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Abstract

Let (X5)n>0 be a real random walk starting at 0, with centered in-
crements bounded by a constant K. The main result of this study is :

. 1
[P (S— > x) | (0 sup By > m) | < C(n, K)y/ M, where z > 0, o2
vn 0<u<1 n

is the variance of the increments, S,, is the supremum at time n of the ran-
dom walk, (B, u > 0) is a standard linear Brownian motion and C(n, K)
is an explicit constant. We also prove that in the previous inequality Sy,

can be replaced by the local score and sup B, by sup |Bu|.
0<u<1 0<u<1
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1 Introduction

Let (&)i>1 be a sequence of i.i.d. random variables, with zero mean and variance

o2. We denote by (X,,)n>0 the associated random walk :
n
Xo =0, Xn:Z&, n>1. (1.1)
i=1

1) The well known central limit theorem (CLT) tells us that for every z in

R, lim,, o, IP (;f/"ﬁ > a:) =P (G > z) where G is a N(0,1)-Gaussian random

variable. In practice it is often important to estimate the rate of convergence.

Loéve ([Bil68] and [Loe79] p.288) has proved :

CE [|&°]
S \/ﬁ )

X
|IP< - 2x>—]P(G2x)| z€Rn >1; (1.2)

ovn
where C' is a constant.
2) Suppose now that we are interested in the asymptotic behaviour of S, as
n goes to infinity, S, = maxo<i<n X;. The CLT is not sufficient, we need a

functional convergence result ( Donsker’s theorem [Bil68] p.68), which implies :

P (g 27) =P (2,7 27)
lim P >z ) =P sup B,>z); x>0, 1.3
n—00 (0’\/5 - ogu21 - - (1.3)

where (By,t > 0) is a standard one dimensional Brownian motion started at 0.

Since supg<,<1 Bu and |Bi| are identically distributed, the right hand-side of

(1.3) can be easily computed.

A priori the rate of convergence of IP < % > :z:) to IP (SUP05u51 B, > ;c) is

[

unknown.

3) In [DEV00], motivated by biological considerations, we established a similar



result to (1.3) :

. Hy _ X .
nl;r&P(gﬁZm>—P(BIZm), x>0, (1.4)

where H, = maxo<i<; (X; — X;) and Bf = supy<;<; |Bi|- Recall that the
density function of Bf can be expressed through series (cf [BS96],p.146 and

annex A in [DEV00]).

The analysis of genetic sequences requires a precise estimate of IP (f/"ﬁ > m)

However the rate of decay of n — |IP ((ff;ﬁ > a:) — P (Bf > z)| is unknown.

Therefore its knowledge would be useful.

4) The aim of this work is to give effective bounds to

5"(5)=|1p( Sn >m)—]P(sup BuZm)|

ovn ~ 0<u<i

and to

8, (H) =|IP(H" >:c> —IP( sup |Bu Z:L') .

oyn ~ 0<u<i

We prove (cf theorems 1 and 2) the following inequality :

5.(2) < C lnn

- n
where Z = S or H and C' is a computable constant which only depends of the

law of (&;).

Let us detail the organization of the paper. In section 2 we deal with the
supremum of a centred random walk and then we adapt the analysis handle
the local score. In section 3, we check the accuracy of previous bounds through

numerical tests.



2 Approximation of the distribution of the supre-
mum

1) Let (&)i>1 be a sequence of i.i.d. bounded random variables with 0 mean.

We set

n

Xo=0, Xp=)» & n>1 (2.1)

i=1

We denote by o2 the variance of & and we assume :
|€n] < K, Vn>1. (2.2)

The main idea of our approach is to embed the random walk (X,),>¢ in a
Brownian motion. The random walk (X,)n>0 can be actually considered as a
Brownian motion stopped at an increasing sequence of stopping times.

We recall below the scheme introduced by Skorokhod [Sko65] which allows to
represent the random walk (X,)n>0 as (Br,,n > 0), where (B, t > 0) is a
standard one dimensional Brownian motion started at 0, and (T},),>0 is an
increasing sequence of stopping times. This representation is the key of our

approach.

