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Abstract

Let (X,)n>1 be a sequence of real random variables. The local score is H, =
maxi<i<j<n(X; + ... + X;). If (X;)n>1 is a “good” Markov chain under its in-
variant measure, the X; are centered, we prove that H,//n converges in distri-
bution to Bf when n — 400, where Bf = maxg<y<i|By| and (By,u > 0) is a
standard Brownian motion, By = 0. If (X},),>1 a sequence of i.i.d. random vari-
ables, IE(X;) = 6/y/n and Var(X;) = 0% > 0, we prove the convergence of H,/\/n
to 05/, where &, = maxo<y<1 {(B(u) + yu) — ming<s<y (B(s) + vs)}. We approx-
imate the probability distribution function of §, and we determine the asymptotic
behavior of P(¢y > a), a — +0o0.
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1 Introduction
1.1 Known results

Let (X,),>1 be a sequence of real valued random variables. Let S,, = >p_; Xy,
So = 0, the associated random walk. Let H,, = maxo<i<j<n(S; — S;) be the lo-
cal score assigned to (X,,),>1. The aim of this paper is to study the asymptotic
behavior of H,, when n — +o00, (X,),>1 being either a sequence of i.i.d. ran-
dom variables or a Markov chain.

The motivations come from biology. The local score is an important tool for
DNA sequences analysis. Since the length of DNA is large, the knowledge of
the limit behavior of H,, is actually useful.

Some authors have already studied the local score. In a context of queue
theory, Iglehart ([Igl72]) has investigated the convergence of random variables
(i.e. virtual waiting time) which looks like the local score.

When (X,),>1 is a sequence of i.i.d. rv’s, Daudin and Mercier [DM99] have
obtained IP (H,, < z), for any # > 0 and n > 1. Let II be a transition matrix of
size z, Py = (1,0,...,0), and P, = (0,0,...,1). Then IP (H, < z) = RII"P}.
In practice, this result is computationally available if n and z are not too
large.

When the X; are i.i.d. rv’s with I[E(X;) < 0, Dembo and Karlin ([DK92]) have
investigated the asymptotic behavior of H,. More precisely they proved :

|
lim P (Hn < % + x) = exp (—K" exp (—Az)) (1.1)

n—-+00

where K* and A depend only on the probability distribution of Xj.

When the X; are i.i.d. with IE(X;) > 0, the behavior of H, is drastically dif-
ferent. The strong law of large numbers implies S,, o~ [E(X;) n. Obviously
H, = max;<,Y; where Y; = S; — min;<; S;. Since lim,,_, . S, = +00 a.s.,
then —(min;<, S;) converges a.s. to a finite r.v., when n goes to infinity. So
Y, ~ S;and H, o~ IE(X;) n. Therefore IE(X) is the parameter which

j—4o0
governs a phase transition phenomenon.



1.2 Main results

Here we investigate the case where (X;);> is a sequence of r.v’s with null or
“small” expectation.

We start with the centered case. We suppose that (X,,),>1 is either a sequence
of centered i.i.d. r.v’s with variance o2 > 0 or a “good” Markov centered chain
under its invariant probability with parameter o (see the details in section 2).
In this context, we prove that :

H, () .
ﬁ njoo O'Bl, (12)

where B} = maxXo<y<i|By|, and (B,,u > 0) denotes a standard Brownian
motion started at 0.

The distribution function of Bj is defined as a series (cf Proposition 2).

Consider a family {(X,EN)),CZI; N > 1} of i.i.d. r.v’s depending on a parameter
N and assume that :

lim VNE (X(V) =d€R, lim Var (x(M) =0 > 0. (1.3)

N —+o00 —+00

If the sequence (Xj)r>1 does not depend on N, then (1.3) implies that :
IE (X)) = 0 and Var(X;) = o2 So we obtain the centered case as an in-
stance of the general one.

(1.3) implies that IE (XfN)) — 0, when N — oo.
We prove in proposition 5 that :

g™
IN 9D, gy (1.4)

\/N n—00

where &, = maxo<y<1 {B(u) + yu — ming<;<,(B(s) + vs)}.

Let us summarize the different asymptotic behavior of H,,, n going to infinity.

e If E(X;) < 0, following Dembo and Karlin ([DK92]) , the distribution of

nn
H,, is approximated by the law of BY + n where 7 is a r.v. whose c.d.f. is

IP(n<z)=exp(—K"exp(—Az)); x>0.

o If IE(X,) >0, H, is a.s. equivalent to IE (X) n.



e If E(X;) = 0, the p.d.f. of H, can be approximated by the p.d.f. of
(0B})v/n.

e Suppose that X; has a finite variance 0% and [E (X;) is “small” such that
d = /nlE (X,). This means that we can find n in a such way that \/nlE (X))
is bounded by a constant. We obtain an approximation of the p.d.f. of H,

by the p.d.f. of (6&5/5)\/n.

Numerical results about the scope of validity of each approximation is given
in [DEO03].

1.3 More about the p.d.f. of &,

The distribution function of &, is difficult to obtain explicitly. We prove that
for any fixed a > 0, IP (£, > a) is the sum of a series (cf. theorem 9).

Let
& (t) = max, {B(u) +yu — o%iélu(B(s) + fys)} , t>0. (1.5)

and
T, = inf {t > 0; B(t) + vt — Oréligt(B(s) +vs) > a} , a>0. (1.6)

Obviously &, = &,(1).

