, K]]n (such a sequence is said to be
of length |α| = n). The partition P∨n is called the n-th refinement of the initial partition
P = P∨1. The entropy of µ with respect to P∨n is denoted by

(3.2) hn(µ,P) = hP∨n(µ) =
∑

α∈[[1,K]]n

η
(

µ(Eα)
)

.

If µ is (gt)–invariant, it follows from the convexity of the logarithm that

(3.3) ∀n,m ≥ 1, hn+m(µ,P) ≤ hn(µ,P) + hm(µ,P),

in other words the sequence (hn(µ,P))n∈N is subadditive. The entropy of µ with respect
to the action of the geodesic flow and to the partition P is defined by

(3.4) hKS(µ,P) = lim
n→+∞

hn(µ,P)

n
= inf

n∈N

hn(µ,P)

n
.

Each weight µ(Eα) measures the µ–probability to visit successively Eα0 , Eα1 , . . . , Eαn−1 at
times 0, 1, . . . , n − 1 through the geodesic flow. Roughly speaking, the entropy measures
the exponential decay of these probabilities when n gets large. It is easy to see that
hKS(µ,P) ≥ β if there exists C such that µ(Eα) ≤ C e−βn, for all n and all α ∈ [[1, K]]n.

Finally, the Kolmogorov-Sinai entropy of µ with respect to the action of the geodesic
flow is defined as

(3.5) hKS(µ) = sup
P
hKS(µ,P),

the supremum running over all finite measurable partitions P. The choice to consider the
time 1 of the geodesic flow in the definition (3.1) may seem arbitrary, but the entropy has
a natural scaling property : the entropy of µ with respect to the flow (gat) is |a|–times its
entropy with respect to (gt).

Assume µ is carried on the energy layer E . Due to the Anosov property of the geodesic
flow on E , it is known that the supremum (3.5) is reached as soon as the diameter of the
partition P ∩ E (that is, the maximum diameter of its elements Ek ∩ E) is small enough.
Furthermore, let us assume (without loss of generality) that the injectivity radius of M is



8 N. ANANTHARAMAN, H. KOCH, AND S. NONNENMACHER

larger than 1. Then, we may restrict our attention to partitions P obtained by lifting on
E a partition of the manifold M , that is take M =

⊔K
k=1Mk and then Ek = T ∗Mk. In fact,

if the diameter of Mk in M is of order ε, then the diameter of the partition P∨2 ∩E in E is
also of order ε. This special choice of our partition is not crucial, but it simplifies certain
aspects of the analysis.

The existence of the limit in (3.4), and the fact that it coincides with the infimum, follow
from a standard subadditivity argument. It has a crucial consequence : if (µi) is a sequence
of (gt)–invariant probability measures on T ∗M , weakly converging to a probability µ, and
if µ does not charge the boundary of the partition P, we have

hKS(µ,P) ≥ lim sup
i

hKS(µi,P) .

In particular, assume that for i large enough, the following estimates hold :

(3.6) ∀n ≥ 1, ∀α ∈ [[1, K]]n, µi(Eα) ≤ Ci e
−βn ,

with β independent of i. This implies for i large enough hKS(µi,P) ≥ β, and this estimate
goes to the limit to yield hKS(µ) ≥ β.

3.2. From classical to quantum dynamical entropy. Since our semiclassical measure
µ is defined as a limit of Wigner distributions W~, a naive idea would be to estimate
from below the KS entropy of W~ and then take the limit ~ → 0. This idea cannot work
directly, because the Wigner transformsW~ are neither positive, nor are they (gt)–invariant.
Therefore, one cannot directly use the (formal) integrals W~(Eα) =

∫

Eα

W~(x, ξ) dx dξ to
compute the entropy of the semiclassical measure.

Instead, the method initiated by the first author in [2] is based on the following remarks.
Each integral W~(Eα) can also be written as W~(1lEα

) =
∫

T ∗M
W~ 1lEα

, where 1lEα
is the

characteristic function on the set Eα, that is

(3.7) 1lEα
= (1lEαn−1

◦ gn−1) × . . .× (1lEα1
◦ g) × 1lEα0

.