2) If u is a probability measure on R centred and having a finite first moment
(ie [ |z|u(dz) < 400 and [, zp(dz) = 0) we know ([AY79] and [Val83]) that

there exists a stopping time 7" such that
the law of Br is pu, (2.3)

and

(Brat,t > 0) is a uniformly integrable martingale. (2.4)



(2.4) tells us that T can be chosen not too large.
In fact if p has a compact support included in [—A, 4], maximal inequality and
(2.4) imply :

T <T*(A), (2.5)

where T*(A) =inf {t > 0,|B,| > A}.

Conversely (2.5) implies (2.4).

In our approach we only deal with random walk having bounded increments.
Then we restrict ourself to probability measures with compact support, or Brow-
nian stopping time verifying (2.5).

Let P, be the set of probability measures on R, with compact support and

centred. We denote by (U(u))ucp. a family of stopping times such that :

By ~p,  Supp(p) C [-K, K], U(p) <T*(K). (2.6)

In particular if u belongs to P., we have the useful identity :
2
E [(BU(H)) ] =E[U(u)] < +oo. (2.7)

We need a little bit more than (2.6), we assume P, has the following scaling

property :

Ulpe) @ AU (p), for any ¢ > 0, (2.8)

where p. is the image of u by z — cz.
The two families of stopping times defined by [AY79] and [Val83] verify these

properties.



Let o, be the function

ay(z) =IE [T*(a)2 (eZT*(“) — 1)] , a>0,0<z< g. (2.9)

We are now able to state the main result of this section, concerning the asymp-

totic behaviour of Sys, as M goes to infinity, where Sy = maxo<i<i X;.

Theorem 1
Let My > 2 and ¢' = 0/K.

a) There exists z.(My) € ]0;7%/8[ such that :

In M,
r}\/[ © < 3 (Mo)v/an (2. (My)), (2.10)

0

3/2
In M < a1 (z.(Mo)) . (2.11)
M, o2 (5 — 204 4+ 3oy (-'E* (MO)))
b) For any M > M,,
SM T InM -
P X >z)-P Bu2 = | <y = C¢(M), 212

® (i 2e) P (am B2 D)1 Sreon en

where

con-—2__1 ;2 | \Fem \/5 4 oy (2 (Mo)) (2.13)
= ————\/-—0 " .
o'V2rvVinM  VinM Vw02 V3 ! 0
Remark 1 The function o is known :
ai(z) = " (z) — B"(0) = g"(=) — g 0<z<7"/8 (2.14)

where B(z) = E [e?T" ] =1/ cos (vV2z); =z € [0; n2/8].
Therefore we can find numerically z, (Mp) verifying (2.10) and (2.11) and C(M)

is explicit (see section 3).



Replacing (Xn)n>0 by (—=Xn)n>0 in Theorem 1 and using the symmetry of

Brownian motion (namely (—By):>o @ (Bt)t>0), we are allowed to substitute

=

ming<;<a X; into Sy in (2.12).
Our scheme developed for the maximum is rich enough to be applied to the

local score (Hy)n>o0. This process is defined by :

H,= max (X;—-X;)= max (X — min X) (2.15)
0<i<j<n 0<j<n 0<i<j

The analog of Theorem 1 involving the local score is the following :

Theorem 2

Let Mo > 2 and ¢/ = 0 /K. For any M > My,

Hy, -
‘IP (\/M > > IP<00;111LI§)1 | By| 2:(:) <C(M) 2 (2.16)
where
- 4 2 ge !/2 ,
C(M) = o \/ﬂ\/h’l— \/111— [ \/_ —o" +(11(IL’*(M0)) (2 17)

z.(My) being a positive number in z,(My) € ]0;72/8][ verifying (2.10) and

(2.11).

Remark 2 The cumulative distribution of supy<,<1 |Bu| is known :

2 (=1)* (2k + 1)2m?
P B, <z)=2 S I .
(sup| |_a:> 7r22k+1e:)cp( 822 x>0

O<usl keZ

3) In the sequel M is a scale parameter, M being an integer larger than 1.
We presently give a representation of the random walk (X)r>o in terms of

Brownian motion path.