Taylor ([Tay75]) and Williams([Wil76]) have determined the Laplace trans-
form of T, :

va
E [ ¥Te/2] = e A> 0. 1.7
[6 } vcoshva + ysinhva’ (17)

where v = \/\? + ~2.
The distribution of T;, and (&,(t),t > 0) are linked by the relation :
P (T, <t)=P(&((t) >a), Vt>0. (1.8)

Suppose that « is a r.v. independent of (By,t > 0) with exponential distribu-
tion, then :

P (&(a) > a) =P (T, <a)=E[e ™]; Va>0. (1.9)
Therefore the p.d.f. of &, («) is explicit :

vel®
1-P <a)= ;v 0. 1.10
(&) < o) v cosh va + ysinh va’ @ (1.10)




1.4 Tail behavior of &,

The distribution of &, is not easy to handle. So we investigate the tail of &,.
We prove (cf Theorem 4) :

2 1 2
P& >a) ~ 2\/j— e (-a)/2, (1.11)

a— 00 T Q

We observe that a — IP (£, > a) decreases faster to 0, when v < 0. This seems
natural since B; + vt goes to +00 (resp. —oo) when > 0 (resp. v < 0) and
t — +o0.

This remark is connected to the phase transition associated with the sign of
E(X;) <0

1.5 Organization of the paper

In section 2, we study the convergence of H,, when n goes to infinity and
[E(X;) = 0. In section 3, we investigate the asymptotic behavior of H,, when
IE(X,) depends on N. We state the results and detail only short proofs. The
more technical proofs are postponed in section 4.

Acknowledgment. We would like to thank a referee for his interesting re-
marks and suggestions (in particular a direct proof of theorem 4).

2 Convergence of the local score in the centered case

Let (X,)n>1 be a sequence of real valued random variables. (Sk)r>o denotes
the associated random walk :

k
Sp =0, Sk=>_ Xi k>1. (2.1)
i=1
Let H,, denote the local score

0<i<ji<n 0<i<j<n



We define the sequence of score processes (H (v ))N>1 which are piecewise linear
processes : -

t = HN)(t) is linear on each interval of the form [7%, J—l]

"
HM (4) = - H;.

(2.3)

In this section the sequence (X},),,>1 will be either a sequence of i.i.d. centered
variables with finite second moment or a stationary and irreducible Markov
chain on a finite subset of R. In the first case we set 0* = Var(X;), in the
second one we suppose that IE,(X;) =0 and

o’ =E,(X7) +2Y E,(X1Xy), (2.4)
k=2
where v is the invariant distribution of (X,),>o.
o? is well defined for the series (2.4) is convergent ([Bil68, p. 166]).

We are now able to state the main result of this section :

Theorem 1 Let (X,),>1 be a sequence of random variables as above.

Then the sequence of processes (H(N) (t), t> O) converges in law to the process
(0 maxo<y<s |Bul,s > 0), as N tends to infinity.

Proof : We just outline the proof, the complete developments are given in
section 4.1.

Let B™Y) be the piecewise linear process defined by

k 1
BM ) = Sk; k> 0. 2.5
<N> VN N 29
and
E k+1
t— BWM(t) is linear on each interval of the form [N, %] (2.6)

It is well known ([Bil68]) that (B(N)(s),s > 0) converges to the standard
Brownian motion. We easily check that (H(N)(s), 5> 0) may be approached

by a continuous function of (B(N) (s),s > 0) up to a remainder term Ry which
converges to 0. According to Paul Levy’s theorem (1948, [RY91], chap. II, thm
2.3) the process (B, — ming<s<¢ Bs;t > 0) has the same law as the process
(|By];t > 0). This completes the outline of the proof of theorem 1.



O

An important application of theorem 1 is the convergence of the local score :

converges in distribution, as n — oo, to o B}, where

NG

B} = maxo<u<1 (|Bul)-

Proposition 2 1)

2) The cumulative distribution function (c.d.f) of By is

P(Bf <z)==) (1" exp (—M>, x> 0. (2.7)

T 2k + 1 812

Proof : Theorem 1 implies the convergence in law of the random variable
Hy
%.

H,
n n

The equality (2.7) is well known and may be deduced from [BS96] (p.146) see
4.6 by a short calculus.

O

Remark 3 Theorem 1 implies the convergence of T,(H)/a?, as a tends to
infinity, where T,(H) = inf {k > 0; Hy, > a}, a > 0. Given a € R", then

L) @ 1
a’> =0 0?(BY)?

(2.8)

Proof : Hj is a non decreasing process, so :

5 <l )

H[Nﬂ ! }C{T‘”L(H)<t}.

and

VN N

H[Nt —1 H } ..
and have the same limit : ov/tB;. Then
VN \/N VB

T 2
vV N * o
P (—NV < t) — P(oViBi >z) =P (702(31‘)2 < t) . (2.9)

We know also that



Let a = 2v/N, (2.8) follows immediately.

3 Convergence in the non-centered case.

3.1 (B;;t > 0) denote a standard Brownian motion starting at 0. In this sec-
tion we suppose that (X, ),>o is a sequence of i.i.d random variables and that
the law of X; depends upon N, N being the order of approximation. More
precisely, we assume :

lim Var(X;)=0?>>0 ; lim VNIE(X,)=0cR (3.1)
N—o0 N—oo

It is easy to prove (cf proposition 5) that Hy/v/ N converges in distribution,
when N goes to infinity, to 0&s5/,, where

£, = max {B(u) + yu — orgnsigu(B(S) + ’}/S)} : (3.2)

0<u<1

In the sequel we focus on the law of £,. It is convenient to introduce :
¢ (a) = e TP (&, > a), a>0. (3.3)

Let us briefly detail our approach. We state the main result (theorem 4) at
the end of the subsection.

In section 2 we have determined the distribution of §, when v = 0. This
brings us to remove the drift term, using Girsanov’s transformation. Using
the pathwise properties of Brownian motion we prove that (cf proposition 6
and theorem 7) :

1
o (a) = —/[ : Ijyu<1y exp {—vt — 52 u/2} o) F (1—u,1/a) dudt
a J[0,+o00 [ -
(3.4)
where th can be expressed as an expectation of a positive r.v. :
() _ —727e .
Ft7 (l", b) = (n{OSTth, OSB;tSI/b}e ! /2> J £20,020,t=>0. (3'5)

The two random variables 7, and B, are defined as follows :

e 73 is the first time where the local time at 0 of Brownian motion (B, u > 0)
reaches level t,



e (Bf,t>0) is the process : By = supg,<; |Bul-
For any positive number a, the function y, is known (cf (3.16) and (3.17)).
This allows us to obtain the joint distribution of (7, B},).