Remember we took Ek = T ∗Mk, where the Mk form a partition of M .
From the definition of the Wigner distribution, this integral corresponds formally to the

overlap 〈ψ~,Op
~
(1lEα

)ψ~〉. Yet, the characteristic functions 1lEα
have sharp discontinuities,

so their quantizations cannot be incorporated in a nice pseudodifferential calculus. Besides,
the set Eα is not compactly supported, and shrinks in the unstable direction when n =
|α| −→ +∞, so that the operator Op

~
(1lEα

) is very problematic.
We also note that an overlap of the form 〈ψ~,Op

~
(1lEα

)ψ~〉 is a hybrid expression: this is
a quantum matrix element of an operator defined in terms of the classical evolution (3.7).
From the point of view of quantum mechanics, it is more natural to consider, instead, the
operator obtained as the product of Heisenberg-evolved quantized functions, namely

(3.8) (U−n+1
~

Pαn−1U
n−1
~

) (U−n+2
~

Pαn−2U
n−2
~

) · · · (U−1
~
Pα1U~)Pα0 .

Here we used the shorthand notation Pk = 1lMk
, k ∈ [[1, K]] (multiplication operators). To

remedy the fact that the functions 1lMk
are not smooth, which would prevent us from using

a semiclassical calculus, we apply a convolution kernel to smooth them, obtain functions
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1lsmMk
∈ C∞(M), and consider Pk

def
= 1lsmMk

(we can do this keeping the property
∑K

k=1 1lsmMk
=

1).

In the following, we will use the notation A(t)
def
= U−t

~
AU t

~
for the Heisenberg evolution

of the operator A though the Schrödinger flow U t
~

= exp(−it~△
2

). The norm ‖•‖ will denote
either the Hilbert norm on L2(M), or the corresponding operator norm. The subsequent
“purely quantum” norms were estimated in [2, Thm. 1.3.3]:

Theorem 3.1. (The main estimate [2]) Set as above Pk
def
= 1lsmMk

. For every K > 0,
there exists ~K > 0 such that, uniformly for all ~ < ~K, for all n ≤ K| log ~|, for all
(α0, . . . , αn−1) ∈ [[1, K]]n,

(3.9) ‖Pαn−1(n− 1)Pαn−2(n− 2) · · ·Pα0 ψ~‖ ≤ 2(2π~)−d/2 e−
Λ
2
n(1 + O(ε))n.

The exponent Λ is given by the “smallest expansion rate”:

Λ = − sup
ν∈M

∫

log Ju(ρ)dν(ρ) = inf
γ

d−1
∑

i=1

λ+
i (γ).

The infimum on the right hand side runs over the set of closed orbits on E , and the λ+
i denote

the positive Lyapunov exponents along the orbit, that is the logarithms of the expanding
eigenvalues of the Poincaré map, divided by the period of the orbit. The parameter ε > 0
is an upper bound on the diameters of the supports of the functions 1lsmMk

in M .
From now on we will call the product operator

(3.10) Pα = Pαn−1(n− 1)Pαn−2(n− 2) · · ·Pα0 , α ∈ [[1, K]]n .

To prove the above estimate, one actually controls the operator norm

(3.11) ‖Pα Op
~
(χ)‖ ≤ 2(2π~)−d/2 e−

Λ
2
n(1 + O(ε))n ,

where χ ∈ C∞
c (Eε) is an energy cutoff such that χ = 1 near E , supported inside a neigh-

bourhood Eε = H−1([1
2
− ε, 1

2
+ ε]) of E .

In quantum mechanics, the matrix element 〈ψ~, Pαψ~〉 looks like the “probability”, for a
particle in the state ψ~, to visit successively the phase space regions Eα0 , Eα1 , . . . , Eαn−1 at
times 0, 1, . . . , n − 1 of the Schrödinger flow. Theorem 3.1 implies that this “probability”
decays exponentially fast with n, with rate Λ

2
, but this decay only starts around the time

(3.12) n1
def
=
d| log ~|

Λ
,

which is a kind of “Ehrenfest time” (see (3.25) for another definition of Ehrenfest time).
Yet, because the matrix elements 〈ψ~, Pαψ~〉 are not real in general, they can hardly be

used to define a “quantum measure”. Another possibility to define the probability for the
particle to visit the sets Eαk

at times k, is to take the squares of the norms appearing in
(3.9):

(3.13) ‖Pαψ~‖
2 = ‖Pαn−1(n− 1)Pαn−2(n− 2) · · ·Pα0ψ~‖

2 .
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Now we require the smoothed characteristic functions 1lsmMi
to satisfy the identity

(3.14)

K
∑

k=1

(

1lsmMk
(x)

)2
= 1 for any point x ∈M .

We denote by Psm the smooth partition of M made by the functions
(

(1lsmMk
)2

)K

k=1
. The

corresponding set of multiplication operators (Pk)
K
k=1

def
= Pq forms a “quantum partition of

unity” :

(3.15)
K

∑

k=1

P 2
k = IdL2 .

