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Abstract

We investigate stochastic homogenization for some degenerate quasilinear pa-
rabolic PDEs. The underlying nonlinear operator degenerates along the space
variable, uniformly in the nonlinear term: the degeneracy points correspond to
the degeneracy points of a reference diffusion operator on the random medium.

Assuming that this reference diffusion operator is ergodic, we can prove the
homogenization property for the quasilinear PDEs, by means of the first order
approximation method. The (nonlinear) limit operator needn’t be nondegenerate.
Concrete examples are provided.
Keywords : Stochastic homogenization; parabolic PDE; nonlinear PDE; degen-
erate PDE; first order approximation; ergodic operator.

1 Introduction

We are interested in the asymptotic behavior, as the parameter ε vanishes, of the solu-
tions on ]0, T ] ×O of the PDEs

∂tu
ε(t, x) − div

(

a(ω, x/ε,∇xu
ε(t, x))

)

+ f (ω, x/ε, x, uε(t, x),∇xu
ε(t, x)) = 0,(1)

(t, x) ∈]0, T ] × O, with uε(0, x) = 0 for x ∈ O and uε(t, x) = 0 for (t, x) ∈]0, T ] × ∂O.
In these equations, T denotes a positive real and O ⊂ Rd a bounded convex open set of
class C2+α, for α > 0. The parameter ω evolves in a random medium Ω, endowed with
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a σ-algebra G and a probability measure µ, with suitable stationarity and ergodicity
properties. For all x′ ∈ Rd, y ∈ R and z ∈ Rd, the fields (ω, x) 7→ a(ω, x, z) and
(ω, x) 7→ f(ω, x, x′, y, z) are stationary.

The main interest of our work lies in the possible degeneracies of the leading elliptic
parts −div(a(ω, x/ε,∇xu

ε(t, x))), ε > 0. Both in the periodic and stochastic cases,
the underlying field a is, in many papers devoted to homogenization, assumed to be
strictly monotone with respect to the gradient term (i.e. uniformly elliptic in the linear
framework). For example, in the recent work by Efendiev and Pankov [3] devoted to
time-space homogenization of nonlinear random parabolic operators, the leading part
fulfills a nondegeneracy property. However, as pointed out in earlier papers, the uniform
ellipticity condition is far from being minimal. For example, in a series of articles,
De Arcangelis and Serra Cassano [2], Paronetto and Serra Cassano [17] and Paronetto
[18, 19] investigate the periodic homogenization of a class of degenerate linear equations.
Loosely speaking, the diffusion coefficient is controlled by the identity matrix up to a
scalar function that satisfies a Muckenhoupt condition. In a similar spirit, Huang et
al. [8] consider nonlinear equations with periodic coefficients and Engström et al. [4]
investigate homogenization of nonlinear random operators.

Our work relies on a different observation, which permits to deal with more gen-
eral degeneracies (see Section 4 for a detailed comparison). In the linear case, the
ellipticity assumption can be replaced by an ergodicity assumption on the underlying
nonrescaled operator (see e.g. Rhodes [20, 21]). Indeed, if a has the form a(ω, x, z) =
â(ω, x)z for a symmetric matricial field â(ω, ·) with entries in H1

loc(R
d), the leading part

−div(â(ω, x)∇x·) induces a self-adjoint operator on the random medium Ω, denoted by
Lâ (see e.g. Papanicolaou and Varadhan [15, 16]). If this operator is ergodic, that is
if the invariant functions for the associated semigroup are the constant functions, then
the homogenization property holds for the rescaled operators. To adapt this idea to the
nonlinear case, we assume that a in (1) has the form

(2) a(ω, x, z) = σ̃(ω, x)A(ω, x, σ̃(ω, x)z), ω ∈ Ω, x, z ∈ Rd,

where A(ω, x, z) is a strictly monotone vector with respect to z, uniformly in (ω, x),
and σ̃(ω, x) is a symmetric matrix such that ã(ω, ·), with ã(ω, x) = σ̃(ω, x)σ̃(ω, x), has
entries inH1

loc(R
d) and the operator Lã is ergodic on the random medium Ω, as explained

above. This factorized form for the diffusion coefficient explains the title of our work: in
(1), the rescaled operators degenerate along the space variable, uniformly with respect
to the gradient term. We make a similar assumption on the source term f and assume
that it may be expressed as f(ω, x, x′, y, z) = F (ω, x, x′, y, σ̃(ω, x)z), ω ∈ Ω, x, x′ ∈
Rd, y ∈ R, z ∈ Rd, where F is Lipschitz continuous in y and z, uniformly in ω, x and
x′.
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We are then able, see Theorem 3.6, to establish the homogenization property for
the solutions (uε)ε>0: we prove that they converge in L∞([0, T ], L2(Ω × O)) towards
the solution of a limit equation, whose form is detailed below. We also manage to
describe, in a strong sense, the asymptotic behavior of the gradients of (uε)ε>0 and
prove, in particular, their convergence up to a corrector term. We emphasize that our
convergence result is an annealed version of the homogenization property unlike [3] where
the convergence is stated for almost every realization of the stationary field. Even in
the linear case, it seems that it is the price to pay for considering possibly degenerate
operators.

The key point in our proof is a nonlinear version of the Birkhoff ergodic theorem on
the random medium for quantities of the form

(3)

∫ T

0

∫

O

h(ω, x/ε, x, uε(t, x))dx dt.

The word nonlinear indicates that the functionals that we investigate depend on the so-
lutions (uε)ε>0. Using the ergodicity ofLã, we manage to prove an averaging property for
(3) with respect to the highly oscillating variable. Loosely speaking, under suitable con-

ditions on h, (3) is close, in L1(Ω× [0, T ]×O), to
∫

Ω

∫ T

0

∫

O
h(ω, 0, x, uε(t, x))dxdtdµ(ω).

Of course, the ergodicity of Lã is deeply connected to the geometry of the degen-
eracies of the matrix ã: the coefficients ã and a are allowed to degenerate in certain
directions only or to vanish on sets of null Lebesgue measure only. To the best of our
knowledge, the only paper where the coefficient diffusion may vanish on sets of non-zero
Lebesgue measure is due to Hairer and Pardoux [7]. In this work, the medium is periodic
so that the authors can consider nondivergence operators with a non-zero drift. The
role of the drift is crucial: it permits to preserve the ergodicity property on the areas
where the diffusion coefficient vanishes. However, to make up for these local strong
degeneracies, the authors require the existence of a strongly regularizing open area, so
that the underlying diffusion coefficients cannot degenerate on the whole space. On the
opposite, this situation is allowed in our setting (see Subsection 9.3 in Rhodes [21]).

In our framework, there are two main technical difficulties: first, the random medium
is not compact and specific arguments to the periodic case fall short; second, for ε > 0,
the solution uε to (1) belong, at time t, to a subspace, denoted byH

σ̃(ω,·/ε),1
0 (O), of L2(O)

which is larger than H1
0 (O) and for which the classical H1

0 (O) →֒ L2(O) compactness

arguments fail (loosely speaking, H
σ̃(ω,·/ε),1
0 (O) is the space of functions ϕ ∈ L2(O)

such that σ̃(ω, ·/ε)∇ϕ exists in L2(O)). For this reason, the G convergence theory (see
Efendiev and Pankov [3], Pankov [13] and Svanstedt [22]) or refinements of this method
(see the previous cited articles [2, 17, 18, 19] for Sobolev embeddings of suitable weighted
spaces) fall short of establishing the homogenization property.
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We thus use the first order approximation method (see Jikov, Kozlov and Oleinik
[9], Chapter 7), that is we seek an approximation of uε of the form

(4) uε(t, x) ∼ ū(t, x) + χε2(

ω, x/ε,∇xū(t, x)
)

,

where χλ(ω, x, z) denotes, for every z ∈ Rd, an approximate corrector, that is a station-
ary field, solution of the equation

λχλ(ω, x, z) − div
(

σ̃(ω, x)A(ω, x, σ̃(ω, x)z + ∇xχ
λ(ω, x, z))

)

= 0,

and ū stands for the solution of the presumed limit equation.
The main difficulty in (4) is that ū and χλ are not differentiable in all the directions

of the space because of the degeneracies of a. In short, the field χλ(ω, x/ε, z) is just
differentiable along the matrix σ̃(ω, x/ε) (i.e. ∇xχ

λ(ω, x/ε, z) doesn’t exist but we can
give a sense to σ̃(ω, x/ε)∇xχ

λ(ω, x/ε, z)). Similarly, the solution ū is just differentiable
along the matrix ς, equal to the square root of the effective diffusion coefficient α asso-
ciated to the reference matrix ã, i.e. ς = α1/2. As a consequence, we have to develop
a tedious regularization procedure to overcome the lack of differentiability in (4) (see
Section 6 in the paper).

The reason why ū is not differentiable in all the directions of the space is simple: the
limit equation may be degenerate. At this step, we mention that this situation doesn’t
happen under the Muckenhoupt condition introduced in [2, 4, 8, 17, 18, 19] (see Section
4 for a detailed discussion). In our setting, the limit equation has the form

(5) ∂tū(t, x) − div
(

Ā(∇xū(t, x))
)

+ F̂
(

x, ū(t, x),∇xū(t, x)
)

= 0, (t, x) ∈]0, T ] ×O,

with ū(0, x) = 0 for x ∈ O and ū(t, x) = 0 for (t, x) ∈]0, T ] × ∂O. We can show
that the limit coefficient Ā can be factorized by ς, that is Ā(z) = ςÂ(ςz), z ∈ Rd,
for a strictly monotone vector Â. In particular, the equation (5) is degenerate if the
rank of α is less than or equal to d − 1. Similarly, the limit source term has the form
F̄ (x, y, z) = F̂ (x, y, ςz), x ∈ Rd, y ∈ R, z ∈ Rd, for a mapping F̂ , Lipschitz continuous
with respect to (y, z), uniformly in x. To understand in a better way the geometry of
the limit equation (5), we can think of the case where ς is diagonal. Up to a change of
variables, this is always possible since ς has a diagonal form in a suitable orthonormal
basis. In this case, the equation (5) may be seen as a system of nondegenerate nonlinear
equations parameterized by the kernel of ς, or equivalently by the kernel of α. We then
understand in a deeper way the regularity of the limit solution ū. Along the sections of
the domain O with respect to the kernel of α, the regularity of ū follows from classical
PDE results. For example, if the initial coefficients a and f are smooth, we can prove
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that ū is smooth along the image of α. The convexity of the domain plays a crucial role
at this point: since O is smooth and convex, the sections of the domain are regular.