The decomposition of the Brownian path up to time 7; (namely (B,;0 < u < 7)),
conditionally to B, leads to some recursive structure. This generates two an-
alytic counterparts.

e The density function 6, of (7, B},) satisfies an integral equation (proposition
10),

o F is solution of an integral equation (cf (3.20)).

Moreover relation (3.20) yields to express F" as sum of a series (Theorem
9). Unfortunately the coefficients are not explicit and are determined by a
recursive algorithm.

However relation (3.20) is rich enough since we determine the decay rate of
a+— P (& > a), a— oo. More precisely

Theorem 4 For all v in R :

2 1 21
P (& >a) ~ 2\£ e 7/ - 10 /2 = 2\/; ae*(HWZ. (3.6)

Two proofs of Theorem 4 will be given. The first one is a consequence of
Theorem 7 and is postponed in section 4.4. The second one suggested by the
referee will be developed at the end of this section.

3.2 We now prove the main results of this section (Theorems 7 and 9).

Only short and easy proofs are given here, the more technical points are post-
poned in section 4.

Recall that (X},),>o will denote a sequence of i.i.d. random variables such that
the law of X; depends upon a parameter N. We suppose that (3.1) holds. For
instance, we can choose

1 0
PX;=1)=pyv=z+——=
K==y =5t R



for N large enough so that |\/LN| < 1. Then

2| %

]E(Xl) = PN — N = and VCLT(Xl) =1-

=

We set ay = IE(X,). Define B as

[k B 1 B 1 .
B )<N>_am(s’“_E(S’“))_a —(Se— kaw); k20 (37

and

h E] (3.8)

t — BW) (t) is linear on each interval of the form [N, N

The process (H™)(t),t > 0) is defined by the same procedure as in the cen-
tered case, i.e. expression (2.3). It can be shown ([Bil68], p.68) that (B™)(t), >
0) converges in distribution to (B(t),t > 0). (H™)(t),t > 0) is a continuous
functional of (B (¢),¢ > 0), this implies the convergence of Hjyy/v/N.

Proposition 5 1. Lett > 0. As N tends to oo,

Hpg 1 (d)
UN T U (S0 = S 7 0l (D),
where
&) = ay, {B (u) +yu — min (B(s) + 75)} . (3.9)

2. In particular Hy,//n converges in distribution, as n — oo, to 0&/,, where

& = §7(1).

Proof : (see section 4.2 for a complete proof).

O

Remark : The classical scaling property of Brownian motion ( i.e. (Bg;s >
0) @ (VtBs; s > 0), for any ¢t > 0) implies that :

&, (t) @ \/1_557\/;, for any ¢ > 0. (3.10)

This allows us to obtain the distribution of &,.

10



Proposition 6 For alla >0 and v € R, we set
¢ (a) = e TP (&, > a). (3.11)

Then

2
¢(7)(a) =IE []l{TZJrTaQ} exp {—7Z X (17 + Ta)}|B7’fZ < a] , 7ER,

2
(3.12)
where

e 7, denotes the first time where the local time at 0 of Brownian motion
(By;t > 0) reaches t,

T, is the first time where a Bessel process of dimension 3, starting at 0, hits
a,

Z is an exponential random variable of parameter a (i.e. its density function

1
18 ae_x/a]]_{m>0}).

(By;u > 0) is the process : By = Supg<s<, |Bs|, u > 0.
for any a >0, (By;t > 0), Z and T, are independent.

Proof : We make use on one hand of Girsanov’s transformation to reduce to
the Brownian case and on second hand of some sample path properties. See
section 4.3.

O

We only need to handle ¢). However ¢(" is equal to qﬁﬁﬂ), the function ¢§\7)
being defined as follows :

2

A
6 (a) =B [H{Tz+Ta<1} exp {—VZ — = (7 + Ta)}|BiZ <a

AeR
2 Y G )

(3.13)

In our approach it is not more difficult to deal with ¢§\7) instead of ¢(7).

Formula (3.12) gives a simple stochastic interpretation of ¢§\7), but we have to
express qﬁ(;) under a more convenient form for computation purpose.

The analytic transcription of (3.12) is the following :
Theorem 7 Let A\ € R be fixed, then for any a > 0

1
(f)(;)(a) == /[0 oo Iyy<1y exp {—fyt —\? u/2} fa() Ft(A) (1—wu,1/a) dudt
| (3.14)

11



where

Ft(/\) (z,0) = (11{0<Tt<$ 0< B <1/b}6_/\2n/2> ; r>0,0>0,%t>0,
— —_ ) —_ Tti

(3.15)

and i, is the density function of T, :

1 t
palt) = i (), (3.16)
and
1 (1+2k)? (1+ 2k)?

) = ——— 14+ ———)exp—"7—". 3.17
talf) \/27rt3/2,§< t > Pm (3:17)

Furthermore py; may be expressed as ([BPY01], p.8 and 24) :

_d &
o dt

n=-—oo

11 (1) (—1)re= (D2, (3.18)

Remark 8 Let T, = inf {t > 0,|B;| > a}. L}.. is an exponential random vari-
able of parameter a.

Since {B:t < a} = {LOT; > t}, obviously P (Bjt < a) = et

Proof of theorem 7 : The random variables involved in equation (3.12)
being independent, we have :

1 —yt=22 (it
q&&”(a) == /[0+ : E [H{Tt+u<1}€( oSy bt )) | B}, <a ua(u)e_t/“du dt,

a
(3.19)
where y, denotes the density function of 7.
Using Remark 8, equation (3.14) follows immediately.
O

We focus our attention on Ft()‘). The decomposition of the Brownian path

(Bu,0 < u < 1), conditionally to B, leads to some recursive structure. This
N

has an analytic consequence : F;” is solution of an integral equation.
Theorem 9 Let A € R and t > 0 be two fized parameters.
(1) FY satisfies the integral equation :

F¥ @ 0) = FY(2,0) =t (ANFY) (z,0), (z,0) R, (3.20)

12



(A(A)v,/)) (x,a) = /

0,+00[? Luca ey 70 (y) €20 (w = y,u) dy du,

(3.21)

- 2 2
ANzt dz (3.22)

\ t
B0 = o fy o 0 =)

and ) () = (gt o) () = 51 (/).