For any n ≥ 1, we refine the quantum partition Pq into (Pα)|α|, as in (3.10). The weights
(3.13) exactly add up to unity, so it makes sense to consider the entropy

(3.16) hn(ψ~,Pq)
def
=

∑

α∈[[1,K]]n

η
(

‖Pαψ~‖
2
)

.

3.2.1. Connection with other quantum entropies. This entropy appears to be a particular
case of the “general quantum entropies” described by S lomczyński and Życzkowski [28],
who already had in mind applications to quantum chaos. In their terminology, a family of
bounded operators π = (πk)

N
k=1 on a Hilbert space H satisfying

(3.17)
N

∑

k=1

π∗
k πk = IdH

provides an “instrument” which, to each index k ∈ [[1,N ]], associates the following map on
density matrices:

ρ 7→ I(k)ρ = πk ρ π
∗
k , a nonnegative operator with tr(I(k)ρ) ≤ 1 .

From a unitary propagator U and its adjoint action Uρ = UρU−1, they propose to construct
the refined instrument

I(α)ρ
def
= I(αn−1) ◦ · · · U ◦ I(α1) ◦ U ◦ I(α0)ρ = U−n+1 πα ρ π

∗
α
Un−1 , α ∈ [[1,N ]]n ,

where we used (3.10) to refine the operators πk into πα. We obtain the probability weights

(3.18) tr(I(α)ρ) = tr(παρπ
∗
α

) , α ∈ [[1,N ]]n.

For any U -invariant density ρ, these weights provide an entropy

(3.19) hn(ρ, I) =
∑

α∈[[1,N ]]n

η
(

tr(I(α)ρ)
)

.

One easily checks that our quantum partition Pq = (Pk)
K
k=1 satisfies (3.17), and that if

one takes ρ = |ψ~〉〈ψ~| the weights tr(I(α)ρ) exactly correspond to our weights ‖Pαψ‖2.
Hence, the entropy (3.19) coincides with (3.16).
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Around the same time, Alicki and Fannes [1] used the same quantum partition (3.17)
(which they called “finite operational partitions of unity”) to define a different type of
entropy, now called the “Alicki-Fannes entropy” (the definition extends to general C∗-
dynamical systems). For each n ≥ 1 they extend the weights (3.18) to “off-diagonal
entries” to form a N n ×N n density matrix ρn:

(3.20) [ρn]α′,α = tr(πα
′ ρ π∗

α
), α,α′ ∈ [[1,N ]]n .

The AF entropy of the system (U , ρ) is then defined as follows: take the Von Neumann
entropy of these density matrices, hAFn (ρ, π) = tr η(ρn), then take lim supn→∞

1
n
hAFn (ρ, π)

and finally take the supremum over all possible finite operational partitions of unity π.
We mention that traces of the form (3.20) also appear in the “quantum histories” ap-

proach to quantum mechanics (see e.g. [17], and [28, Appendix D] for references).

3.2.2. Naive treatment of the entropy hn(ψ~,Pq). For fixed |α| > 0, the Egorov theorem
shows that ‖Pαψ~‖

2 converges to the classical weight µ
(

(1lsmMα

)2
)

when ~ → 0, so for fixed
n > 0 the entropy hn(ψ~,Pq) converges to hn(µ,Psm), defined as in (3.2), the characteristic
functions 1lMk

being replaced by their smoothed versions (1lsmMk
)2. On the other hand, from

the estimate (3.11) the entropies hn(ψ~,Pq) satisfy, for ~ small enough,

(3.21) hn(ψ~,Pq) ≥ n
(

Λ + O(ε)
)

− d| log ~| + O(1) ,

for any time n ≤ K| log ~|. For large times n ≈ K| log ~|, this provides a lower bound

1

n
hn(ψ~,Pq) ≥

(

Λ + O(ε)
)

−
d

K
+ O(1/| log ~|) ,

which looks very promising since K can be taken arbitrary large: we could be tempted to
take the semiclassical limit, and deduce a lower bound hKS(µ) ≥ Λ.

Unfortunately, this does not work, because in the range {n > n1} where the estimate
(3.21) is useful, the Egorov theorem breaks down, the weights (3.13) do not approximate
the classical weights µ

(

(1lsmMα

)2
)

, and there is no relationship between hn(ψ,Pq) and the
classical entropies hn(µ,Psm).