The last question the reader may ask is the following: what can be said about the
rank of α ? To be honest, this is a difficult question. We refer to Hairer and Pardoux
[7] for a general discussion on this question in a different framework than ours. In our
specific setting, we just provide two interesting examples: we first expose a surprising
situation where the homogenized coefficient degenerates (and may even reduce to zero)
in spite of strong nondegeneracy conditions of the initial coefficient over a domain with
full Lebesgue measure; in the second example, we show that α may be uniformly elliptic
even if ã is not (see Section 4 in the paper).

We now present the organization of the paper. In Section 2, we describe the random
medium and expose the different assumptions. In Section 3, we detail the main results
of the paper. In Section 4, we provide several examples. In Section 5, we investigate the
corrector equations and discuss a nonlinear version of the ergodic theorem. The proof
of the homogenization property if detailed in Section 6 and the geometry of the limit
equation is discussed in Section 7.

2 Setup and assumptions

Random medium. Following [9], we introduce the following

Definition 2.1. Let (Ω,G, µ) be a probability space and
{

τx; x ∈ Rd
}

a group of measure
preserving transformations acting ergodically on Ω:

1) ∀A ∈ G, ∀x ∈ Rd, µ(τxA) = µ(A),
2) If for any x ∈ Rd τxA = A, then µ(A) = 0 or 1,
3) For any measurable function g on (Ω,G, µ), the function (x, ω) 7→ g(τxω) is

measurable on (Rd × Ω,B(Rd) ⊗ G).

The expectation with respect to the random medium is denoted by E. In what
follows we use the bold type to denote a function g from Ω into R (or more generally
into Rn, n ≥ 1) and the unbold type g(ω, x) (or just g(x) when possible) to denote the
associated representation mapping (ω, x) 7→ g(τxω). Similarly, for a family (g(·, z))z∈Rn ,
n ≥ 1, of functions from Ω into Rn, we denote by g(ω, x, z) (or just g(x, z) when possible)
the mapping (ω, x, z) 7→ g(τxω, z). The space of square integrable functions on (Ω,G, µ)
is denoted by L2(Ω), the usual norm by | · |Ω2 and the corresponding inner product
by ( · , · )Ω

2 . Then, the operators on L2(Ω) defined by Txg(ω) = g(τxω) form a strongly
continuous group of unitary maps in L2(Ω). The group possesses d generators defined by
Dig = limh→0 h

−1[Thei
g−g] if exists, which are closed and densely defined. Setting C =
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Span
{

g ⋆ ϕ; g ∈ L∞(Ω), ϕ ∈ C∞
c (Rd)

}

, with g ⋆ ϕ(ω) =
∫

Rd g(τxω)ϕ(x) dx, the space C
is dense in L2(Ω) and C ⊂ Dom(Di) for all 1 ≤ i ≤ d, with Di(g ⋆ ϕ) = −g ⋆ ∂ϕ/∂xi. If
g ∈ Dom(Di), we also have Di(g ⋆ ϕ) = Dig ⋆ ϕ.

Structure of the PDE. As explained in Introduction, we assume in the whole paper
that the nonlinearities of order one can be factorized by a reference matrix. We thus
introduce the following

Definition 2.2. Given a function ϕ from R × Rd into R (the definition below may be
adapted in a trivial way when the values of ϕ belong to a normed space), a d×d symmetric
matrix σ and a positive constant C, ϕ is said ((1, σ), C)-Lipschitz continuous if for all
y, y′ ∈ R and z, z′ ∈ Rd

(6) |ϕ(y, z) − ϕ(y′, z′)| ≤ C
(

|y − y′| + |σ(z − z′)|
)

.

Given a function ϕ from Rd into Rd, a d × d symmetric matrix σ and a constant
C ≥ 1, ϕ is said (σ, C)-strictly monotone if for all ζ ∈ Rd and for all z, z′ ∈ Rd

(7)
(i) 〈ϕ(0), ζ〉 ≤ C |σζ|
(ii) 〈ϕ(z) − ϕ(z′), ζ〉 ≤ C |σ(z − z′)| |σζ|
(iii) C−1|σ(z − z′)|2 ≤ 〈ϕ(z) − ϕ(z′), z − z′〉 .

We can prove, for a ((1, σ), C)-Lipschitz continuous function ϕ, that there exists a
((1, Id), C)-Lipschitz continuous function Φ (Id denotes the identity matrix of size d)
such that ϕ(y, z) = Φ(y, σz) (1). Similarly, for a (σ, C)-strictly monotone function ϕ,
there exists an (Id, C)-strictly monotone function Φ such that ϕ(z) = σΦ(σz) (2) . In
both cases, the function Φ can be constructed with the same regularity as the function
ϕ.

From now on, the coefficients a : Ω × Rd → Rd and f : Ω × O × R × Rd → R

denote measurable functions with respect to the underlying product σ-fields. In the
whole paper, we assume that there exists a constant Λ ≥ 1 such that

Assumption 2.3 (Control). There exists a measurable function σ̃ : Ω → Sd(R) (set
of d × d symmetric real matrices), bounded by Λ, such that a(ω, ·) is (σ̃(ω),Λ)-strictly
monotone for each ω ∈ Ω.

1 The matrix σ may be expressed as σ = Mdiag[λ1, . . . , λr, 0, . . . ]M∗, for r reals λ1, . . . , λr , different
from zero, and for an orthogonal matrix M (diag[λ1, . . . , λr, 0, . . . ] stands for the diagonal matrix
of size d whose diagonal elements are equal to λ1, . . . , λr, 0, . . . ). We set Φ(y, z) = ϕ(y, σ−1z) with
σ−1 = Mdiag[1/λ1, . . . , 1/λr, 0, . . . ]M∗.

2 Same construction as above, but with Φ(z) = σ−1ϕ(σ−1z) + C−1Mdiag[0, . . . , 1 . . . ]M∗z (the
number of “0” is r and the number of “1” is d − r).
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Assumption 2.4 (Regularity). For each fixed ω ∈ Ω and for all x ∈ O, |f (ω, x, 0, 0)|
≤ Λ and f (ω, x, ·, ·) is ((1, σ̃(ω)),Λ)-Lipschitz continuous.

Assumption 2.5 (Ergodicity). The entries of the mapping ω ∈ Ω 7→ ã(ω) = σ̃σ̃(ω)
belong to ∩1≤i≤dDi. In particular, we can define the operator S̃(·) = (1/2)

∑d
i,j=1

Di(ãi,jDj·) on C and consider its Friedrichs extension (see [5, p. 53]), which is self-
adjoint. We then assume that the semi-group generated by S̃ is ergodic, that is, its
invariant functions are µ almost surely constant (see e.g. Rhodes [20]).

From Assumption 2.3, we can express a as a(ω, z) = σ̃(ω)A(ω, σ̃(ω)z), for an (Id,Λ)-
strictly monotone coefficient A(ω, ζ). We can choose a jointly measurable version of A.
Similarly, we can write f (ω, x, y, z) = F (ω, x, y, σ̃(ω)z), where F is a measurable map-
ping such that F (ω, x, ·, ·) is ((1, Id),Λ)-Lipschitz continuous for all ω ∈ Ω and x ∈ Rd.

Notation. We put QT = [0, T ]×O. For a measurable function h defined on a measur-
able space (E, T ) endowed with a finite measure π, we denote by ‖h‖E

2 and ‖h‖E
∞ the L2

and L∞ norms of h on this space. For a function h ∈ L1(Ω×O), the notation Mdx[h(·, x)]
stands for E

∫

O
h(ω, x)dx. For a function h ∈ L1(Ω × QT ), Mdt,dx[h(·, t, x)] stands for

E
∫ T

0

∫

O
h(ω, t, x)dtdx and, for t ∈ [0, T ], M

ds,dx
t [h(·, s, x)] stands for E

∫ t

0

∫

O
h(ω, s, x)

dsdx. Similarly, for an element A ∈ G⊗B([0, T ])⊗B(O), Qdt,dx[A] stands for Mdt,dx[1A].

3 Main Results

3.1 Solvability of the PDEs

For a given bounded function Ψ : O → Rd×d, for which the entries of ΨΨ∗ are in H1(O),
we define HΨ,1

0 as the completion of C∞
K (O) (smooth functions on O with a compact

support), with respect to the norm NΨ : ϕ ∈ C∞
K (O) 7→ [(‖ϕ‖O2 )2 + ‖Ψ∇ϕ‖O2 )2]1/2.

By the regularity of Ψ, the quadratic form ϕ ∈ C∞
K (O) 7→ [NΨ(ϕ)]2 is closable, so

that HΨ,1
0 may be seen as a subspace of L2(O). Equipped with the norm induced by

NΨ, it is a Hilbert space. We put HΨ,−1 = (HΨ,1
0 )′.