Recall (cf [BPY01]) that :

2 d [ 8/2 & , -

(2) Furthermore Ft()‘) can be expressed as a series :

+oo

FM(w,a) = 3 (-1)"t* o) (2, a), (3.24)
k=0
where
o (z,a) = FM(z,0), (3.25)
agkﬂ)(x, a) = (A()‘)a,gk)) (x,a). (3.26)
The convergence of (3.24) holds uniformly for (xz,a) € Ry x [0, M], for
any M > 0.

(3) Fory € R and a >0, IP (§, > a) has the following expansion

e >a) =" Y1t [

[0,+00[2 <y "2 g (u)tF o (1-u, 1/a)du dt.
k>0 o0

(3.27)

Proof : see section 4.5.

O

Using Theorem 9 (especially expression (3.20)) we prove that the two dimen-
sional random variable (7;, B},) has for any ¢ > 0 a density function 6, which
follows an integral equation (3.28). As we notice in 3.1, 6, is unknown, there-
fore (3.28) is interesting,.

As expression (3.14) shows, gzﬁgj) can be written as an integral of an explicit
function of four variables (u,t,z,y) with respect to the positive measure on
R} : 0,(z,y) dudt dz dy. However this expression is not practically usefull. In

particular the asymptotic development (3.24) of Ft()‘) cannot be deduced from
it. This justifies our choice : Ft(A) is the right parameter.

13



Proposition 10 Let t > 0. The random variable (1,, BY,) has a density func-
tion 0;. Moreover 6, verifies :

t
- /[ oo L0009, D)t (2 = )00y, B) dy db. - (3.28)

a?

O, (z,a) =

Proof : Let f be the distribution of (7, BY,).

Then f([0,2] x [0,a]) = F®(x,1/a). We choose A = 0 and replace a by 1/a
in equation (3.20), we get :

1/a z
£(00,2)x o, +o0) =t [ du ([" ) £(10,0 = 9] % [0,1/u])dy) . (329
Let 1, be the positive measure 1, (dy) = Ly>0y7 (y)dy, where 7, (y) = p? (y) L0}

But

(£ 10, 0] ) (10,2]) = [ ) (10,2 = o] x [0,])dy,
= [ D0, 0D) ) ()4,

The new relation obtained by setting v = 1/a in (3.29) implies that (7, B},)
has a density 6; and

i(z, a) ag/ i ( f(dy, [0,a]),

0,400t 10210, }(y,b)u”( —4)0,(y, b)dbdy.

To end up this section we give a direct proof of Theorem 4 suggested by the
referee.

Proof of Theorem 4 : Let us introduce some notations. We state :

X, = Bs + s, [t:0i<nf<'th, V=X, -1, T,=inf{t>0:Y,=a}.

Then
P, >a)=IP(T,<1). (3.30)

14



Williams([Wil76]) and Taylor ([Tay75]) have determined the Laplace trans-
form of T, :

E [e*—fTa] - ver (3.31)
~ vcoshva + ysinhva’ '
where v = \/\? + ~2.

We are able to invert this expression (cf. step 1 below), i.e. to determine the
density function of T,. Then using (3.30), we obtain the asymptotic behavior
of IP (&, > a), a — oc.

1) By an easy computation we have :

E [ 2 ] 2uel1=V)e 1
e ‘=
vHv 14 Slem e

— 20 (Z(_l)k (v — V)k e_(2k+1)ua) .

>0 (fy + y)k+1

Let Ly be the Laguerre polynomial of order k ([Wil76], p.168). Its Laplace
transform is known ([Wil76], (7) p.170) :

+00 . (S— 1)k
/0 e Ly(z)dx = i > 0.

This yields to

2 +oo
E [e—%Ta] =2e7 | Y (—1)F / ve VHEHDO= L 9~Nt)dt ). (3.32)
k>0 0
Let us recall the integral representation of K, ([Wat95] (15), p.183) :

L/a\P t>> 1 .,
K,,(z):—(-)/o WG (w+22/49) 4y,

K/, and K3/, are known ([Wat95], (12), (13) p.80) :

In particular

peP(EHE+1)0) 1 /+°° % (t + (2k ﬂ;/i)ay T T (e )0 2)/2 0
0 T

15



Therefore we are able to invert (3.32) : T, has a density ¢, and

2 e/
¢a(fr)=\g67“ S | 2 Var(@) | (3.33)
k>0

Vaa() = (<1 [T ({04 2k 1)a)? = &) Ly (2pt)e TP 20y,
(3.34)

where

2) We say that hl(z) is uniformly equivalent to h2(z), as a — oo, = belonging
to [0; 1], if

L(z) )
lim | su a =
a0 (xe[ol;)u h2 ()

We write hl(z) ~ h2(z).

a— 00

We then prove that :

Vaolw) & wae 1. (3.35)
Let t + a = v/zu in (3.34) (with k =0) :
+oo 2
Yao(r) = 2327 //\[(u2 — 1)e W 2emVeuy, (3.36)
But )
(—ue’“Z/Q) = (u? —1)e ¥/, (3.37)

then integrating by part in (3.36) we obtain :

3/2 _va a —a?/2x ,—va _ /+oo —u?/2 _—vyTu
w0lT) =T (& —€ (& T ue € du | .
Vaol@) (ﬁ W a/\/T >

Since u < ¥Zu? for any u € [a/\/T; +oo[ and x € [0;1]

2
rae—® /2x

2
— < < —a /21:‘
e Yao(r) < zae

(3.35) follows immediately.