This breakdown of the quantum-classical correspondence around the Ehrenfest time is
ubiquitous for chaotic dynamics. It has been observed before when studying the connection
between the Alicki-Fannes entropy for the quantized torus automorphisms and the KS
entropy of the classical dynamics [5]: the quantum entropies hAFn (ψ~,Pq) follow the classical
hn(µ,Psm) until the Ehrenfest time (and therefore grow linearly with n), after which they
“saturate”, to produce a vanishing entropy lim supn→∞

1
n
hAFn (ψ~,Pq).

To prove the Theorem 2.1, we will still use the estimates (3.11), but in a more subtle
way, namely by referring to an entropic uncertainty principle.

3.3. Entropic uncertainty principle. The theorem below is an adaptation of the en-
tropic uncertainty principle conjectured by Deutsch and Kraus [12, 21] and proved by
Massen and Uffink [25]. These authors were investigating the theory of measurement in
quantum mechanics. Roughly speaking, this result states that if a unitary matrix has
“small” entries, then any of its eigenvectors must have a “large” Shannon entropy.



12 N. ANANTHARAMAN, H. KOCH, AND S. NONNENMACHER

Let (H, 〈., .〉) be a complex Hilbert space, and denote ‖ψ‖ =
√

〈ψ, ψ〉 the associated
norm. Consider a quantum partition of unity (πk)

N
k=1 on H as in (3.17). If ‖ψ‖ = 1,

we define the entropy of ψ with respect to the partition π as in (3.16), namely hπ(ψ) =
∑N

k=1 η
(

‖πk ψ‖2
)

. We extend this definition by introducing the notion of pressure, associ-
ated to a family v = (vk)k=1,...,N of positive real numbers: the pressure is defined by

pπ,v(ψ)
def
=

N
∑

k=1

η
(

‖πk ψ‖
2
)

−
N

∑

k=1

‖πk ψ‖
2 log v2

k.

In Theorem 3.2, we actually need two partitions of unity (πk)
N
k=1 and (τj)

M
j=1, and two

families of weights v = (vk)
N
k=1, w = (wj)

M
j=1, and consider the corresponding pressures

pπ,v(ψ), pτ,w(ψ). Besides the appearance of the weights v, w, we bring another modifica-
tion to the statement in [25] by introducing an auxiliary operator O.

Theorem 3.2. [4, Thm. 6.5] Let O be a bounded operator and U be an isometry on H.

Define c
(v,w)
O (U)

def
= supj,k wj vk ‖τj U π

∗
kO‖, and V = maxk vk, W = maxj wj.

Then, for any ǫ ≥ 0, for any normalized ψ ∈ H satisfying

(3.22) ∀k = 1, . . . ,N , ‖(Id−O) πk ψ‖ ≤ ǫ ,

the pressures pτ,w
(

Uψ
)

, pπ,v
(

ψ
)

satisfy

pτ,w
(

U ψ
)

+ pπ,v
(

ψ
)

≥ −2 log
(

c
(v,w)
O (U) + N V W ǫ

)

.

Example 1. The original result of [25] corresponds to the case where H = CN , O = Id,
ǫ = 0, N = M, vk = wj = 1, and the operators πk = τk are the orthogonal projectors on
some orthonormal basis (ek)

N
k=1 of H. In this case, the theorem asserts that

hπ(U ψ) + hπ(ψ) ≥ −2 log c(U)

where c(U) = supj,k |〈ek,Uej〉| is the supremum of all matrix elements of U in the orthonor-
mal basis (ek). As a special case, one gets hπ(ψ) ≥ − log c(U) if ψ is an eigenfunction of
U .

3.4. Applying the entropic uncertainty principle to the Laplacian eigenstates.

In this section we explain how to use Theorem 3.2 in order to obtain nontrivial information
on the quantum entropies (3.16) and then hKS(µ). For this we need to define the data
to input in the theorem. Except the Hilbert space H = L2(M), all other data depend on
the semiclassical parameter ~: the quantum partition π, the operator O, the positive real
number ǫ, the weights (vj), (wk) and the unitary operator U .

As explained in section 3.2, we partition M into M = ⊔Kk=1Mk, consider open sets
Ωk ⊃⊃Mk (which we assume to have diameters ≤ ε), and consider smoothed characteristic
functions 1lsmMk

supported respectively inside Ωk, and satisfying the identity (3.14). The

associated multiplication operators on H are form a quantum partition (Pk)
K
k=1, which we

had called Pq. To alleviate notations, we will drop the subscript q.
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From (3.15), and using the unitarity of U~, one realizes that for any n ≥ 1, the families
of operators P∨n = (P ∗

α
)|α|=n and T ∨n = (Pα)|α|=n (see (3.10)) make up two quantum

partitions of unity as in (3.17), of cardinal Kn.