For ω ∈ Ω and ε > 0, we put V ε,ω = H
σ̃(ω,·/ε),1
0 . The closure of {σ̃(ω, ·/ε)∇ϕ, ϕ ∈

C∞
K (O)} in [L2(O)]d is denoted by Gε,ω. It is then clear that the mapping ϕ ∈ C∞

K (O) 7→
σ̃(ω, ·/ε)∇ϕ ∈ Gε,ω can be extended to the whole V ε,ω, so that a function g ∈ V ε,ω

admits a gradient along the direction σ̃(ω, ·/ε), denoted by ∇σ̃(ω,·/ε)g.
The mapping ϕ ∈ V ε,ω 7→ (ϕ,∇σ̃(ω,·/ε)ϕ) is an isometry from V ε,ω onto a closed

subspace of [L2(O)]d+1. For this reason, V ε,ω is separable.
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Theorem 3.1. For ω ∈ Ω and ε > 0, there exists a unique function uε,ω in L2(]0, T [,
V ε,ω), with ∂tu

ε,ω ∈ L2(]0, T [, (V ε,ω)′), satisfying for a.e. t ∈]0, T [ and for all ϕ ∈ V ε,ω

∫

O

∂tu
ε,ω(t, x)ϕ(x)dx+

∫

O

〈

A
(

ω, x/ε,∇σ̃(ω,·/ε)uε,ω(t, x)
)

,∇σ̃(ω,·/ε)ϕ(x)
〉

dx

+

∫

O

F
(

ω, x/ε, x, uε,ω(t, x),∇σ̃(ω,·/ε)uε,ω(t, x)
)

ϕ(x)dx = 0,

and verifying uε,ω(0, ·) = 0. We say that the function uε,ω is the unique solution of (1).
Except in particular cases, the index ω will be omitted in uε,ω.

Remark. Since uε,ω ∈ L2(]0, T [, V ε,ω) and ∂tu
ε,ω ∈ L2(]0, T [, (V ε,ω)′), we can prove that

uε,ω ∈ C([0, T ], L2(O)) (see [12, Th. 3.1 & Prop. 2.1, Ch. 1]). For this reason, the initial
condition is well defined.

Proof. We can assume without loss of generality that ε = 1. We also assume for the
moment that f (ω, x, y, z) and F (ω, x, y, z) don’t depend on (y, z). We thus investigate
the evolution problem

∂tu
1(t, x) − div

(

σ̃(ω)A(ω, x,∇σ̃(ω,·)
x u1(t, x))

)

+ f (ω, x, x) = 0, (t, x) ∈]0, T ] ×O,(8)

with the initial condition uε,ω(0, ·) = 0. The nonlinear operator A1,ω : ϕ ∈ V 1,ω 7→
−div

(

σ̃(ω)A(ω, ·,∇σ̃(ω,·)ϕ(·))
)

∈ (V 1,ω)′ is Lipschitz continuous and strictly monotone
on V 1,ω: this proves the unique solvability of the evolution equation when f and F
don’t depend on (y, z), see [11, Th. 1.2, Ch. 2]. The general case can be treated in a
usual way, by means of the Picard fixed point theorem.

Proposition 3.2. For every ω ∈ Ω, we can find a version ũε,ω of uε,ω such that the
mapping (ω, t, x) ∈ Ω × [0, T ] ×O 7→ (ũε,ω,∇σ̃(ω,·/ε)ũε,ω)(t, x) is jointly measurable with
respect to the product σ-field G ⊗ B([0, T ]) ⊗ B(O). Without loss of generality, we can
assume that, for all (ω, t) ∈ Ω × [0, T ], ũε,ω(t, ·) is a version of uε,ω(t, ·). In particular,
ũε,ω ∈ C([0, T ], L2(O)). In what follows, we write uε,ω for ũε,ω.

Proof. We can assume without loss of generality that ε = 1. We then follow the proof
of Theorem 3.1. When the coefficients f (ω, x, y, z) and F (ω, x, y, z) don’t depend on
(y, z), the solvability of (8) follows from a Faedo-Galerkin approximation (see again [11,
Sec. 1, Ch. 2]). The construction of an orthonormal basis of V 1,ω can be achieved in a
measurable way with respect to the parameter ω: we first choose an orthonormal basis
of L2(O) composed of smooth functions with a compact support and we then apply
the Gram-Schmidt procedure. As a by-product, the Faedo-Galerkin approximations are
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jointly measurable. The limit, that is the solution of (8), admits a jointly measurable
version, as written in the statement of Proposition 3.2.

Using a Picard iteration sequence, we can prove that the result remains true when
f and F depend on (y, z).

The proof of the following estimate is left to the reader:

Proposition 3.3. There exists a constant C3.3 such that, for all ε > 0, supt∈[0,T ] M
dx[|uε

(t, x)|2] + Mdt,dx[|∇
σ̃(x/ε)
x uε(t, x)|2] ≤ C3.3.

3.2 Limit Equation

We are now in position to introduce the homogenized problem (see (13)). As announced
in Introduction, it may be degenerate. For this reason, we have to control the possible
degeneracies with respect to a suitable norm on C∞

K (O), as done in Section 3.1 for the
equation (1). This norm is induced by the effective diffusion coefficient associated to ã.

We prove in Section 5 the following

Proposition 3.4. Define D as the closure in (L2(Ω))d of the set {σ̃Dϕ, ϕ ∈ C}. Then,
there exists an element ξ̃ = (ξ̃1, . . . , ξ̃d) ∈ Dd such that, for all z ∈ Rd, div(σ̃(σ̃z +
ξ̃z)) = 0 (the product ξ̃z stands for the combination

∑d
i=1 ziξ̃i: each function ξ̃i, 1 ≤ i ≤

d, is Rd valued so that ξ̃ is a matricial function). It satisfies the following variational
formula

(9) inf
ϕ∈D

E
[

|σ̃z +ϕ|2
]

= E
[

|(σ̃ + ξ̃)z|2
]

= 〈z, αz〉,

with α = E[(σ̃ + ξ̃)(σ̃ + ξ̃)∗]. Moreover, for all z ∈ Rd, the auxiliary problem

(10) div
(

σ̃A(·, σ̃z + ξ(·, z))
)

= 0

admits a unique (weak) solution ξ(·, z) in D. Setting ς = α1/2, the mapping z ∈ Rd 7→
σ̃z + ξ(·, z) ∈ D is (ς, C3.4)-Lipschitz continuous for some positive constant C3.4:

(11) ∀z, z′ ∈ Rd, E[|σ̃(z − z′) + ξ(·, z) − ξ(·, z′)|2] ≤ C3.4|ς(z − z′)|2.

Remark. By (11), we can find a jointly measurable version of ξ(ω, z).

Theorem 3.5. For x ∈ O, y ∈ R and z ∈ Rd, set

(12) Ā(z) = E
[

σ̃A(·, σ̃z + ξ(·, z))
]

, F̄ (x, y, z) = E
[

F (·, x, y, σ̃z + ξ(·, z))
]

.

9



Then, for some constant C3.5 > 0, Ā is (ς, C3.5)-strictly monotone and, for all x ∈ O,
|F̄ (x, 0, 0)| ≤ C3.5 and F̄ (x, ·, ·) is ((1, ς), C3.5)-Lipschitz continuous. As a consequence,
the PDE defined on ]0, T ] ×O by

(13) ∂tū(t, x) − div
(

Ā(∇xū(t, x))
)

+ F̄
(

x, ū(t, x),∇xū(t, x)
)

= 0, (t, x) ∈]0, T ] ×O,

with a null boundary condition on {0} × O∪ ]0, T ] × ∂O, admits a unique solution
ū ∈ L2(]0, T [, H ς,1

0 (O)), with ∂tū ∈ L2(]0, T [, H ς,−1(O)).

Proof. We check the strict monotonicity of Ā (cf. (7)) by means of (9). Indeed, from
Proposition 3.4, we know that, for all z ∈ Rd, A(·, σ̃z + ξ(·, z)) and σ̃z + ξ̃z belong to
D⊥. Hence, for ζ ∈ Rd,

〈Ā(0), ζ〉 = E
[

〈σ̃ζ,A(·, ξ(·, 0))〉
]

= E
[

〈(σ̃ + ξ̃)ζ,A(·, ξ(·, 0))〉
]

≤ C
(

E
[

|(σ̃ + ξ̃)ζ |2
])1/2

.

This proves (7.i). We turn to (7.iii). For z, z′, ζ ∈ Rd, we claim

〈Ā(z) − Ā(z′), z − z′〉

= E
[

〈A(·, σ̃z + ξ(·, z)) −A(·, σ̃z′ + ξ(·, z′)), σ̃(z − z′) + ξ(·, z) − ξ(·, z′)〉
]

≥ Λ−1E
[

|σ̃(z − z′) + ξ(·, z) − ξ(·, z′)|2
]

≥ Λ−1 inf
ϕ∈D

E
[

|σ̃(z − z′) +ϕ|2
]

= Λ−1|ς(z − z′)|2.

(14)

We establish (7.ii). For z, z′, ζ ∈ Rd, we claim

〈Ā(z) − Ā(z′), ζ〉 = E
[

〈A(·, σ̃z + ξ(·, z)) −A(·, σ̃z′ + ξ(·, z′)), σ̃ζ + ξ̃ζ〉
]

≤ Λ
(

E
[

|σ̃(z − z′) + ξ(·, z) − ξ(·, z′)|2
])1/2

|ςζ |
(15)

Plugging (15) into (14), we deduce that E[|σ̃(z− z′) + ξ(·, z)− ξ(·, z′)|2] ≤ Λ2(E[|σ̃(z−
z′) + ξ(·, z) − ξ(·, z′)|2])1/2|ς(z − z′)|. By (15), we complete the proof of (7.ii). As a
by-product, we deduce (11). We let the reader check the Lipschitz properties of F̄ in y
and z.

We investigate the solvability of (13) as in Theorem 3.1.