3) We claim that
> Vak(®) ~_ tao(w). (3.38)

a— 00
k>0

Suppose k > 1, a > 1 and = € [0;1].
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Then
(t+(2k+1)a)*>a?>>1>x; Vt>0. (3.39)
Recall ([Wid41] theorem 17a p.168) :

| Ly(z) |[< €%, zeR (3.40)

Setting t 4+ (2k 4+ 1)a = y/zu, we obtain :

+oo 2
[ Yar(e) < 22 [ (u? = 1)e/du.
’ (2k+1)a/Vx

By (3.37) the integral can be computed explicitly :
| Ya (@) |< (2k + 1)pae” Fe17a?/2e,
But z €]0; 1], then
| Gup(@) |< (wae®27) ((2k + 1)eCF+2007).
Since k£ > 1 and a > 1,
| Yok () |< (xae"ﬂ/%) ((Qk + 1)e 2k ’2“2) . (3.41)

This demonstrates (3.38).

4) Let us end the proof of Theorem 4. Using both (3.30), (3.33), (3.35) and
(3.38) we have :

2
P (& > a) ~ \/iae”’“](a),
a (o0} ’n’
where

1]
0= [ et
0

73/2

Let = a?/(a® + y), we obtain

a2 4o L
/ va/2a+ye y/2dy
a2 + y

o~ (2 a?)/2

Therefore

This proves Theorem 4.
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4 Technical proofs

This section is devoted to the proofs of Theorems 1, 9, 4, Propositions 5, 6
and expressions (2.7), (3.17), (3.18) and (3.23).

4.1 Proof of Theorem 1

Let (X,)n>1 be a sequence of r.v.’s and (S,)n>o the random walk :
S():O, Sn:ZXka TLZl
k=1

We consider two cases :

a)(X,) are i.i.d. centered random variables with finite second moment and
o? = Var(Xy).

b)(X,) is an irreducible Markov chain taking its values in a finite subset of
R. We denote by v its invariant distribution. 0% is the parameter defined by
(2.4).

Given an integer N > 0, we consider the piecewise linear process B (t)

BV (ﬁ) == (Sk—E(S) = =% Sk k>0, (4.1)

t + BWN)(¢) is linear on each interval of the form

Our approach is based on the two following results.

Theorem 11 (Billingsley, [Bil68], p. 68 and [Bil68], p.166 and p.174) The pro-
cess (B(N) (t),t > 0) converges in law, as N tends to +oo, to the standard
linear Brownian motion (B(t),t > 0).

Theorem 12 (Skorokhod’s theorem ([IWS81], p. 9)) Let (S,7) be a complete

separable metric space, P and P,, n = 1,2,... be probability measures on

(S,B(S)) so that P, = P. Then, we can construct, on a probability space
—00

(Q, B, P), S-valued random variables X,,, n =1,2,... and X such that

(1) P, =L(X,),n=1,2,... and P = L(X)
(2) X, converges to X almost everywhere.

Proof of Theorem 1: The proof is divided into two steps.

18



Recall that
Hy= max (S;—S;); k>0.

0<i<j<k

Let us introduce the linear interpolation of (Hj)k>o. This function (H(N) (t);t > 0)
depending on the parameter N is defined as follows :

H(N)(t)=\/LN{H[Nt]+(Nt—[Nt]) (Hivier = Hiva) o 620, (42)

1. Relation (4.1) implies :

Sy = oV N B™ <5> . (4.3)

N
Then
Hovg =¥ s (500 (L) - (1))
N 0<i<j<[N ¢] N N))’
:O'\/N max { <i> — B <i> } .
0<i <<l N N

N . . . . .
BW) being piecewise linear, then the maximum on {0 < ~ ~

equal to the maximum on {0 < u <v < [N—A,ﬂ} and

Hinyg = =oVN max {B(N)(v) - B(N)(u)} :

0<u<o< Y

Finally H™)(t) can be written as follows :

HM () =0 ( max {B(N) (v) — B(N)(u)} + RN(t)) : (4.4)

0<u<o< A

Ry(t) =(N't ~ [N1)) (mg {B™(0) = BY ()} (45)

2. We apply Theorems 11 and 12 with S = C ([0,7],R) and 7 the Wiener
measure, 7' being fixed. Then there exist (Q, B, P), B™ and B such that
E(N) converges almost surely to B a standard Brownian motion on (2, B, P).
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Let Ry (resp. H™)) be the process defined by (4.5) (resp. (4.4)) where B
is replaced by BM,

But B™) and E(N) have the same law, then :

(H™(1),t>0) 2 (H™ (1), >0).

If we prove that H™) converge a.s., then the previous identity implies the

convergence in distribution of H!Y).

Since the convergence of B™) holds in the space of continuous functions, for
any t € [0,7] :
(V) _ n(N) a.s _
ogugr?gf)l(”% {B (v)-B (u)} N Ogrﬂgffgt {B(v) — B(u)},
(N) N >100)] a.s _
b2, B0 = BV 2o mas (B(v) = B(u)}-

Moreover as 0 < Nt — [N t] < 1, then

Ry(t) = 0 uniformly in ¢ € [0,7].

N—00

Hence

(H™M#),0<t<T) =5 (0 max {B(v)-Bu)};0<t<T). (4.6)

N—o0 0<u<v<t
We denote £(t) = maxo<y<p<t {B(v) — B(u)} = maxo<y<; { B(v) — I(v)} where
I(v) = ming<y<, B(u).

Recall that Paul Lévy’s theorem (1948, [RY91], chap. II, thm 2.3) gives us the
following inequality :

(B(v) — I(v),0 > 0) L (|B,],v>0).