3.4.1. Sharp energy localization. In the estimate (3.11), we introduced an energy cutoff χ
on a finite energy strip Eε, with χ ≡ 1 near E . This cutoff does not appear in the estimate
(3.9), because, when applied to the eigenstate ψ~, the operator Op

~
(χ) essentially acts like

the identity.
The estimate (3.11) will actually not suffice to prove Theorem 2.1. We will need to

optimize it by replacing χ in (3.11) with a “sharp” energy cutoff. For some fixed (small)
δ ∈ (0, 1), we consider a smooth function χδ ∈ C∞(R; [0, 1]), with χδ(t) = 1 for |t| ≤ e−δ/2

and χδ(t) = 0 for |t| ≥ 1. Then, we rescale that function to obtain the following family of
~-dependent cutoffs near E :

(3.23) ∀~ ∈ (0, 1), ∀n ∈ N, ∀ρ ∈ T ∗M, χ(n)(ρ; ~)
def
= χδ

(

e−nδ ~
−1+δ(H(ρ) − 1/2)

)

.

The cutoff χ(n) is supported in a tubular neighbourhood of E of width 2~
1−δ enδ. We will

always assume that this width is << ~1/2 in the semiclassical limit, which is the case if we
ensure that n ≤ Cδ| log ~| for some 0 < Cδ < (2δ)−1−1. In spite of their singular behaviour,
these cutoffs can be quantized into pseudodifferential operators Op(χ(n)) described in [4]
(the quantization uses a pseudodifferential calculus adapted to the energy layer E , drawn
from [29]). The eigenstate ψ~ is indeed very localized near E , since it satisfies

(3.24) ‖
(

Op(χ(0)) − 1
)

ψ~‖ = O(~∞) ‖ψ~‖ .

In the rest of the paper, we also fix a small δ′ > 0, and call “Ehrenfest time” the ~-
dependent integer

(3.25) nE(~)
def
=

⌊(1 − δ′)| log ~|

λmax

⌋

.

Notice the resemblance with the time n1 defined in (3.12). The significance of this time
scale will be discussed in §3.4.5.

The following proposition states that the operators (P ∗
α

)|α|=nE
, almost preserve the en-

ergy localization of ψ~ :

Proposition 3.3. For any L > 0, there exists ~L such that, for any ~ ≤ ~L, the Laplacian
eigenstate satisfies

(3.26) ∀α, |α| = nE , ‖
(

Op(χ(nE)) − Id
)

P ∗
α
ψ~‖ ≤ ~

L‖ψ~‖ .

We recognize here a condition of the form (3.22).

3.4.2. Applying Theorem 3.2: Step 1. We now precise some of the data we will use in the
entropic uncertainty principle, Theorem 3.2. As opposed to the choice made in [4], we will
use two different partitions π, τ .
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• the quantum partitions π and τ are given respectively by the families of operators
π = P∨nE = (P ∗

α
)|α|=nE

, τ = T ∨nE = (Pα)|α|=nE
. Notice that these partitions

only differ by the ordering of the operators Pαi
(i) inside the products. In the

semiclassical limit, these partitions have cardinality N = KnE ≍ ~−K0 for some
fixed K0 > 0.

• the isometry will be the propagator at the Ehrenfest time, U = UnE

~
.

• the auxiliarly operator is given as O = Op(χ(nE)), and the error ǫ = ~L, where L
will be chosen very large (see §3.4.4).

• the weights vα, wα will be selected in §3.4.4. They will be semiclassically tempered,
meaning that there exists K1 > 0 such that, for ~ small enough, all vα, wα are
contained in the interval [1, ~−K1].

The entropy and pressures associated with a state ψ ∈ H are given by

hπ(ψ) =
∑

|α|=nE

η
(

‖P ∗
α
ψ‖2

)

,(3.27)

pπ,v(ψ) = hπ(ψ) − 2
∑

|α|=nE

‖P ∗
α
ψ‖2 log vα.(3.28)

With respect to the second partition, we have

hτ (ψ) =
∑

|α|=nE

η
(

‖Pαψ‖
2
)

,(3.29)

pτ,w(ψ) = hτ (ψ) − 2
∑

|α|=nE

‖Pαψ‖
2 logwα.(3.30)

We notice that the entropy hτ (ψ) exactly corresponds to the formula (3.16), while hπ(ψ)
is built from the norms

‖P ∗
α
ψ‖2 = ‖Pα0Pα1(1) · · ·Pαn−1(n− 1)ψ‖2 .