3.3 Homogenization Property

We present below the homogenization property: the sequence (uε)ε>0 converges towards
ū in L∞([0, T ], L2(Ω × O)) as ε tends to zero. We are also able to specify the con-

vergence of the gradients: the distance in L2(]0, T [, L2(Ω ×O)) between ∇
σ̃(x/ε)
x uε and

σ̃(x/ε)∇xū(t, x) + ξ(x/ε,∇xū(t, x)) tends to zero as ε vanishes.
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The reader may object that σ̃(x/ε)∇xū(t, x) and ξ(x/ε,∇xū(t, x)) are meaningless
since the gradient of ū doesn’t exist in all the directions of the space. In fact, by
means of standard convolution argument, we can find a sequence (ϕn)n≥1 of measurable
functions from [0, T ]×Rd into R, such that ϕn(t, ·) belongs to C∞(O) for every t ∈ [0, T ]
and (ϕn, ς∇xϕn) → (ū,∇ς

xū) in (L2(]0, T [×O))d+1. By (11), the sequence (ω, t, x) 7→
σ̃(ω)∇xϕn(t, x) + ξ(ω, ∇xϕn(t, x)) is a Cauchy sequence in L2(Ω × [0, T ] ×O) and the
limit doesn’t depend on the choice of the approximating sequence (ϕn)n≥1. It is denoted
by (ω, t, x) 7→ σ̃(ω)∇xū(t, x) + ξ(ω,∇xū(t, x)).

Theorem 3.6. Under Assumptions 2.3, 2.4 and 2.5,

lim
ε→0

{

sup
0≤t≤T

E

∫

O

∣

∣(uε − ū)(t, x)
∣

∣

2
dx

+ E

∫ T

0

∫

O

∣

∣∇σ̃(x/ε)
x uε(t, x) − [σ̃(x/ε)∇xū(t, x) + ξ(x/ε,∇xū(t, x))]

∣

∣

2
dt dx

}

= 0.

4 Examples

4.1 An Example where the Effective Diffusion Matrix is Null

We now tackle the construction of a two-dimensional periodic example where the diffu-
sion coefficient σ̃ is uniformly elliptic over an open subset of R2 but the effective diffusion
coefficient α is null. To this purpose, we define the 2π-periodic diffusion coefficient on
R2 σ̃(x1, x2) = (1−cos(x1))(1−cos(x2))I2, where I2 stands for the 2×2 identity matrix.

We first prove the ergodicity of the semi-group associated to the operator S̃ =
(1/2)×

∑2
i,j=1 ∂i(ãij(x1, x2)∂j) acting on periodic functions of two variables (ã = σ̃σ̃).

Basically, this holds true because of the ellipticity of ã on the cell C =]0, 2π[2.
Here is a precise argument. We denote by X the diffusion process with generator S̃.

It is sufficient to establish that, for a given starting point x ∈ C and a given Borel subset
B ⊂ C, with λLeb(B) > 0 (λLeb denotes the Lebesgue measure), Px(Xt ∈ B) > 0. For
such a set and n ∈ N∗, we put Bn = Cn ∩B, with Cn =]1/n, 2π − 1/n[×]1/n, 2π − 1/n[.
We can choose n large enough to ensure λLeb(Bn) > 0 and x ∈ Cn. Moreover, we
can modify the coefficient σ̃ out of Cn so that the modified coefficient σ̃n is periodic
and uniformly elliptic on the torus. We then denote by Xn the diffusion process with
generator S̃

n
= (1/2)

∑2
i,j=1 ∂i(ã

n
ij(x1, x2)∂j). We have

Px(Xt ∈ B) ≥ Px(Xt ∈ Bn; ∀s < t,Xs ∈ Cn) = Px(X
n
t ∈ Bn; ∀s < t,Xn

s ∈ Cn).

This latter quantity is strictly positive by the uniform ellipticity of ãn (see [23]).

11



We prove that the effective diffusion coefficient is null. We can consider the column
vector V = (1, 0)∗ and the sequence of 2π-periodic functions (ϕn)n defined, for (x1, x2) ∈
C, by ϕn(x1, x2) = 1 if x1 ∈ [n−1, 2π − n−1] and ϕn(x1, x2) = 1 − nπ otherwise.

The vector (ϕn(x1, x2), 0)∗ corresponds to the gradient of the function
Fn(x1, x2) =

∫ x1

0
ϕn(u, x2) du and thus belongs to D. Keeping the notations of Sub-

section 3.2, (9) yields

〈V, αV 〉 ≤
1

4π2

∫

C

|σ(V −DFn)|2dx1dx2

≤
3

4π

∫ 2π

0

(1 −ϕn)2(1 − cos(x1))
2 dx1 =

3n2π

2

∫ n−1

0

(1 − cos(x1))
2 dx1.

An easy calculation proves that the latter quantity converges to zero as n goes to infinity
so that α degenerates along the x1-axis. The same argument holds for the x2-axis.
Therefore, the matrix α is null.

From a probabilistic point of view, the diffusion process X cannot leave the cell
from which it starts. As a consequence, the rescaled process (Xε

t = εXt/ε2)t≥0, which

corresponds to the rescaled operator S̃
ε

= (1/2)
∑2

i,j=1 ∂i(ãij(x1/ε, x2/ε)∂j), cannot
leave the cell of diameter 2πε from which it starts. The limit process is thus constant
and the effective diffusion matrix is zero.

4.2 A Random Chessboard Structure Example

We now set out an example in the stationary framework (and in the two-dimensional
setting). We fix a parameter 0 < p < 1 and we consider, as random medium, the
set Ω = [0, 1]2 × {0, 1}Z2

, equipped with the product σ-field and with the following
product measure: the two first marginal distributions are uniform distributions on [0, 1]
and the other ones are Bernoulli distributions of parameter p. We can check that the
transformations

∀y ∈ R2, ∀ω = (u, (ak)k∈Z2) ∈ Ω, τyω = (u+ y − ⌊u+ y⌋, (a⌊k+u+y⌋)k∈Z2)

fit Definition 2.1, where, for y ∈ R2, ⌊y⌋ stands for the vector whose coordinates are the
integer parts of the coordinates of y. Roughly speaking, we are drawing a chessboard
on R2 whose origin is randomly chosen over [0, 1]2. We are then coloring each square
either in black with probability p or in white with probability 1 − p.

We tackle the construction of σ̃. We define D as the 2× 2 matrix with D1,1 = 1 and
Di,j = 0 for i 6= 1 or j 6= 1. Then, we put

∀ω = (u, (ak)k∈Z2) ∈ Ω, σ̂(ω) = a0I2 + (1 − a0)D.

12



An easy calculation proves that for each ω = (u, (ak)k∈Z2) ∈ Ω and each y ∈ R2,
σ̂(τyω) = a⌊y+u⌋I2 + (1 − a⌊y+u⌋)D: for a fixed environment ω, the matrix σ̃(ω, y) is
equal to I2 on black squares and to D on white ones. We now regularize σ̂: we choose a
smooth density ̺ on R2 with a very small support and we put σ̃ = σ̂ ⋆̺. The ergodicity
property for Lσ̃σ̃ is very intuitive. Indeed, the matrix σ̃(ω, ·) only degenerates on white
squares, and in fact only on a part of each of them (depending on the support of ̺) and
only along the y2-axis direction: while lying on the degenerating part of a white square,
the diffusion associated to (1/2)

∑2
i,j=1 ∂i((σ̃σ̃)i,j(y1, y2)∂j) can only move along the y1-

axis direction. Nevertheless, with probability 1, the process encounters a black square
sooner or later (since the parameter p belongs to ]0, 1[): it thus manages to move up and
down and hence to reach every given square. Ergodicity follows. Rigorous arguments
are however left to the reader. It is plain to prove that the matrix α given by (9) is
nondegenerate.

4.3 Comparison with Existing Literature

We let the reader check that the previous examples do not satisfy a Muckenhoupt
condition, as expressed in [4, 8, 17, 18, 19]. Conversely, if a diffusion matrix ã satisfies
a Muckenhoupt condition, then it is ergodic in the sense of Assumption 2.5 because of
[17, Cor. 2.5] and [18, Th. 2.8]. We also emphasize that the Muckenhoupt condition
prevents the homogenized diffusion coefficient ã from degenerating. Indeed, for a smooth
function ϕ defined on Ω and X ∈ Rd, we have (λ(ω) denotes the smallest eigenvalue

of ã(ω)) |X|2 =
∣

∣E(X +Dϕ)
∣

∣

2
≤

(

E[λ−1]
)(

E
[

(X +Dϕ)∗ã(X +Dϕ
])

. Because of the

Muckenhoupt condition, λ−1 is integrable. The nondegeneracy of the effective diffusion
coefficient associated to ã follows from (9).

5 Preliminary Results for the Proof of Theorem 3.6

5.1 Auxiliary Problems

We now investigate the auxiliary problems and deduce, as a by-product, Proposition
3.4. The solvability of the linear auxiliary problem, related to σ̃ is standard, as well as
the variational formula (see [21]). Thus, we just focus on the construction of ξ.

Approximated Auxiliary Problems. For ϕ,ψ ∈ C, we set (we extend in an obvious

manner the notation (·, ·)Ω
2 to [L2(Ω)]d) (ϕ,ψ)Ω

1,2 = −(ϕ, S̃ψ)Ω
2 = (1/2)(ãDϕ, Dψ

)Ω

2
,

and the associated seminorm ‖ϕ‖Ω
1,2 = [(ϕ,ϕ)Ω

1,2]
1/2. Then, we can set, for any ϕ,ψ ∈ C,

E(ϕ,ψ) = (ϕ,ψ)Ω
2 + (ϕ,ψ)Ω

1,2. This defines an inner product on C × C and we denote
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by H1 the completion of C for the resulting norm. By the regularity of ã, E is closable
and H1 may be seen as a subspace of L2(Ω). Equipped with the norm induced by E , H1

is a Hilbert space.
For any ϕ,ψ ∈ C, we have (ϕ,ψ)Ω

1,2 = (1/2)(σ̃Dϕ, σ̃Dψ)Ω
2 , so that the mapping

Ξ : C → D, ϕ 7→ σ̃Dϕ can be extended to the whole space H1. For each function
ϕ ∈ H1, we denote Ξ(ϕ) by ∇σ̃ϕ : this represents in a way the gradient of the function
ϕ along the direction σ̃.