Proposition 3 There exists a sequence of stopping times (Tpn)n>0, such that :

=0, Te= ) T, (2.18)
1<i<k
and
@ [ Xy

where (T});>1 are independent random variables, each T belonging to U(v), v

being the common distribution of /oM In particular :

Proof : We set T} = U(v). Property (2.6) implies that Br, @ Xy /ovVM =
& /oVM.

We know that (B} = By+1, — Bry,t > 0) is a one dimensional Brownian motion,
independent of Br,. Let Ty be a stopping time U’(v) (associated with v and

(Bf;t > 0)) such that By, @ &/0/M, and

K
T’<hﬂ{t>0,B’>————}.
2 = - |t|_0’\/M

Iterating this procedure, we define by induction an increasing sequence of ran-

dom times (T%, k > 0) such that :

T =T, (2.20)
Bn+n+{—3n::3n+f—3nﬁﬂgz%?&+n Vk >0, (2.21)

where
To=0, To=T +...+T; k>1. (2.22)



T}, is a stopping time with respect to the filtration generated by the Brownian

motion (B, ++ — Br,;t > 0). In particular

(Br - Br sk 2 1)@ (k1) (2.23)

O

In our study we are looking for properties of the law of Sy = maxg<i<y X;.
Obviously it depends only on the law of the whole process (Xj)x>o. Therefore
we can choose any realization of the random walk (X})r>0. In the sequel of the

paper, according to proposition 3, we take :
Xy =0VMBr,, Vk>1. (2.24)

We use the strength of (2.24) to obtain first bounds to P (S M/VM > a:) The

key point of our method is the following lemma :

Lemma 4 We have :

1 1 K
——8y <0 sup B, < ——=8p+——; Vk2>1, 2.25
U= outn, T VM T VM (2.25)
1 K Sut
IP su Bu>7 .'L'+— —IP T _1 >8 <IP EM ,
(OSugl ~ovl—¢ ( JM)) (ITne |>¢) < (\/M > .’L’)
(2.26)

7irze) < =
P{—>z)<IP{ sup By>—+—=|+P(|Tyy—1|>¢), 2.27
(7 22) <@ (2,202 ) +R w1120, o

for any x > 0 and e > 0.

Proof : a) (2.24) implies (2.25).



b) Let € > 0 and x > 0. The first inequality in (2.25) implies :

irze) <P ’)
P{=>z)<P{( sup B,>=).
(M_ N OSuSPTM T o

We decompose the probability in the right hand-side as follows :

]P( sup By Zx/a) < P(|Tu-1>¢)
0<u<Tym
+ 1P (TM <l+4+e sup B, Zx/a)
0<u<Tum
< P(Twm—-1] 25)+IP( sup B, 23:/0) .

0<u<Ll+e
Since the Brownian motion (By,t > 0) has the scaling property :

(B, t > 0) (\/_Bt,t > 0)

for any ¢ > 0,

sup B, @ Ve sup By,.
0<u<ec 0<u<1

This achieves the proof of (2.27).

c) (2.26) is a direct consequence of the following inclusions :

sup B, > + Ty —1 SE}
{0<u<1 € V | |

K
C su B> + T —1<s}
{0<ug}M V | M
Cs—=>x,Tu—-1<e; Cy—2>1z.
{m— T = 1] < N

10



We note that (2.22) and (2.8) imply that

M
o2 M

T (Ty) = MTE(Ty) = MTE (B},) = 5B (&) = 1.

Moreover Tar = T} + ... + T}y, and (T})1<i<m are ii.d., then the weak law
of large numbers implies that Ty converges to 1, in probability, as M goes to

infinity. Consequently limpsyo0 IP (|Tr — 1] > €) = 0.

Recall that our goal is to look for effective bounds for IP (S M/ VM > :v), z and
M being given.