If ψ is an eigenfunction of U~, the above norm can be obtained from (3.13) by exchanging

U~ with U−1
~

, and replacing the sequence α = (α0, . . . , αn−1) by ᾱ
def
= (αn−1, . . . , α0). So the

entropies hπ(ψ) and hτ (ψ) are mapped to one another through the time reversal U~ → U−1
~

.
With these data, we draw from Theorem 3.2 the following

Corollary 3.4. For ~ > 0 small enough consider the data π, τ , U , O as defined above.
Let

(3.31) cv,wO (U)
def
= max

|α|=|α′|=nE

(

wα
′ vα ‖Pα

′ UnE

~
Pα Op(χ(nE))‖

)

.

Then for any normalized state φ satisfying (3.26),

pτ,w(UnE

~
φ) + pπ,v(φ) ≥ −2 log

(

cv,wO (U) + hL−K0−2K1
)

.

From (3.26), we see that the above corollary applies to the eigenstate ψ~ if ~ is small
enough.
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The reason to take the same value nE for the refined partitions P∨nE , T ∨nE and the
propagator UnE

~
is the following : the products appearing in cv,wO (U) can be rewritten

(with U ≡ U~):

Pα
′ UnE Pα = U−nE+1Pα′

nE−1
U · · ·UPα′

0
UPαnE−1U · · ·UPα0 = UnE Pαα

′ .

Thus, the estimate (3.11) with n = 2nE already provides an upper bound for the norms
appearing in (3.31) — the replacement of χ by the sharp cutoff χ(nE) does not harm the
estimate.

To prove Theorem 2.1, we actually need to improve the estimate (3.11), as was done in
[4], see Theorem 3.5 below. This improvement is done at two levels: we will use the fact
that the cutoffs χ(nE) are sharper than χ, and also the fact that the expansion rate of the
geodesic flow (which governs the upper bound in (3.11)) is not uniform, but depends on
the sequence α.

Our choice for the weights vα, wα will then be guided by the α-dependent upper bounds
given in Theorem 3.5. To state that theorem, we introduce some notations.

3.4.3. Coarse-grained unstable Jacobian. We recall that, for any energy λ > 0, the geodesic
flow gt on the energy layer E(λ) = H−1(λ) ⊂ T ∗M is Anosov, so that the tangent space
TρE(λ) at each ρ ∈ T ∗M , H(ρ) > 0 splits into

TρE(λ) = Eu(ρ) ⊕Es(ρ) ⊕ RXH(ρ)

where Eu (resp. Es) is the unstable (resp. stable) subspace. The unstable Jacobian Ju(ρ)
is defined by Ju(ρ) = det

(

dg−1
|Eu(g1ρ)

)

(the unstable spaces at ρ and g1ρ are equipped with

the induced Riemannian metric).
This Jacobian can be “discretized” as follows in the energy strip Eε ⊃ E . For any pair

of indices (α0, α1) ∈ [[1, K]]2, we define

(3.32) Ju1 (α0, α1)
def
= sup

{

Ju(ρ) : ρ ∈ T ∗Ωα0 ∩ Eε, g1ρ ∈ T ∗Ωα1

}

if the set on the right hand side is not empty, and Ju1 (α0, α1) = e−R otherwise, where R > 0
is a fixed large number. For any sequence of symbols α of length n, we define

(3.33) Jun(α)
def
= Ju1 (α0, α1) · · ·Ju1 (αn−2, αn−1) .

Although Ju and Ju1 (α0, α1) are not necessarily everywhere smaller than unity, there exists
C, λ+, λ− > 0 such that, for any n > 0, for any α with |α| = n,

(3.34) C−1 e−n(d−1) λ+ ≤ Jun(α) ≤ C e−n(d−1) λ− .

One can take λ+ = λmax(1+ε), where λmax is the maximal expanding rate in Theorem. 2.1.
We now give our central estimate, easy to draw from [4, Corollary 3.4].

Theorem 3.5. Fix small positive constants ε, δ, δ′ and a constant 0 < Cδ < (2δ)−1 − 1.
Take an open cover M =

⋃

k Ωk of diameter ≤ ε and an associated quantum partition P =
(Pk)

K
k=1. There exists ~0 such that, for any ~ ≤ ~0, for any positive integer n ≤ Cδ| log ~|,

and any pair of sequences α, α
′ of length n,

(3.35) ‖Pαα
′ Op(χ(n))‖ = ‖Pα

′ Un
~
Pα Op(χ(n))‖ ≤ C ~

− d−1
2

−δ enδ
√

Jun(α) Jun(α′) .
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The constant C only depends on the Riemannian manifold (M, g). If we take n = nE, this
takes the form

(3.36) ‖Pα
′ UnE

~
Pα Op(χ(nE))‖ ≤ C ~

− d−1+cδ
2

√

JunE
(α) JunE

(α′) ,

where c = 2 + 2λ−1
max.