For λ > 0 and z ∈ Rd, we can consider the approximated corrector equation λχλ −
div(σ̃A(·, σ̃z + ∇σ̃χλ(·, z))) = 0, i.e. for all ϕ ∈ H1,

(16) λE
[

χλϕ
]

+ E
[

〈A(·, σ̃z + ∇σ̃χλ(·, z)),∇σ̃ϕ〉
]

= 0.

The nonlinear operator A
λ : ψ ∈ H1 7→ λψ − div(σ̃A(·, σ̃z + ∇σ̃ψ)) ∈ H′

1 is strictly
monotone and Lipschitz continuous on H1, so that the equation A

λ(ψ) = 0 admits a
unique solution, denoted by χλ(·, z) (see [24, Th. 26.A]). We let the reader prove

Lemma 5.1. There exists a constant C5.1 such that, for all λ > 0 and z ∈ Rd,
λE[|χλ(·, z)|2] +E[|∇σ̃χλ(·, z)|2] ≤ C5.1(1 + |z|2).

Convergence and Regularity of the Approximated Correctors.

Proposition 5.2. For all z ∈ Rd, the equation (10) admits a unique (weak) solution
in D. In particular, Proposition 3.4 holds (the proof of (11) follows from the proof of
Theorem 3.5). Moreover, limλ→0 E[λ|χλ(·, z)|2 + |∇σ̃χλ(·, z) − ξ(·, z)|2] = 0.

Proof. Similarly to (16), we seek for a field ξ(·, z) ∈ D such that, for all ϕ ∈ H1,
E[〈A(·, σ̃z + ξ(·, z)),∇σ̃ϕ〉] = 0.

Considering the nonlinear operator A : θ ∈ D 7→ −div(σ̃A(·, σ̃z+θ)) ∈ D′, we can
prove as above that the equation (10) admits a unique solution (D is a closed subspace
of [L2(Ω)]d and is, for this reason, reflexive). Choosing ϕ = χλ(·, z), for a given λ > 0,
we obtain E[〈A(·, σ̃z + ξ(·, z)),∇σ̃χλ(·, z)〉] = 0.

Since ξ(·, z) belongs to D, we can find a sequence (ϕn)n≥1 in C, such that ∇σ̃ϕn →
ξ(·, z) in [L2(Ω)]d. In particular, by the (Id,Λ)-strict monotonicity of A(ω, ·) for each
ω ∈ Ω and by Lemma 5.1, there exists a sequence (εn(λ))n≥1, vanishing as n → +∞,
uniformly in λ, such that E[〈A(·, σ̃z + ∇σ̃ϕn),∇σ̃χλ(·, z)〉] = εn(λ).

Making the difference with (16) (with ϕ = χλ(·, z)), we deduce that λE[(χλ(·, z))2]+
E[〈A(·, σ̃z + ∇σ̃χλ(·, z)) −A(·, σ̃z + ∇σ̃ϕn),∇σ̃χλ(·, z)〉] = −εn(λ), that is,

λE
[(

χλ(·, z)
)2]

+ E
[

〈A(·, σ̃z + ∇σ̃χλ(·, z)) −A(·, σ̃z + ∇σ̃ϕn),∇σ̃
(

χλ(·, z) −ϕn

)

〉
]

= −εn(λ) − E
[

〈A(·, σ̃z + ∇σ̃χλ(·, z)) −A(·, σ̃z + ∇σ̃ϕn),∇σ̃ϕn〉
]

= −εn(λ) + λE
[

χλ(·, z)ϕn

]

+ E
[

〈A(·, σ̃z + ∇σ̃ϕn),∇σ̃ϕn〉
]

.
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By Lemma 5.1, λχλ(·, z) → 0 in L2(Ω) as λ tends to 0. Moreover, E[〈A(·, σ̃z+∇σ̃ϕn),
∇σ̃ϕn〉] = E[〈A(·, σ̃z + ∇σ̃ϕn) −A(·, σ̃z + ξ(·, z)),∇σ̃ϕn〉] → 0 as n → +∞. Hence,
we can first fix n large enough and then λ small enough to let the right-hand side in the
above expression be small.

Proposition 5.3. There exists a constant C5.3 such that, for all h ∈ Rd,

sup
λ>0,z∈Rd

{

λE
[

|χλ(·, z + h) − χλ(·, z)|2
]

+ E
[

|∇σ̃
(

χλ(·, z + h) − χλ(·, z)
)

|2
]}

≤ C5.3|h|
2.

In particular, the convergence in Proposition 5.2 is uniform on compact subsets of Rd.

Proof. Fix λ > 0 and z, h ∈ Rd and consider v = χλ(·, z+ h)−χλ(·, z). From (16), we
can write for ϕ ∈ H1

λE
[

vϕ
]

+ E
[

〈A(·, σ̃(z + h) + ∇σ̃χλ(·, z + h)) −A(·, σ̃z + ∇σ̃χλ(·, z)),∇σ̃ϕ〉
]

= 0.

Choosing ϕ = v, we obtain

λE
[

v2
]

+ E
[

〈A(·, σ̃(z + h) + ∇σ̃χλ(·, z + h)) −A(·, σ̃z + ∇σ̃χλ(·, z)), σ̃h+ ∇σ̃v〉
]

= E
[

〈A(·, σ̃(z + h) + ∇σ̃χλ(·, z + h)) −A(·, σ̃z + ∇σ̃χλ(·, z)), σ̃h〉
]

.

Since A(ω, ·) is (Id,Λ)-strictly monotone for each ω ∈ Ω, there exist C,C ′ ≥ 0 such that

λE
[

v2
]

+ E
[

|σ̃h+ ∇σ̃v|2
]

≤ CE
[

|σ̃h+ ∇σ̃v||σ̃h|
]

≤ C ′|h|E
[

|σ̃h + ∇σ̃v|2
]1/2

.

5.2 Nonlinear Ergodic Theorem

The following result is the key point in our method. Using the ergodic properties of S̃
(see Assumption 2.5), we establish a nonlinear version of the ergodic theorem on the
random medium (the term nonlinear indicates that the functionals that we investigate
depend on the solutions of (1)). As prescribed in [1], the strategy consists in introducing
the resolvent equation associated with S̃.

Theorem 5.4. Let Ψ ∈ L2(Ω× [0, T ]×O) and h : [0, T ]×O×R → R be a measurable
function, such that sup(t,x)∈QT

|h(t, x, 0)| < +∞ and y ∈ R 7→ h(t, x, y) is Lipschitz

continuous, uniformly in (t, x) ∈ QT . Setting Ψ̄(t, x) = E[Ψ(·, t, x)], we claim,

(17) lim
ε→0

sup
0≤t≤T

E

∣

∣

∣

∣

∫ t

0

∫

O

[

Ψ(x/ε, s, x)h(s, x, uε(s, x))−Ψ̄(s, x)h(s, x, uε(s, x))
]

dxds

∣

∣

∣

∣

= 0.
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Proof. We first assume that there exist a function ψ ∈ L∞(Ω), with E[ψ] = 0, a
real R0 > 0 and a smooth function ϕ : [0, T ] × Rd → R, satisfying ϕ(t, x) = 0 for
dist(x, ∂O) ≤ 1/R0, such that Ψ(ω, t, x) = ψ(ω)ϕ(t, x). We also consider a smooth
function h : [0, T ] × O × R → R, satisfying h(t, x, y) = 0 for (t, x) ∈ [0, T ] × Rd and
|y| > R0.

We consider the resolvent equation λvλ − div(σ̃∇σ̃vλ) = ψ. For a test function
θ ∈ C∞

K (O), we can integrate the resolvent equation against ℓ ⋆ θ, for any ℓ ∈ L∞(Ω).
We deduce, for a.e. ω ∈ Ω,

λ

∫

O

vλ(x/ε)θ(x)dx+ ε

∫

O

〈∇σ̃vλ(x/ε), σ̃(x/ε)∇θ(x)〉dx =

∫

O

ψ(x/ε)θ(x)dx.

Up to a regularization argument for uε(t, .), we can choose θ(x) = ϕ(t, x)h(t, x, uε(t, x))
for a.e. t ∈ [0, T ]. We deduce that there exists a constant C, depending on ψ, ϕ and h,
such that

sup
0≤t≤T

E

[
∣

∣

∣

∣

∫ t

0

∫

O

ψ(x/ε)ϕ(s, x)h(s, x, uε(s, x))dxds

∣

∣

∣

∣

]

≤ C
[

λE[|vλ|] + ε
(

E[|∇σ̃vλ|2]
)1/2

][

1 + Mdt,dx
[

|∇σ̃(x/ε)
x uε(t, x)|2

]

]

.

By the ergodicity of the operator associated to ã, we know that λ2E[(vλ)2] → 0 as
λ→ 0 (see [14] for a particular case or [21] and references therein for the general case).
By Proposition 3.3, we can first choose λ small enough and then ε small enough to let
the above right-hand side be small. This completes the proof in this first case.

We know that the linear combinations of functions of the type (ω, t, x) 7→ ϕ(ω)η(t)×
ρ(x) with ϕ ∈ L∞(Ω), η ∈ C∞([0, T ]) and ρ ∈ C∞

c (O) are dense in the space L2(Ω ×
[0, T ] × O). As a by-product, (17) still holds for Ψ ∈ L2(Ω × [0, T ] × O) and h as
described above. Details are left to the reader.

We now assume that h is just bounded in (t, x) and Lipschitz continuous in y, as
prescribed in the statement. We claim

(18) lim
R→0

lim sup
ε→0

Mdt,dx
[

1{|uε(t,x)|>R}|Ψ(x/ε, t, x)||uε(t, x)|
]

= 0.