This ends the proof of Theorem 1. O

4.2 Proof of Proposition 5

This proof is similar to the previous one (see section 4.1). Let H™) be the
piecewise linear function defined by (4.2). The equation (4.3) has to be re-
placed by

1 k ka k k
— S, = (V) [ 2 N (V) [ 2 R
\/NSk O'NB (N) \/N O'NB (N) + N( NGN), (47)
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where ay = VNIE(X,) and oy = Var(X,).

Suppose t > 0. Then :

%:Mﬁl@a&xu {UNB( '(v) +v(VNay) = on B (u )_“(\/_“N)}
- (4.8)

But v/N ay (resp oy) tends to & (resp. 0%), the convergence follows easily.
4.3  Proof of Proposition 6

1) Let ¢ (a) be equal to e 7*IP(£, > a).

In a first step we establish the following stochastic representation for ¢(?)

2
Vo
¢ (a) =E [H{T;<l} exp (—y L. — 5 Ta)] : (4.9)

Let f be a Borel bounded function, we have :

E [f (5(7))} =E {f (max {Bu + vu—orgr{giélu (Bs —1—75)}” )

0<u<l
Let us apply Girsanov’s theorem ([RY91], chap. VIII), we get

2
~
IE [f (5(7))} =E lf (02132(1 (B - 0r<nsl£1uB )) exp {fyBl - ?H . (4.10)
But Levy’s theorem ([RY91], chap.IT) gives
: ) 0.
(Bt— min By, — min B;t > 0) = (|Bt| Lt > 0)

0<s<t 0<s<t

E[f (€)= E [f <0r£1ax 1B, |> exp {7 (1B:] - 1) — V;H L @)

Let (Mg, t > 0) be the process :
2
M; = exp {7 (|Bt| - L?) — 3t}; t>0.

M is an exponential martingale since (|B;| — LY; t > 0) is a Brownian motion.
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We restrict ourself to f = 14 4oo[, equation (4.11) reduces to :

P >a) =T ln{Bm} exp {7 (1By] = L9) = V;H —E {1{BI>G}M1] .

We have {B} >a} = {T; <1} (recall that B = max,< |B,| and T} =
inf {t > 0,|By| > a}).

Let us introduce U = T A 1. U is a bounded stopping time and {7 < 1} =
{U < 1}. Then {T} <1} € Fy, so that we may apply the stopping time
theorem :

P (& > a) =T Ly M| = IE [Lgr; <1y My]

2
=1E l]l{T;d} exp {fy (a - LOTJ) - %T;H .

This shows (4.9).

2) We are now able to prove (3.12).

The proof is based on decomposition of Brownian path ([Val91b], prop 4). Let
us recall this decomposition :

For a > 0. Define
g=sup{t<T:, B,=0}

Then

(i) T — g and (B,, 0 < u < +) are independent,

Qi) T — g2,

(iii) conditionally to Loa* =t, (B, 0 <u < g) is distributed as (B,, 0 < u <
7;) conditioned by {B;ft < a}.

We decompose T, as the sum of g and T — v, (3.12) is a straightforward
consequence of (4.9). O

4.4 Second proof of Theorem /

For simplicity Fy()‘) will be noted Fy, in this section.

Let us start with a preliminary result.
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Lemma 13 Let ) be the function :

P(v) = /R+ e "WEF, (%,0) dy; v >0. (4.12)

2 v v
P(v) = \/—Q_H/U—H +i(v),  |(v)] < Cl 0

Proof : Since Fi(z,0) = [E (]l{ogngxy}e_’\zﬂﬂ) and the density of 7; is well
known (see for example [BS96)),

Then

t t?
P(r, €dz) = Noree exp <_Z> Ig,>0pdz.

Then Fi(x,0) may be written as :

A2z t2 dz
Therefore ,
1 v/l1+v ] \2 +00 5
_ Lz / —(u?/24+7uy/2)
h(v) \/%/0 Yk | ue dudz. (4.13)
We have :
e’ =14 p(x)

where |p(x)| < C|z|el®..

In particular e 7V? = 1 + p(yu\/2), ¥ = ¥y + 13 where

1 v/l1+v ] a2y 400 2
Po(v) = \/—2_7r/0 1726 A2/ (/0 ue ﬂdu) dz, (4.14)

v/l+v ]

1 2 o0 2
P3(v) = \/—2_77/0 We’A 2/2 (/0+ ue /2 p(*yuﬁ)du) dz.  (4.15)

Clearly s
v v —\2z/2
1/)2 \/%/ 1—/26 /dz

But 0 < 1 — e *"#/2 < \22/2 for any z > 0, therefore

valv) = \/%\/g—i_%(v); W)Z(U” <0 (1—7—1})3/2 =0 (1—7—1}) '

But

|p(yuy/2)| < Cloluy/zel? V% < Co] (uel™) /2.
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By the same way :

va) | < C ()

1+vo

O

Proof of Theorem 4 : Let us recall the expression of qﬁ(;) given in equation
(3.14).

1
¢)E\7)(a) = /[0 oo Lyy<1y exp {—’Yy —\? u/2} pa() Fy(’\) (1—wu,1/a) dudy

(1) Let us first prove that ¢§\7)(a) ~ pi(a), where

a— 00

1 A2
pila) == /RZ T {y<1y exp {—vy - 5U}/~La(U) FN(1 = u,0)dudy. (4.16)
+

Recall that

Y

A 27, /2
Fy( 1-u,1/a)=TE |:]]‘{0<Ty<1u,0<B,’fy<a}e v }
so that lim FM(1 —u,1/a) =E [ﬂ{ogTygl,u}e*VTy/?] = FM(1 —u,0).
Since the convergence is uniform in u, taking the limit over a gives (4.16).