The idea of proof in Theorem 3.5 is rather simple, although the technical implementation
is cumbersome. We first show that for any normalized state ψ, the state Op(χ(n))ψ can
be essentially decomposed into a superposition of ~−d| suppχ(n)| normalized Lagrangian
states, supported on Lagrangian manifolds transverse to the stable foliation. In fact the
Lagrangian states we work with are truncated δ–functions, supported on lagrangians of the
form ∪tgtS∗

zM . The action of the operator UnPαα
′ = Pα′

n−1
U · · ·UPα0 on such Lagrangian

states can be analyzed through WKB methods, and is simple to understand at the classical
level : each application of the propagator U stretches the Lagrangian along the unstable
direction (the rate of stretching being described by the local unstable Jacobian), whereas
each operator Pk “projects” on a piece of Lagrangian of diameter ε. This iteration of
stretching and cutting accounts for the exponential decay. The αα

′-independent factor
on the right of (3.36) results from adding together the contributions of all the initial
Lagrangian states. Notice that this prefactor is smaller than in Theorem. 3.1 due to the
condition Cδ < (2δ)−1 − 1.

Remark 3.6. In [4] we used the same quantum partition P∨nE for π and τ in Theorem. 3.2.
As a result, we needed to estimate from above the norms ‖P ∗

α
′ UnE Pα Op(χ(nE))‖ (see [4,

Theorem. 2.6]). The proof of this estimate was much more involved than the one for
(3.36), since it required to control long pieces of unstable manifolds. By using instead the
two partitions P(n), T (n), we not only prove a more precise lower bound (2.3) on the KS
entropy, but also short-circuit some fine dynamical analysis.

3.4.4. Applying Theorem 3.2: Step 2. There remains to choose the weights (vα, wα) to use
in Theorem 3.2. Our choice is guided by the following idea: in (3.31), the weights should
balance the variations (with respect to α,α′) in the norms, such as to make all terms in
(3.31) of the same order. Using the upper bounds (3.36), we end up with the following
choice for all α of length nE :

vα = wα

def
= JunE

(α)−1/2 .

From (3.34), there exists K1 > 0 such that, for ~ small enough, all the weights are
contained in the interval [1, ~−K1], as announced in §3.4.2. Using these weights, the estimate
(3.36) implies the following bound on the coefficient (3.31):

∀~ < ~0, cv,wO (U) ≤ C ~
− d−1+cδ

2 .

We can now apply Corollary 3.4 to the particular case of the eigenstates ψ~. We choose L
such that L−K0 − 2K1 > −d−1+cδ

2
, so from Corollary 3.4 we draw the following
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Proposition 3.7. Let (ψ~)~→0 be our sequence of eigenstates (2.2). In the semiclassical
limit, the pressures of ψ~ satisfy

(3.37) pP∨nE ,v(ψ~) + pT ∨nE ,w(ψ~) ≥ −
(d − 1 + cδ)λmax

(1 − δ′)
nE + O(1) .

If M has constant curvature we have log Jn
α

≤ −n(d − 1)λmax(1 − O(ε)) for all α of
length n, and the above lower bound can be written

hP∨nE (ψ~) + hT ∨nE (ψ~) ≥ (d− 1)λmax

(

1 + O(ε, δ, δ′)
)

nE .

As opposed to (3.21), the above inequality provides a nontrivial lower bound for the quan-
tum entropies at the time nE , which is smaller than the time n1 of (3.12), and will allow
to connect those entropies to the KS entropy of the semiclassical measure (see below).

3.4.5. Subadditivity until the Ehrenfest time. Even at the relatively small time nE , the
connection between the quantum entropy h(ψ~,P∨nE ) and the classical h(µ,P∨nE

sm ) is not
completely obvious: both are sums of a large number of terms (≍ ~−K0). Before taking the
limit ~ → 0, we will prove that a lower bound of the form (3.37) still holds if we replace
nE ≍ | log ~| by some fixed no ∈ N, and P∨nE by the corresponding quantum partition
P∨no . The link between quantum pressures at times nE and no is provided by the following
subadditivity property, which is the semiclassical analogue of the classical subadditivity of
pressures for invariant measures (see (3.3)).