By (18), we can assume, without loss of generality, that the support of h is compact. We
then complete the proof by approximating h by a sequence of smooth functions (hn)n≥1,

vanishing for large values of y, such that
∫ T

0

∫

O
supy∈R

|h(t, x, y)− hn(t, x, y)|2dtdx→ 0.
We prove (18). By the Cauchy-Schwarz inequality and Proposition 3.3, it is sufficient

to prove limR→+∞ lim supε→0 Mdt,dx[Ψ2(x/ε, t, x)1{|uε(t,x)|>R}] = 0. For all R > 0 and ε >
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0, the stationarity property yields Mdt,dx[Ψ2(x/ε, t, x)1{|uε(t,x)|>R}] = Mdt,dx[Ψ2(ω, t, x)
×1{|u

ε,τ
−x/εω

(t,x)|>R}]. By a uniform integrability argument, it is sufficient to investi-
gate the measure of the set {|uε,τ

−x/εω(t, x)| > R} for large values of R. Again by
the stationarity property and Proposition 3.3, we have Qdt,dx[{|uε,τ

−x/εω(t, x)| > R}] ≤
(1/R)Mdt,dx[|uε,ω(t, x)|] ≤ C/R.

6 Proof of Theorem 3.6

As explained in Introduction, we use the first order approximation method to establish
Theorem 3.6 (see (4)). Unfortunately, because of the degeneracies of ã, the solution
of the limit PDE as well as the solutions of the auxiliary problems are not are regular
enough to do it straight. This is the reason why we introduce a specific regularization
procedure.

Regularization Procedure. We first introduce regular versions of the PDE (13).
We denote by p a one-dimensional mollifier. For for all n ≥ 1, we put pn(·) = np(n ·)

and we denote by ηn a smooth function from Rd into [0, 1], such that ηn(x) = 1 for
dist(x,Oc) ≥ 2/n (Oc denotes the complementary of O) and ηn(x) = 0 for dist(x,Oc) ≤
1/n. We assume that ‖∇ηn‖

O
∞ ≤ γn, for some constant γ > 0. Denoting by ∗ the

convolution product, we set, for (x, y, z) ∈ Rd × R × Rd, F̄n = {[(ηn ⊗ 11 ⊗ 1d) × F̄ ] ∗
p⊗2d+1

n2 }(x, y, z) with (ηn ⊗ 11 ⊗ 1d)(x, y, z) = ηn(x). Then, F̄n(x, ·, ·) is bounded at
(0, 0) by γ′C3.5, for a constant γ′ > 0, and is ((1, ς), C3.5)-Lipschitz continuous. Using
Footnotes 1 and 2, we can prove

(19) ∀R > 0, lim
n→+∞

∥

∥ sup
|y|≤R,|ςz|≤R

|F̄ (·, y, z) − F̄n(·, y, z)|
∥

∥

O

2
= 0.

Similarly, we put, for ω ∈ Ω and z ∈ Rd, An(ω, z) = [A(ω, σ̃(ω) · +ξ(ω, ·)) ∗ p⊗d
n ](z) if

defined and 0 if not (for each z ∈ Rd, the convolution product is defined for a.e. ω), so
that div(σ̃An(·, z)) = 0. We put Ān(z) = E[σ̃An(·, z)], so that Ān = Ā ∗ p⊗d

n (see (12))
and Ān is (ς, γ′C3.5)-strictly monotone (up to a modification of γ′). By (11),

(20) lim
n→+∞

sup
z∈Rd

E
[

|An(·, z) −A(·, σ̃z + ξ(·, z))|2
]

= 0.

We admit for the moment (the proof is given in Section 7)

Theorem 6.1. For every n ≥ 1, we denote by ūn the solution of the PDE (13), with
(Ān, F̄n) as coefficients. Then,

(21) ūn(t, ·)
L2

−→
O

ū(t, ·) unif. in t ∈ [0, T ], ∇ς
xūn

L2

−→
[0,T ]×O

∇ς
xū.
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The functions (ūn)n≥1 are once continuously differentiable (C.D. in short) in t, but are
just twice C.D. in x along the directions of Im(ς). The derivatives along Im(ς) are
denoted by ∇ς

xūn and ∇2,ς
x,xūn: for (t, x) ∈ QT , ∇ς

xūn(t, x) is an element of Rd (we can

also prove that ∇ς
xūn(t, ·) is as an element of H ς,1

0 (O) for all t ∈ [0, T ]) and ∇2,ς
x,xūn(t, x)

an element of Rd×d. For ν1, ν2 ∈ Rd, they are given by

(22) 〈∇ς
xūn(t, x), ν1〉 = ∂ςν1

ūn(t, x), 〈ν1,∇
2,ς
x,xūn(t, x)ν2〉 = ∂2

ςν1,ςν2
ūn(t, x).

For each n ≥ 1,

(23) sup
QT

[ |ūn(t, x)|

dist(x, ∂O)

]

+ ‖∇ς
xūn‖

QT
∞ + ‖∂tūn,∇

2,ς
x,xūn‖

QT
2 < +∞,

so that div(Ān(∇xūn)) exists as an element of L2(QT ) (3).
Moreover, for each n ≥ 1, there exists a sequence (ûn,m)m≥1 of continuous functions

on [0, T ] × Rd, infinitely C.D. in space on [0, T ] × Rd, once C.D. in time on Q̄T , such
that (∂tûn,m)m≥1 are infinitely C.D. in space on QT , and

sup
m≥1

[

‖m(ûn,m − ūn)‖[0,T ]×R
d

∞ , ‖∇ς
xûn,m‖

QT
∞

]

< +∞,

∇ς
xûn,m

Pointwise
−→
QT

∇ς
xūn,

(

∂tûn,m,∇
2,ς
x,xûn,m

) L2

−→
QT

(

∂tūn,∇
2,ς
x,xūn

)

as m→ +∞.
(24)

Truncation. For each m ≥ 1, the function ûn,m doesn’t vanish on [0, T ] × ∂O. For this
reason, we set, for all (t, x) ∈ QT , ūn,m(t, x) = ûn,m(t, x)ηm(x), so that ūn,m ∈ C1,2(Q̄T ).

Lemma 6.2. For each n ≥ 1, there exists a constant C6.2(n) such that, for all m ≥ 1,
‖∇ς

xūn,m‖
QT
∞ ≤ C6.2(n). In particular, (∇ς

xūn,m−∇ς
xûn,m)m≥1 converges to 0 in L2(QT ).

Proof. For (t, x) ∈ QT , ∇ς
xūn,m(t, x) = ηm(x)∇ς

xûn,m(t, x) + ûn,m(t, x)ς∇ηm(x). There
is no difficulty to handle the first term since supm≥1 ‖∇

ς
xûn,m‖

QT
∞ is finite. For the

second one, we can proceed as follows. For (t, x) ∈ QT , ûn,m(t, x)ς∇ηm(x) = 0 if
dist(x, ∂O) ≥ 2/m. If dist(x, ∂O) ≤ 2/m, |ûn,m(t, x)ς∇ηm (x)| ≤ γm|ς||ūn(t, x)| +
γm|ς||ûn,m(t, x) − ūn(t, x)| ≤ C(n), by (23) and (24).

Regularization of the correctors. Similarly, we regularize the paths of the approximated
correctors (χλ(·, z))z∈Rd, λ > 0. For n ≥ 1 and z ∈ Rd, we can find θλ

n(·, z) ∈ C such

3Referring to Footnotes 1 and 2, we can write Ān(·) = ςÂn(ς·) for a regular function Ân :
Rd → R. The quantity div(Ān(∇xūn)) may be expressed as div(Ān(∇xūn)) = div(ζÂn(∇ζ

xūn)) =
∑d

i,j=1
[∂(Ân)i/∂zj](∇ζ

xūn)(∇2,ζ
x,xūn)i,j = 〈∂zÂn(∇ζ

xūn),∇2,ζ
x,xūn〉. The detailed proof is given in Section

7.
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that E[|χλ(·, z) − θλ
n(·, z)|2 + |∇σ̃χλ(·, z) − ∇σ̃θλ

n(·, z)|2] ≤ 1/n. We put for all ω ∈ Ω
and z ∈ Rd

χλ
n(ω, z) =

∫

Rd

θλ
n(ω, n−1⌊nz′⌋)p⊗d

n (z − z′)dz′.

We can see that χλ
n(·, z) ∈ C for all z ∈ Rd and that, for all ω ∈ Ω and z ∈ Rd,

∇σ̃χλ
n(ω, z) = [∇σ̃θλ

n(ω, n−1⌊n·⌋)∗p⊗d
n ](z) (in particular, the function (ω, z) ∈ Ω×Rd 7→

(χλ
n(ω, z),∇σ̃χλ

n(ω, z)) is jointly measurable). Proposition 5.3 yields

(25) lim
n→+∞

sup
λ>0,z∈Rd

E
[

λ|χλ
n(·, z) − χλ(·, z)|2 + |∇σ̃χλ

n(·, z) −∇σ̃χλ(·, z)|2
]

= 0.

Moreover, by Propositions 5.2 and 5.3, for each n ≥ 1 and every compact subset K ⊂ Rd,

(26) sup
λ>0

sup
z∈K

E
[

|∇σ̃χλ
n(·, z)|2

]

< +∞, lim
λ→0

λ sup
z∈K

E
[

|χλ
n(·, z)|2 + |∂zχ

λ
n(·, z)|2

]

= 0.

First Order Approximation.

Notation. In the whole proof, Rε
n,m, Γε

n,m and ∆ε
n,m denote, in a generic way, terms that

satisfy limε→0 sup0≤t≤T |Rε
n,m(t)| = 0 for all n,m ≥ 1, limm→∞ supε>0 sup0≤t≤T |Γε

n,m(t)|
= 0 for all n ≥ 1, and limn→+∞ supm≥1,ε>0 sup0≤t≤T |∆ε

n,m(t)| = 0. Their values may
change from line to line. Similarly, we denote, in a generic way, by C constants that do
not depend on (n,m, ε). The value of C may vary from line to line.