This leads us to take ¢ as a function of M in order to minimize IP (|7 — 1| > ).
This can be done through a large deviation technique, because the stopping time
T*(A) admits some small exponential moments. Since for every probability
measure g with compact support in [—K, K] we have U(u) < T*(K) , there

exists A(u) > 0 such that :

E[exp{AU(u)}] < +o0 & A < A(p). (2.28)

Lemma 5 Let M > 1 and € > 1. We assume that u is centred and has a
compact support, recall that p is the common law of (&). Then for any A\ €

[0, A(p)[, A2 > 0, we have :

P (T —12>¢) <exp{-Mf. (M)}, (2.29)
P (Tyr — 1 < —¢) <exp{—Mg. ()}, (2.30)

where
£@) =1+ —n (E[exp @U(W))), @< A(),  (231)

11



and

g:(z) = —0*(1 — &)z — In (IE [exp (—zU (1))]), =z > 0. (2.32)
Proof : The crucial identity is :
Ty =T +...+Ty.

Recall that (T})1<i<m are independent and distributed as T] = T;.

1) Let A > 0. Then, using Markov’s inequality

P(Tu>14¢e) = Plexp{AT{+...+Ty)}>exp{A1+¢)})

< e (R [AT])Y (2.33)
T, is a stopping time associated with the distribution of & /ov M, so

T, =U(pe) wherec=

1
oM’

Using the scaling property (2.8) :

E[M]=E [exp { 02’\M U(p)}] .

Then

P (T > 149 <o {-M (042 - (B oo { S vm}])) ]

(2.29) follows immediately.

2) As for (2.30) it is sufficient to replace (2.33) by :

P (T < 1—€) = P (exp{—A (T} + ...+ Th)} > exp{-A(1 - )}).

12



Lemma 6 We set

2

ax(A) = E [T*(K)2 (eA'T*(K) - 1)] , 0<A'< ;@, (2.34)
p=EU(p?) -d, (2.35)
ot
a(p) = m- (2.36)
Then for any € in |0, M , we have :
P (Ty — 1> ¢) <exp(—Me’cy(p)). (2.37)

Proof :

1) According to Lemma 5 , the determination of an upper bound for P (T — 1 > ¢)
leads us to study f.. In this proof, €, u, K and A’ < A(u) are fixed, then f

(resp. a) stands for f. (resp. ax(A")) and U(u) will be denoted by U.

2) We set
F(z) = exp {023: + (P‘FTO‘) ar2} —L(z), z<A (2.38)
where
L(z) = IE (exp {zU}). (2.39)

By a straightforward calculation we obtain :

Fi1(0) =0, F{(0)=0, (2.40)

F/'(z) = [p+ a+ (c®+(p+ a)x)z] exp {a2m + (HTQ) xz} —E(U%eY).

(2.41)

13



Since p, a and x are positive numbers,
Fl'(z) > p+a+o* —E(U%"Y).

We have

E (U%"Y) =E (U?) + E (U*(e"Y - 1)).
But 0 < z < A’ and U < T*(K), then
E (U%e"Y) <E (U?) + o,
F(z)20; zel0A]

As a result, F is a convex function on [0; A'], (2.40) implies that

Fi(z) > 0; vz € [0; A']. (2.42)
3) Recall that
E (eﬂ’*(")) S S P (2.43)
cos (K\/Z_m) 8 K2

Since U < T*(K), then A(u) > 72 /8K?2.

4) Tt is easy to check that (2.42) is equivalent to

f(x) > o’ex — p;amQ; vz € [0; A'].
The maximum to = — o2ex — 25222 is achieved at z.(Mo) = :jfx and is equal
0'452
to Npta):
Moreover
T, <A =< p+—2aA’.
g
Consequently (2.29) directly implies (2.37). O

14



ak(4') (p+ ax(4")
o4 (3p + 3ax (A +d4) |’

Lemma 7 For any € in |0, the following inequality

holds :

P (Tw —1 < —¢) < exp (—Me%ei (), (2.44)
p, ak(A") and c1(u) being defined in Lemma 6.
Proof : As in the proof of previous lemma, we set o« = ax(A') and U = U(u).

1) Let us introduce

Fy(z) = exp {—023: n (”*TO‘) m2} —L(=z); >0,  (2.45)

L being defined by (2.39).