Proposition 3.8 (Subadditivity). Let δ′ > 0. There is a function R(no, ~), and a real
number R > 0 independent of δ′, such that, for any integer no ≥ 1,

lim sup
~−→0

|R(no, ~)| ≤ R

and with the following properties. For any small enough ~ > 0, any integers no, n ∈ N with
no + n ≤ nE(~), for any ψ~ normalized eigenstate satisfying (2.2), the following inequality
holds:

pP∨(no+n),v(ψ~) ≤ pP∨no ,v(ψ~) + pP∨n,v(ψ~) +R(no, ~) .

The same inequality is satisfied by the pressures pT ∨n,w(ψ~).

To prove this proposition, one uses a refined version of Egorov’s theorem [10] to show that
the non–commutative dynamical system formed by (U t

~
) acting (through Heisenberg) on

observables supported near E is (approximately) commutative on time intervals of length
nE(~). Precisely, we showed in [4] that, provided ε is small enough, for any a, b ∈ C∞

c (Eε),

∀t ∈ [−nE(~), nE(~)], ‖[Op
~
(a)(t),Op

~
(b)]‖ = O(~cδ

′

), ~ → 0 ,

and the implied constant is uniform with respect to t. Within that time interval, the oper-
ators Pαj

(j) appearing in the definition of the pressures commute up to small semiclassical
errors. This almost commutativity explains why the quantum pressures pP∨n,v(ψ~) satisfy
the same subadditivity property as the classical entropy (3.3), for times smaller than nE .
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Thanks to this subadditivity, we may finish the proof of Theorem. 2.1. Fixing no, using
for each ~ the Euclidean division nE(~) = q(~)no + r(~) (with r(~) < no), Proposition 3.8
implies that for ~ small enough,

pP∨nE ,v(ψ~)

nE
≤
pP∨no ,v(ψ~)

no
+
pP∨r,v(ψ~)

nE
+
R(no, ~)

no
.

The same inequality is satisfied by the pressures pT ∨n,w(ψ~). Using (3.37) and the fact
that pP∨r,v(ψ~) stays uniformly bounded when ~ → 0, we find

(3.38)
pP∨no ,v(ψ~) + pT ∨no ,w(ψ~)

no
≥ −

2(d− 1 + cδ)λmax

2(1 − δ′)
−

2R(no, ~)

no
+ Ono

(1/nE) .

We are now dealing with quantum partitions P∨no , T ∨no , for n0 ∈ N independent of ~. At
this level the quantum and classical entropies are related through the (finite time) Egorov
theorem, as we had noticed in §3.2.2. For any α of length no, the weights ‖Pαψ~‖2 and
‖P ∗

α
ψ~‖2 both converge to µ

(

(1lsmMα

)2
)

, where we recall that

1lsmMα

= (1lsmMαno−1
◦ gno−1) × . . .× (1lsmMα1

◦ g) × 1lsmMα0
.

Thus, both entropies hP∨no (ψ~), hT ∨no (ψ~) semiclassically converge to the classical entropy
hno

(µ,Psm). As a result, the left hand side of (3.38) converges to

(3.39) 2
hno

(µ,Psm)

no
+

2

no

∑

|α|=no

µ
(

(1lsmMα

)2
)

log Juno
(α) .

Since µ is gt-invariant and Juno
has the multiplicative structure (3.33), the second term in

(3.39) can be simplified:
∑

|α|=no

µ
(

(1lsmMα

)2
)

log Juno
(α) = (no − 1)

∑

α0,α1

µ
(

(1lsmM(α0,α1)
)2

)

log Ju1 (α0, α1) .

We have thus obtained the lower bound

(3.40)
hno

(µ,Psm)

no
≥ −

no − 1

no

∑

α0,α1

µ
(

(1lsmM(α0,α1)
)2

)

log Ju1 (α0, α1)−
(d− 1 + cδ)λmax

2(1 − δ′)
−
R

no
.

At this stage we may forget about δ and δ′. The above lower bound does not depend on
the derivatives of the functions 1lsmMα

, so the same bound carries over if we replace 1lsmMα

by
the characteristic functions 1lMα

. We can finally let no tend to +∞, then let the diameter
ε tend to 0. The left hand side converges to hKS(µ) while, from the definition (3.32), the
sum in the right hand side of (3.40) converges to the integral

∫

E log Ju(ρ)dµ(ρ) as ε → 0,
which proves (2.3).

�
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[11] Y. Colin de Verdière, Ergodicité et fonctions propres du laplacien, Commun. Math. Phys. 102,

497–502 (1985)
[12] D. Deutsch, Uncertainty in quantum measurements, Phys. Rev. Lett. 50, 631–633 (1983)
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