Definition. For n,m ≥ 1, we consider a sequence (ρε
n,m)ε>0 of smooth functions, from O

into [0, 1], with compact supports, converging towards 1 in L2(O) (as ε tends to zero).
We set for all ε > 0 and (t, x) ∈ QT

(27) uε
n,m(t, x) = ūn,m(t, x) + εχε2

n (x/ε,∇xūn,m(t, x))ρε
n,m(x).

Since ∇xūn,m is a smooth function, we can write

(28) ε2E
[

|χε2

n (x/ε,∇xūn,m(t, x))|2
]

≤ sup
{

ε2E[(χε2

n (·, z))2], |z| ≤ sup
(t,x)

|∇ūn,m(t, x)|
}

.

By the Jensen inequality, (26) and Theorem 6.1, there exists a constant B ≥ 0 such that

∀t ∈ [0, T ], Mdx
[

|uε
n,m(t, x) − ūn,m(t, x)|2

]

≤ Rε
n,m(t),

Mdx
[

|uε
n,m(t, x)|2

]

≤ B +Rε
n,m(t) + Γε

n,m(t).
(29)
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Gradient of uε
n,m. In (27), we can differentiate the involved terms with respect to x

along σ̃(x/ε)

∇σ̃(x/ε)
x uε

n,m(t, x) = σ̃(x/ε)∇xūn,m(t, x) + ∇σ̃χε2

n (x/ε,∇xūn,m(t, x))

+ (ρε
n,m(x) − 1)∇σ̃χε2

n (x/ε,∇xūn,m(t, x))

+ ερε
n,m(x)σ̃(x/ε)

[

∂zχ
ε2

n (x/ε,∇xūn,m(t, x))∇2
x,xūn,m(t, x)

]

+ εχε2

n (x/ε,∇xūn,m(t, x))σ̃(x/ε)∇ρε
n,m(x)

= σ̃(x/ε)∇xūn,m(t, x) + ∇σ̃χε2

n (x/ε,∇xūn,m(t, x)) +
∑

i=1,2,3

T ε
i,n,m(t, x).

(30)

We wish to prove that T ε
1,n,m, T ε

2,n,m and T ε
3,n,m vanish in a suitable sense with ε.

Term T ε
3,n,m. By (26) and (28), we claim

ε2Mdt,dx
[

|χε2

n (x/ε,∇xūn,m(t, x))|2|∇ρε
n,m(x)|2

]

≤ Rε
n,m(T )

[

‖∇ρε
n,m‖

O
2

]2
.

The family (ρε
n,m)ε>0 is not bounded in H1

0 (O). However, we can choose, for each fixed
n,m ≥ 1, the family (ρε

n,m)ε>0 such that Mdt,dx[(T ε
3,n,m)2] vanishes as ε tends to zero.

Terms T ε
1,n,m and T ε

2,n,m. Similarly, we can prove that, for each fixed n,m ≥ 1, the
quantities Mdt,dx[|T ε

1,n,m(t, x)|2] and Mdt,dx[|T ε
2,n,m(t, x)|2] vanish as ε tends to zero.

Convergence of the correctors in the gradient. By (30) and the above analysis,

Mdt,dx
[

|∇σ̃(x/ε)
x uε

n,m(t, x)− σ̃(x/ε)∇xūn,m(t, x)−∇σ̃χε2

n (x/ε,∇xūn,m(t, x))|2
]

≤ Rε
n,m(T ).

By (25), we can approximate ∇σ̃χε2

n (·, z) by ∇σ̃χε2

(·, z) in L2(Ω) (as n → +∞), uni-
formly in z and in ε. By Proposition 5.3, we can approximate ∇σ̃χε2

(·, z) by ξ(·, z) in
L2(Ω) (as ε→ 0), uniformly on compact sets. Since ∇xūn,m is smooth, we deduce

Mdt,dx
[

|∇σ̃(x/ε)
x uε

n,m(t, x) − σ̃(x/ε)∇xūn,m(t, x) − ξ(x/ε,∇xūn,m(t, x))|2
]

≤ Rε
n,m(T ) + ∆ε

n,m(T ).
(31)

By (11), we can control σ̃z+ξ(·, z)−ξ(·, 0) in L2(Ω) by |ςz|, for any z ∈ Rd. By Lemma
6.2 and Theorem 6.1, ‖ς∇xūn,m−∇ς

xūn‖
QT
2 → 0 as m→ +∞ and ‖∇ς

xūn−∇ς
xū‖

QT
2 → 0

as n→ +∞. We obtain

(32) Mdt,dx
[

|∇σ̃(x/ε)
x uε

n,m(t, x)|2
]

≤ C +Rε
n,m(T ) + Γε

n,m(T ).

Time derivative of ūn,m. Computing the derivative with respect to t, we claim

(33) Mdt,dx
[

|∂tu
ε
n,m(t, x) − ∂tūn,m(t, x)|2

]

≤ Rε
n,m(T ).
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Distance between uε
n,m and uε. By (1), Proposition 3.3, (29), (31), (32) and (33),

for all t ∈ [0, T ],

M
ds,dx
t

[

∂t(u
ε − uε

n,m)(s, x)(uε − uε
n,m)(s, x)

]

+ M
ds,dx
t

[

〈A(x/ε,∇σ̃(x/ε)
x uε(s, x))

− A(x/ε,∇σ̃(x/ε)
x uε

n,m(s, x)),∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)〉
]

= −M
ds,dx
t

[

F (x/ε, x, uε(s, x),∇σ̃(x/ε)uε(s, x))(uε − uε
n,m)(s, x)

]

− M
ds,dx
t

[

∂tūn,m(s, x)(uε − uε
n,m)(s, x)

]

− M
ds,dx
t

[

〈A(x/ε,∇σ̃(x/ε)
x ūn,m(s, x) + ξ(x/ε,∇xūn,m(s, x))),

∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)〉
]

+Rε
n,m(t) + Γε

n,m(t) + ∆ε
n,m(t)

= −Sε
1,n,m(t) − Sε

2,n,m(t) − Sε
3,n,m(t) +Rε

n,m(t) + Γε
n,m(t) + ∆ε

n,m(t).

(34)

Lemma 6.3 (Term Sε
2,n,m). For t ∈ [0, T ] (we recall that, for s ∈ [0, T ], the term F̄n(x,

ūn(s, x),∇xūn(s, x)) is well defined since F̄n(x, ·, ·) is ((1, ς), C3.5)-Lipschitz continuous
and that the term div(Ān(∇xūn(s, x))) exists as an element of L2(QT ), see Footnotes 1,
2 and 3),

Sε
2,n,m(t) = −M

ds,dx
t

[

F̄n(x, ūn(s, x),∇xūn(s, x))(uε − uε
n,m)(s, x)

]

+ M
ds,dx
t

[

div
(

Ān(∇xūn(s, x))
)

(uε − uε
n,m)(s, x)

]

+Rε
n,m(t) + Γε

n,m(t).

Proof. By (23), we know that ∂tūn ∈ L2(QT ). Hence,

Sε
2,n,m(t) = M

ds,dx
t

[

∂tûn,m(s, x)(uε − uε
n,m)(s, x)ηm(x)

]

= M
ds,dx
t

[

∂tūn(s, x)(u
ε − uε

n,m)(s, x)
]

+ M
ds,dx
t

[

∂tūn(s, x)(uε − uε
n,m)(s, x)(ηm(x) − 1)

]

+ M
ds,dx
t

[(

∂tûn,m(s, x) − ∂tūn(s, x)
)

(uε − uε
n,m)(s, x)ηm(x)

]

.

By Proposition 3.3, (24) and (29), we deduce that Sε
2,n,m(t) = M

ds,dx
t [∂tūn(s, x)(uε−uε

n,m)
(s, x)] + Rε

n,m(t) + Γε
n,m(t). From the PDE (13) (for the regularized coefficients), we

complete the proof.

Lemma 6.4 (Term Sε
3,n,m). For all t ∈ [0, T ],

−Sε
3,n,m(t) ≤ (2Λ)−1M

ds,dx
t

[

|∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)|2
]

+ M
ds,dx
t

[

div
(

Ān(∇xûn,m(s, x))
)

(uε − uε
n,m)(s, x)

]

+Rε
n,m(t) + Γε

n,m(t) + ∆ε
n,m(t).
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Proof. Since ûn,m ∈ C1,2(Q̄T ), we can write, for every t ∈ [0, T ],

Sε
3,n,m(t) = M

ds,dx
t

[

〈A(x/ε,∇σ̃(x/ε)
x ûn,m(s, x) + ξ(x/ε,∇xûn,m(s, x))),

∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)〉
]

+ M
ds,dx
t

[

〈A(x/ε,∇σ̃(x/ε)
x ūn,m(s, x) + ξ(x/ε,∇xūn,m(s, x)))

−A(x/ε,∇σ̃(x/ε)
x ûn,m(s, x) + ξ(x/ε,∇xûn,m(s, x))),

∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)〉
]

= Sε
3,n,m(1, t) + Sε

3,n,m(2, t).

(35)

Since A is Lipschitz continuous, we deduce

|Sε
3,n,m(2, t)| ≤ (Λ/2)Mds,dx

t

[

|∇σ̃(x/ε)
x (ūn,m − ûn,m)(s, x)

+ ξ(x/ε,∇xūn,m(s, x)) − ξ(x/ε,∇xûn,m(s, x))|2
]

+ (2Λ)−1M
ds,dx
t

[

|∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)|2
]

.

Using (11) and Lemma 6.2, we deduce that the first term in the above right hand side
tends to zero as m tends to +∞, uniformly in ε. We deduce

(36) |Sε
3,n,m(2, t)| ≤ (2Λ)−1M

ds,dx
t

[

|∇σ̃(x/ε)
x (uε − uε

n,m)(s, x)|2
]

+ Γε
n,m(t).