Taking the two first derivatives of F3, we obtain
F0)=0, F)0)=0 (2.46)
F)(z) = F3(z) — E (U%e*Y), (2.47)
with
F3(z) = [p +a+ (-’ +(p+ a)x)2] exp {—0220 + (MTQ) mQ}.
Since IE (U%e~?V) < IE (U?), then
Fj/(z) > Fy(x) - E (U?). (248)

2) We claim that F3 is a convex function. Taking the two first derivatives of Fj,

we have
F@) = [3(p+0)+6(p+a) (=0®+(p+a)z)’

+(=0*+(p+ a)a:)4] exp {_sz n (p-;a) xQ}.

15



But p+ a > 0 then F§'(z) > 0.

As a result

But

F30)=a+E(U?); F;0)=-0>(3p+3a+s?) <0.

Then F3(z) > IE (U?) as soon as
F3(0) + 2Fi(z) > | (U?).

This condition is equivalent to z € [0; 81], where

a

b= 02 (3p+3a+ot)’

Finally, due to (2.46) and (2.48), F» is a positive convex function on [0; 51].

3) Tt is easy to check :

Fa(e) 204 0.(0) 2 o%a - (252 o,
ge being the function introduced in Lemma 5.
2

We apply (2.30) with Ay = z.(Mp) = g , we get :
pt+a

P (Ty — 1< —¢) <exp{—M ge(z.(Mo))} = exp {—Me%c1(p) }.

alp+a)

Moreover z.(Mop) < f1 <= € < ot (3p+3a+01)

Lemma 8 For any 0 <e <1/2,

T T
P({ sup B, > —— <ca+IP<su Bu2—>, 2.49
(057};1 ~ o1 +6> - OSUI;I o (2.49)

16



where

Proof: Ase >0,

x
IP{ sup By > ———| =P sup B, > + 4,
(0<ur<)1 Y=oVl + 6) (0<u1:<)1 )

where

i X
§=P(———< sup B, <=).
(0\/1+8_0s«21 U_U)

d
But it is well known that supg<,<; Bu @ | By, so that :

T x T
6 = P|—<|By| < - 21p <B
(m/l-}—e <IBil< a) (a\/l LS >

(10 -+ (i=))

with

®(2) =P (B; < 2) e /2 du.

Using formula of finite increments, we obtain :

§d=2 (f—L) d'(y) for some y € [L'E]
N\ T ovire) Y0 Ve lovire ol
However

T T e e
0<=— = <=
o oVi+e oVi+e(Vi+e+1) ™ 20

Suppose that e < 1/2 and y € [ then

1+5’0'}

1 2 1 2 2
(y) = ——e V12 < ——e @ /B,

oz = V2r
So that
T
d<eho(2)

17



where

z 2
ho(2) = —e= % /3
0( ) \/ﬂ
But ho(2) < ho(1/3/2) = ¢, this shows (2.49). O

At this stage we have to give a lower bound to IP (sup05u51 B, > a'\/llTE (x + U\I/{H)) .

Using same tools as for lemma 8, we will prove :

Lemma 9 For any 0 <e <1/2,

P ( B > :1:) 2K
su w > — - —F— — €
05121 T o ovV2rM >

1 K
<IP{ sup B, > T+ , (2.50
- (ogu% “To 1—6( \/M)) (2:50)

where
26_1/2
Co = ——.
> V27
Proof: 1)Weset y = 2 + K/v M. Using the same arguments as for lemma 8,
we obtain :
Y _ Y
IP( sup BuZi) —1P< sup Bu2—> -4,
0<u<l oV1l—e¢ 0<u<1 o
where

1op (g i) 20 (=) )

We have successively :

—_of( Y  _Y)g y._ ¥
6—2(0m U)@(z), forsomeze[g,gm].

Since z > y/o,

y2

1
®'(2) < — -2
(Z) —_ \/ﬂ eXp 20_2 7

18



and

y _g_g(l—ﬂl—s)_g( 3 )

ovVl—e o o V1i-¢ o \(1+V1-g)(WV1-¢)

! y wi z) = 2z e /2
v (o) T me = o

but € < 1/2, so that /T —e > 1/4/2, then

1 1 V2+1
(1+\/1—5)(\/1—6)2E(1+ﬁ): > 1

We get

Y
< =)< = .
) < Ehl (0) <S Ehl(l) EC2
2) We have to express IP (supg<, <1 Bu > y/0) through IP (supy<,<; By > 2/0).