(2) In this step we prove that p;(a) o p2(a), with

p2(a) = 2a° / 1 eV YN U220 P (1 _y, O)d—udy (4.17)
20) = o g Mees N0 v (4

We use the explicit form of p, given by equation (3.17), the scaling prop-
erty, and (3.16) then

L5 () o (0]

/’La (U/) = ? /27_(_11/3/2 i QU/
a R(u,a)

o ’LL3/2

Y

ﬁ

with

R(u,a) = (—1 + a2%> exp {—cﬂw}. (4.18)

keZ 2u
We split R(u,a) into two parts :
2

R(u,a)=2 (a_ - 1) e/ 4 a—Ze_“Q/Q“ ( > Bilu, a)) ,

u u keZ—{-1,0}
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2a® a’ 2o 2u
="—c¢ “2/2“+Ee °/2 (—;Jr > Bk(uaa))a

keZ—{—1,0}

with

2

Bi(u,a) = (—% + (1 + 2k)2> exp {—g— ((1 + 2k)* — 1)}

u

We prove that the sum, k running over Z — {—1,0} goes to 0, as a — oc.
Ifa>1and u <1, we have :

| =5+ (1+20)° |< (1+26)2 +1 < CF,

exp {—% ((1 +2k)% — 1)} <exp{—2k(k+1)}.

This yields
| Bi(u, a) |< CkPe2HEHD

The dominated convergence theorem implies that :

Jm, > Bulwa) =0,
keZ—{—1,0}

uniformly in w.
Furthermore lim,_,, -5 = 0 uniformly with respect to u € [0, 1], then :

2 2
R(u,a) ~ 2 et/

a—00  qy

—a?/2

h2
26)‘/256 .

™

Finally we check that py(a) o~ 2
We have

2¢> 11 1 (a? 9
- i N - N (1 —
p2(a) N R exp { 5 (u + A u)} </+ e F, (1 —u, 0)dy> du.

1
We set u = ——, we obtain :
1+v

20> 2 +oo 2 2
p2(a) = \/Z_?Te_“ /2/0 e V272040 Ty o (v)dw, (4.19)

Let us set u = a?v/2 in equation (4.19), then

4 —a2/2 /+°° —u_—A2a2/2(a2+2u) 2u <2u>
- 1+ =y (=) du.
p2(a) \/%e | ee + p (0 p du
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Lemma 13 implies that :

4 a2/2l2\/§1/+oo

- —u */\20.2/2((124»211,) d
\/%a 0 e \/E U+p3(a)]7

(4.20)
where

p3(a) :/0+ooe Na?[2a?+u) g [T 4 2 a2, (—)

The integral on the right-hand side of (4.20) converges as a goes to infinity
to

e~V /2 /+oo e~ "vudu = e_’\z/Qg.
0

We claim that |ps(u)| is upper bounded by C/a?, a — +oc.
Using the upper bound for ¢y, we obtain :

+oo 1
< —u —.
lps(u)| < C (/0 ue du) o

() 2\/_ )\2/2 a?/2
p2ia a—00 \/_ CL ’

AsIP (& > a) =€ gzﬁ(v’\)( ), we have proved relation (3.6).

Finally

O
4.5 Proof of Theorem 9
We divide the proof into two steps.
1) Let F™ be the function defined by (3.15) :
(M) _ —\27
F7(z,b) =E (H{OSTth, 0<B;, <1/b}¢ g /2> , ©=>0,0>0, (4.21)

Here A and ¢ are fixed. We have :

Ft()\) (1‘, b) =k (H{OSTtﬁx}ei/\th/z) - B (11{0<Tt<$, B¢t>1/b}€/\2n/2> : (4'22)

Let B;, = u. Let us deﬁnefy inf {s <7, |Bs| =u},g =sup{s <, By =0},
— inf {s > v, Bs = 0}. Vallois [Val91a] proved that conditionally to B* = u,

e g+ (1 —d),(y— g) et (d — ) are three independent random variables.
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e g+ (1 —d) is distributed as the first time when the local time of Brownian
motion conditioned to stay in [—u,u], reaches t.

e 7 — g and d — 7 are distributed as the first time when a Bessel process of
dimension 3, started at 0, reaches u. So (7 — g) + (d — ) have same law as
T, + T, where T, is an independent copy of T},.

Since i, = g+ (. —d)+(y—g)+(d—~) and P (B:t < u) = e!/" (cf. Remark
8), we get :,

Ft(/\) (1‘, b) = Ft()\) (xv 0)

+oo e_t/u +o0 B 27_ N
_t/l /0 IE |:1{Tt+y<$}6 (* t)/2|BTt < U]

b u?
x e X2 @ () dydu,

= t(/\) (ZU, 0)

+oo du +oo a2r/2| A2y/2, (2)
t 1/b ?(/0 E{1{7t+y<x,3¢t<u}6 ' }e Y2 gy (y)dy)

We set v = 1/u, (3.20) follows immediately since we have already established
(3.15) in the proof of Lemma 13.

2) Let K be a positive number and Ex the set of Borel functions ¢ defined
on R, x [0, K] such that

sup [Y(z,y)| < +oo0.
z>0,y<K

Ex is equipped with the uniform norm.

Let ¢ be in Ex, v > 0 and a < K. Then

AV (@)l < [“du ([7 p ) e [0l = g )ldy)
< max  [|¢(s,u)] /Oa du </0:v /L?/)u(y) dy> ,

— 5>0,0<u<a

MEZ/)u being a density function :

AV (z,0)| < K max_ [(s, ).

520,0<u<K

AWM is thus a continuous linear operator from EFy to Fi.
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Clearly (z,a) — F (z,0) belongs to Fy, because

0< FY(x,0) < 1. (4.23)
Let us consider the series
+0o0
A(z,0) = S (=D)F t*af® (2, a), (4.24)
k=0
with
CV)EO) (:U, a) = Ft()\) (l‘, 0)
and

a§k+1)(x, a) = (A(A)Ozﬁk)) (x,a).

In order to establish the convergence in Ef, we first prove that

>

max |0 (2,y)] < 5 max [af” (z,y)| < (4.25)

z>0,y<a k! z>0,y<a

k‘|@

We check (4.25) by induction on n.

If n = 0, obviously (4.25) holds. We suppose that (4.25) is verified for n and
we prove that (4.25) is still true, having replaced n by n + 1.