IP( sup Buz.x/o) - IP( sup BUZy/U)

0<u<l1 0<u<1

_ P (a:/a < sup Bu<awjo+ K/(J\/J\_/I)) ,

0<u<1
K
- 2(¢(£+ )_q>(£)),
o ov M o
2K -a/2o®),
oV2n M
2K
oV2r M’
This ends the proof. O

We are now able to prove Theorem 1. We can control the rate of convergence

of the two probability distributions functions.

Proof of Theorem 1 :

19



1) Using lemmas 4, 5-9, we obtain :

Arze) P (e 027
P{—>z)—1P{ sup B, > —
|(M_ ogugl u_0|

2K N 2e~1/2
oV2r M V2T

%\/%6_1/26 +2exp{—c; (H)M52}} )

e+ 2exp {—c1 () Me?},

gmax{

as soon as

p+ax(A) . , ak(A") }
< —F = A . 2.51
c a? o " 02 (3p+ 3ak(A!) + o) (2:51)

1 2 —1/2
But —\/Ee_l/2 < © , then
2V V2T

|IP(S—M>m>—]P(sup Bu2£)|

0<u<1 g
2K 2¢1/2
< +
T oVv2rM V2

e+2exp {—ci(u)Me?*}.  (2.52)

Minmizing in ¢ in the right hand side of (2.52) leads to € = /3 Al/}‘c%”). Hence

SM .’L')
P{—>z)—-1P( sup B, > —
| (\/M_ ) <osu21 “To |

1 2 —-1/2
< /h;\y( 2 2K 2e pr—yD

+ +
vinM  oV2nv/InM T o2

N———

and (2.51) is equivalent to :

In M ~ . ak (4
U S\/p+aK(A)m1n{A, 02(3p+3aK(A’)+a4)}' (2.53)

20



2) Using the scaling property of the Brownian motion (namely T*(K) @ geape (1)),

we have :
ar(A) = K*ay (A K?). (2.54)
Let 8 be the function :
B(z) = E [ezT*(l)] ; 0<z< 7r_27 (2.55)
- 8
then
B()—#- 0< <7r—2 (2.56)
= s (V2z) ~ TS ’
ai(z) = " (=) — B"(0). (2.57)

This allows us to compute explicitely a.
It is clear that

lim ai(x) = +o0, (2.58)

z—m2/8

and a4 is an increasing function starting at 0.
Let My be a fixed integer, My > 2. Relation (2.57) implies that exists x; €
]0; /8 such that

In MO
My’

zy/ai(z) > Vzr € [z1; 7*/8]. (2.59)

Consequently the scaling property (2.54) yields to :

In M,
A'/p + ax (A > % VA' € [A}; 72/8K?], (2.60)
0

where 4] = 21 /K2
3) Let us determine an upper bound for IE (U (u)?).

Since U(u) < T*(K), then
IE (U(p)®) <IE(T*(K)*) < K'E (T*(1)%) = gK“ (2.61)
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As a result \/p + ag(A") < \/§K4 — ot +ag(A").

4) Using once more (2.58), we can find z, € |0;7%/8[ such that :

o (z)3/? S In My (2.62)
02 (5—20" 4+ 3a1(x)) =V My’ '
for any = € [z2;7%/8], where o’ =0 /K.
As a result,
ok ) o) [T -
o2 (Bp+3ak(A) +ot) =V My’ '
for any A’ € [z,/K?; n?/8K?[.
It turns out that (2.53) holds for any M > M. O

Remark 3 We have actually proved the existence of M (u) such that for any
M > M) -

P (2 s0)r (s mz?)isconn . o

where y is the common distribution of & and

2K 1 N 2 N 2e1/2
oV2rvIinM VInM T o2

C(M,p) = E(U(p)?) — o' + ax(4').
(2.65)

and A’ verifies (2.53).

A priori C(M, u) is the best constant given by our approach, however M (u)

has the disadvantage of not being explicit. This explains the formulation of

Theorem 1.

Proof of Theorem 2 : The method is the same as the one developed for the

maximum. However there are two changes.
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a) (2.25) has to be replaced by :

1 1 2K
—_— < — i < — R
\/_Hk < aogg)%k (Bu Og)lgqu) < \/_Hk + Nili

b) We need an upper-bound for P (a < { < b), where 0 < a < b and ( is the

random variable :

¢ = max (Bu— min Bv).

0<u<1 0<v<uy

Recall that Lévy’s theorem implies that ¢ @ B, where B} = supg<,<1 |Bul-

If we set S1 = supg<y<1 Bu and It = ming<u<1 By, then

$19 1, 9B
and
{a< By <b}Cc{a< S <blU{a< -6 <b},
P(a< By <b)<2P(a< |Bi| <b).
The rest of the proof runs as in Theorem 1. O

3 Numerical tests.

This section is devoted to the numerical validation of our results : we would like
to verify the quality of our upper bound C(M) (resp. C(M)) in (2.13) (resp.

(2.17)).

3.1 Three classes of examples of .

For simplicity we consider only discrete probability measures. Let us recall that
p is the common distribution of &;.

We examine three classes C1, Co and Cs of pu.
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.,5}

e (; is constituted by uniform distributions on {-2,2}, {-5,...,-1,1,..

and {-10,...,-1,1,...,10}, noted 1,1, p1,2 and p1 3 respectively.

e In C; the three probability measures p2 1, 2,2 and ps 3 are rather concen-

trated at the end points of their support. More precisely we choose :

2

1 .
P21 =g > s,

i=—2,i£0

i=—5,i70
1 10
M3 =10 Z |i[ds,
i=—10,i#£0

where §; denotes the Dirac measure at 4.

e In C3 we consider us 1, ps,2 and pg 3 which are rather concentrated at the

origin. We take :

2
1 .
Ms1 =g > B-liDd,
i=—2,i7£0
1 5
H3,2 = 30 Z (6 — i),
i=—5,i#0
1 10
H3,3 = 110 Z (11 = [3[)d;.
i=—10,i#0

We observe that K = 2 (resp. K =5, K = 10) for p;1 (resp. pi2, pi3),
1<i<3.
3.2 The supremum of a random walk
Let us explain our numerical procedure. We use the random number generator
of the GSL library under GNU General Public License.
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Let us start with M fixed. We generate k times the random walk (X;)o<i<m
and then obtain a k-sample of Syr/v M whose empirical distribution function

is denoted Fj, pr. On one hand, Theorem 1 tells us

sup | P (S <) - 1 (2) 1< c0n B, (3.1)

where F(z) = IP (|B1| < z) and

e =2t 2 ﬂﬁﬂ\/iaua(xm» (32)
T o2rvVInM | VI M 7w o2 V3 e '

On the other hand,

T InM
ilég | Fe,m(z) — F (;) |< Ok, M S8 (3.3)
with
Seas = || e (sup [ Fy,a1 (2) — F(a/0)| (3.4)
k,M = In M ilelg k,M\X /o . .

Kolmogorov’s theorem implies that IP (S M/VM < a:) can be approximated by
F. m(z), uniformly with respect to x, with heuristic rate 1/v/k. We choose

k= 108.
This brings us to compare C(M) and 8, ar. We introduce

R - COD

: 3.5
Sent (3-5)

Then R(M) close to 1 (resp. large) means that our upper bound C(M) is

convenient (resp. over-estimated).

Recall that z, depends on My (cf (2.10) and (2.11) ). Then there is two

ways to choose x..
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1) The first length of random walk we consider is ten. So we fix My = 10 and
determine the corresponding value of x,(10) (C(M) being the constant given
by (2.13), for any M > My).

This procedure is denoted by F on the legends of the graphs.

2) The simulations are led with M varying from 10 to 10 000, with step 10.
We try to improve our procedure. For any M we determine the best value
of z,(M) verifying (2.10) and (2.11). We choose C'(M) by the relation (2.13)

where . (M) is replaced by x,(M).