Let x > 0, 0 <y < a, using again the fact that u?/)u is a density function, we
obtain

4Dy, y) < [

, Wuzyy #17,(v) max [z, u)| dv du,

[0,+o0[*
< / max|1,/) z,u)| du </ ( nax. |7,Z)(x,u1)|> du.
Therefore
m%%}gam (z,y)] </ (m>%1%f{<u x u1)|> du. (4.26)

Therefore (4.25) implies

1 a n+1
max o™V (z,u)| < —/ u du = —2
>0, u<a n! Jo

Therefore the series in (4.24) converge in Ex, AN is a continuous operator,

then
+00

FO(z,0) = S (1) t*aM (z,a), (z,0) e R,

k=0
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3) Recall the expression of gzﬁgj) in terms of Ft()‘).

1 >
o) = ‘/[ 2 Lasye "R (1= u,1/0) pua(u) dudt
0,+00 -
We are allowed to interchange the sum with respect to k& and the double

integral if :

Zﬁk<+00

k>1
with

B =~ /[0 tool? gucrye "2, (u)thaf (1 — u, 1/a)du dt.
It is well known that 7 ) t?/B2, then if z <1, ¢ >0,

2 2
0<al(z,0) <P(r,<2) <IP(r,<1)=2P(B, > 1) < e V2,

ﬁ
3
~

Obviously (4.26) can be modified as follows :

max  |AMy(z,y)| </ ( max (x,u1)|> du.

0<z<1,y<a 0<z<1,u1<u

Reasoning by induction, we obtain :

2 k
max | (z,u)| < el

0<z<1,u<a ’ =~ /2t ke

Therefore
2 +oo 2 1 dt
< ’yt t /2 ( >
b < av/2m Jo al k! \[
2 2 dt
< e M2 (gt 1) — < o0
gﬁk ~ aV2r Jo ( ) Vit

This implies the identity (3.27). O

4.6 Proof of expression (2.7).

Recall that (By,t > 0) is a standard Brownian motion, and Bf = maxo<s<i | By|.
The cumulative function of By is known (cf [BS96], p.146) :

IP(Bf <z)=

(y+4ka)? (y+22+4ka)?
2 — e 2

\/_/mk Z( dy. (4.27)
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Jacobi’s theta function identity ([Bel61]) gives us :

1 (v+k)? 2.2
i Z e 1 = Z cos (2l<:7m;)e_’c ™t weR t>0. (4.28)
VTt ez, kEZ

Setting v = y/4x and ¢t = 1/82?,(4.28) becomes :

4z (4kz+y)? K2n?
- Z e 2 — Z cos (kf/ry/Qaj)ef 82 | (4.29)
V2T ez, keZ

Then
1 _@kesy? 1 k22
P) -

— > e > cos (kmy/2z)e . (4.30)

2T hez A i 7,
Similarly, setting v = (y + 2x)/42 and ¢ = 1/8z% in (4.28), we obtain :

]_ 42z 2 ]_ 2.2
Y e = ST (<1)k cos (kmy/20)e T (4.31)
2T jen 4r keZ

Integrating in y, we obtain the cumulative distribution for Bj :

2 -1 k 241272
P(B <) = 2y U - (4.32)
T iy 2k +1

4.7 Proof of expression (3.17).

Let us denote by (R,(s),s > 0) a Bessel process of dimension 3 starting at x
and T®) the first time where (R (s))s>0 reaches a (T®) = inf {t > 0; R,(t) = a}).

We claim that 7(®) admits s, as a density function, where

02
p(t) = \/§t3/2 %:Z <—1 + (1+7572k)2> exp —%. (4.33)
In [BS96], (page 339, 2.02) we find the density function of T®) for 0 <z < a
| P (1 € dt) = %\1/;@ (1) gsoy dt = o\ ()10 di (4.34)
where
GO = — L Y (0 — o+ 2ha) exp LT 2RO (4.35)

; V2t 1, 2t
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Let us prove that ¥ (£) = 0.

For all ¢ > 0, we have :

\Il(“) £) Z (1 + 2k)e (1+2k)2 2
' V2rit? ez
a Ry _ Qo )2 2 Ix (142(—k—1)k)? o2
- (L+2k)e 2 + 5 (1+2(-k—1)e @},
7 {,g X
=0
Then 4
— L @ (4) = lim = (w@(4) — @@
pa(t) = limpg®(f) = lim — (Wl () — v (1)) (4.36)
Differentiating term by term, we obtain :
a a?(1 + 2k)* a?(1 + 2k)?
oll) = exp — 4.37
Ha(?) /o7 13/2 l%:Z < b 2t ( )
U
4.8  Proof of (3.18).
We make use of Poisson expression ([Fel66], chap. XIX, p.620).
ikma
> pla+2kb) = Zf( )exp( ) (4.38)
keEZ b iz b
with
p(0) = [ e f(w)da
We choose

f(z) = \/;exp—% (x - g)Q

[ is the density function of 7 + \/ t being a fixed number, then :

o(a) = giam/2,—a? /2t

We set a =0 and b =1 in (4.38), we obtain :

S (—1)ke = Z exp —2 Lok —1)2r

kEZ kEZ

31



4
Wesett:—Z:

um
2k —1
2:(—1)166%2”2“/2 = Z exp —7) (4.39)
keZ TV,
Differentiating in respect to u, we obtain (3.18). O

4.9 Proof of expression (3.23).

We keep the notations introduced in the beginning of 4.7.

Let us recall that u?) is the density function of Z = TI(O) + TI(O), TI(O) being an

independent copy of TI(O).

The Laplace transform of 7% is well known ([Ken78]) :

E <6)‘T1(0)> _ V2
shv/2X

So that

o= ()

According to prop. 1, p.7 in [BPYO01], this is equivalent to :

AU
2

where
P(Y <y) _—Zn2 —mn’
n>1
A straightforward computation implies (3.23). O
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