We summarize the results in Table 1. For each kind of distribution, we write
the minimum and the maximum over M, for §;, » and R(M). The letter F (resp.
V) recalls that we compute C(M) using z,(10) (resp. z.(M)).

We also plot the two graphs of M — R(M), from M = 10 to M = 10000,
corresponding to the F and the V procedures. We restrict ourself to K = 5, for

the other cases, the graphs are similar.

We observe two facts : R(M) seems to be constant if M is large enough. The

ratio R(M) is substantially lower with the V-procedure.

3.3 The local score

We use the same procedure to obtain the empirical cumulative distribution of

the local score. We keep the same notations, i.e. :

F/S?V)[(z) - (a sup |By| < z)
’ 0<u<l1

) . (3.6)

) — % su
BN Ger
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Class K Mod Ok, M R(M)
min | max | min | max

1 2 F 0.21 | 044 | 64 | 129
\% 0.22 | 044 | 5.6 6.4

5 F 0.21 | 040 | 8.9 | 17.2

\% 0.21 | 0.40 | 8.0 9.1

10 F 0.19 | 0.38 | 10.2 | 20.5

\% 0.19 | 0.38 | 9.8 | 10.8

2 2 F 0.22 | 044 | 5.7 | 11.3
A% 0.22 | 044 | 4.8 5.7

5 F 0.20 |1 040 | 7.2 | 144

\% 0.20 | 040 | 6.7 7.2

10 F 0.19 | 0.38 | 8.0 | 159

\% 0.19 | 0.38 | 7.5 8.0

3 2 F 0.23 | 045 | 7.2 | 13.9
\% 0.23 | 045 | 6.8 7.2

b) F 0.20 | 040 | 7.2 | 144

A% 0.20 | 040 | 12.2 | 13.5

10 F 0.19 | 0.39 | 155 | 31.0

\% 0.19 | 0.39 | 9.7 | 10.8

Table 1: Error factor

18

17
16
15
14
13

12

11

10 F :

‘ T ‘

3 I I 8 I I .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 1: Graphs of M +— R(M), when p = p1 9
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6 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 2: Graphs of M — R(M), when p = ps -

12 1 1 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Figure 3: Graphs of M +— R(M), when pu = us»

28



Class K Mod Ok, M R(M)
min | max | min | max

1 2 F 0.40 | 0.71 | 6.7 | 11.8
\% 042 | 0.71 | 5.6 6.7

b} F 0.37 | 0.63 | 10.0 | 16.9

\% 0.37 ] 063 | 9.0 | 10.0

10 F 0.35 | 0.60 | 11.7 | 20.1

\% 0.37 | 0.60 | 10.0 | 11.6

2 2 F 0.45 | 0.70 | 6.0 9.4
A% 0.43 | 0.70 | 4.1 6.0

b) F 0.36 | 0.61 | 81 | 13.6

\% 0.35 | 0.60 | 6.9 8.1

10 F 0.33 | 0.56 | 9.3 | 15.7

\% 035 ] 057 | 7.2 9.3

3 2 F 048 | 0.72 | 7.8 | 11.6
\% 048 | 0.73 | 5.3 7.8

) F 0.40 | 0.68 | 13.5 | 22.5

A% 0.42 | 0.67 | 11.6 | 13.5

10 F 0.41 | 0.65 | 17.2 | 27.5

\% 0.41 )| 0.65 | 15.2 | 17.3

Table 2: Error factor

where F(5) is the empirical cumulative distribution of the local score divide by

the square root of n..

To compare and C(M) 8, ar, we introduce :

R(M) = i% ) (3.7)

The number k of simulations is fixed to 10°. We compute C(M) distin-
guishing the F and the V-method. We observe two facts : R(M) seems to be
constant if M is large enough, and the ratio R(M) is substantially lower with
the V-procedure.

The results are given in Table 2.
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3.4 Conclusions about numerical results

The simulations show that our upper bound C(M) (resp. C(M) ) for the supre-

mum (resp. the local score) is convenient. As a results, the rate a convergence

is actually /In(M)/M.
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