Consider now Sε
3,n,m(1, t). We claim (the proof is given below)

Sε
3,n,m(1, t)

= −M
ds,dx
t

[

〈σ̃(x/ε)∂zAn(x/ε,∇xûn,m(s, x)),∇2
x,xûn,m(s, x)〉(uε − ûn,m)(s, x)

]

+Rε
n,m(t) + Γε

n,m(t) + ∆ε
n,m(t).

(37)

Up to the proof of (37), we can complete the proof of Lemma 6.4. Indeed, we can apply
Theorem 5.4 with Ψ(ω, t, x) = 〈σ̃∂zAn(·,∇xûn,m(t, x)),∇2

x,xûn,m(t, x)〉 and h(t, x, y) =
y− ûn,m(t, x). The quantity Ψ̄(t, x) is equal to 〈∂zĀn(∇xûn,m(t, x)),∇2

x,xûn,m(t, x)〉, that
is Ψ̄(t, x) = div(Ān(∇xûn,m(t, x))). By (35), (36) and (37), the proof is over.

We prove (37) right now. By (20), (29), (32) and Proposition 3.3, it is sufficient to
prove that for every smooth function ψ : O → R with a compact support, for all ε > 0,
n,m ≥ 1 and t ∈ [0, T ] and for a.e. ω ∈ Ω,

∫

O

〈An(x/ε,∇xûn,m(t, x)), σ̃(x/ε)∇ψ(x)〉dx

= −

∫

O

〈σ̃(x/ε)∂zAn(x/ε,∇xûn,m(t, x)),∇2
x,xûn,m(t, x)〉ψ(x)dx.
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We denote by Iε
n,m(t) the left hand side and by J ε

n,m(t) the right hand side. We wish to
prove that E[ϕIε

n,m(t)] = E[ϕJ ε
n,m(t)] for each function ϕ ∈ C. Using the stationarity

of the medium, we have, for all t ∈ [0, T ],

Mdx
[

ϕIε
n(t)

]

=

∫

O

〈E
[

ϕ(τ−x/ε·)σ̃An(·,∇xûn,m(t, x))
]

,∇ψ(x)〉dx

= Mdx
[

ϕJ ε
n(t)

]

+ 1/ε

∫

O

E
[

〈An(·,∇xûn,m(t, x)),∇σ̃ϕ(τ−x/ε·)〉
]

ψ(x)dx.

Since div(σ̃An(·, z)) = 0 for all z ∈ Rd, the last term above vanishes.

End of the proof. From (34), Lemmas 6.3 and 6.4, we obtain

Mdx
[

|(uε − uε
n,m)(t, ·)|2

]

+ (2Λ)−1M
ds,dx
t

[

|(∇σ̃(·/ε)uε −∇σ̃(·/ε)uε
n,m)(s, x)|2

]

≤ −M
ds,dx
t

[

F (x/ε, x, uε(s, x),∇σ̃(x/ε)uε(s, x))(uε − uε
n,m)(s, x)

]

+ M
ds,dx
t

[

F̄n(x, ūn(s, x),∇xūn(s, x))(u
ε − uε

n,m)(s, x)
]

+ M
ds,dx
t

{[

div
(

Ān(∇xûn,m(s, x))
)

− div
(

Ān(∇xūn(s, x))
)]

(uε − uε
n,m)(s, x)

}

+Rε
n,m(t) + Γε

n,m(t) + ∆ε
n,m(t)

= Uε
1,n,m(t) + Uε

2,n,m(t) + Uε
3,n,m(t) +Rε

n,m(t) + Γε
n,m(t) + ∆ε

n,m(t).

(38)

We first treat Uε
1,n,m. By the Lipschitz continuity of F in (y, z) and by (29) and (31),

we deduce, for a constant C ≥ 0,

Uε
1,n,m(t)

≤ −M
ds,dx
t

{[

F
(

x/ε, x, ūn,m(s, x), (σ̃(·/ε)∇xūn,m + ξ(·/ε,∇xūn,m))(s, x)
)

× (uε − uε
n,m)(s, x)

]}

+ CM
ds,dx
t

[

|uε − uε
n,m|

2(s, x)
]

+ (4Λ)−1M
ds,dx
t

[

|∇σ̃(·/ε)
x uε −∇σ̃(·/ε)

x uε
n,m|

2(s, x)
]

+Rε
n,m(t) + Γε

n,m(t) + ∆ε
n,m(t).

(39)

For Uε
2,n,m, we have, for all R ≥ 0,
∣

∣Uε
2,n,m(t) − M

ds,dx
t

[

F̄ (x, ūn(s, x),∇xūn(s, x))(u
ε − uε

n,m)(s, x)
]
∣

∣

≤ M
ds,dx
t

[

sup
|y|≤R,|ςz|≤R

|F̄n − F̄ |(x, y, z)|uε − uε
n,m|(s, x)

]

+ CM
ds,dx
t

[

(1 + |ūn| + |∇ς
xūn|)(s, x)|u

ε − uε
n,m|(s, x)1{(|ūn|+|∇ς

xūn|)(s,x)>R}

]

.

By Proposition 3.3, (19), (21) and (29), we deduce that

|Uε
2,n,m(t) − M

ds,dx
t [F̄

(

x, ūn(s, x),∇xūn(s, x)
)

(uε − uε
n,m)(s, x)]|

≤ Rε
n,m(t) + Γε

n,m(t) + ∆ε
n,m(t).

(40)
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By Proposition 3.3, Theorem 6.1, Footnote 3 and (29), we can find, for each n ≥ 1, a
constant Cn, such that for all m ≥ 1,

|Uε
3,n,m(t)|2

≤
[
∥

∥div
(

Ān(∇xûn,m)
)

− div
(

Ān(∇xūn)
)
∥

∥

QT

2

]2
M

ds,dx
t

[

|uε − uε
n,m|

2(s, x)
]

≤ Cn

[
∥

∥∇2,ς
x,x(ûn,m − ūn)

∥

∥

QT

2
+

∥

∥|∇2,ς
x,xūn||∇

ς
x(ûn,m − ūn)|

∥

∥

QT

2

]2

× M
ds,dx
t

[

|uε − uε
n,m|

2(s, x)
]

≤ Rε
n,m(t) + Γε

n,m(t).

(41)

By (39), (40) and (41), we deduce

Mdx
[

|(uε − uε
n,m)(t, x)|2

]

+ (4Λ)−1M
ds,dx
t

[

|(∇σ̃(·/ε)uε −∇σ̃(·/ε)uε
n,m)(s, x)|2

]

≤ CM
ds,dx
t

[

|(uε − uε
n,m)(s, x)|2

]

− M
ds,dx
t

{[

F
(

x/ε, x, ūn,m(s, x), (σ̃(·/ε)∇xūn,m + ξ(·/ε,∇xūn,m))(s, x)
)

× (uε − uε
n,m)(s, x)

]}

+ M
ds,dx
t

[

F̄ (x, ūn(s, x),∇xūn(s, x))(u
ε − uε

n,m)(s, x)
]

+Rε
n,m(t) + ∆ε

n,m(t) + Γε
n,m(t).

We apply Theorem 5.4 to Ψ(ω, t, x) = F (ω, x, ūn,m(t, x), σ̃(ω)∇xūn,m(t, x)+ξ(ω,∇xūn,m

(t, x))) and h(t, x, y) = y − ūn,m(t, x). By the Lipschitz property of F̄ , (24), (29) and
by Lemma 6.2, this makes the sum of the second and third terms disappear. It remains
to choose n large enough to let ∆ε

n,m be small, m large enough to let Γε
n,m be small too

and then ε small enough to treat Rε
n,m. The Gronwall lemma permits to conclude.

7 Analysis of the Limit PDE

7.1 Main Results and Proof of Theorem 6.1

The proof of the following result is left to the reader

Theorem 7.1. Under Assumptions 2.3, 2.4 and 2.5, we consider a sequence (Ān, F̄n)n≥1

of coefficients, satisfying the same monotonicity, growth and Lipschitz continuity prop-
erties as Ā and F̄ . We also assume that

lim
n→+∞

sup
{

|α1/2ζ |−1‖〈Ān(·) − Ā(·), ζ〉‖R
d

∞ , α
1/2ζ 6= 0, ζ ∈ Rd

}

= 0,

∀R ≥ 0, lim
n→+∞

∥

∥ sup
|y|≤R,|ςz|≤R

|F̄n(·, y, z) − F̄ (·, y, z)|
∥

∥

O

2
= 0.

(42)
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For all n ≥ 1, we denote by ūn the solution of the limit PDE (13) associated to (Ān, F̄n).
Then,

(43) ūn(t, ·)
L2

−→
O

ū(t, ·) unif. in t ∈ [0, T ], ∇ς
xūn

L2

−→
[0,T ]×O

∇ς
xū.

In the sequel, we prove that the solution of the PDE (13) is smooth in the directions
of Im(ς) if the coefficients are smooth and if the source term vanishes in the neighborhood
of ∂O. We then apply this result to the family (ūn)n≥1 given in the previous statement.

Theorem 7.2. If the coefficients Ā and F̄ are smooth, i.e. C∞
b , and if there exists a

real ρ7.2 > 0 such that F̄ (x, 0, 0) = 0 for dist(x, ∂O) ≤ ρ7.2, then the unique solution ū
of the PDE (13) belongs to the spaces C(Q̄T ) and Cς,1,2(QT ) (i.e. ∂tū, ∇

ς
xū and ∇2,ς

x,xū
are continuous on QT , see (22) for a definition of these notations) and satisfies

(44) sup
QT

[ |ū(t, x)|

dist(x, ∂O)

]

+ ‖∇ς
xū‖

QT
∞ + ‖∂tū,∇

2,ς
x,xū‖

QT
2 < +∞.

Moreover, the PDE (13) can be written in a nondivergence form: there exists a smooth
mapping Θ from Rd into Rd×d such that div(Ā(∇xϕ))(x) =

∑d
i,j=1[Θi,j(∇

ς
xϕ(x))(∇2,ς

x,xϕ

(x))i,j ] for all (t, x) ∈ QT and for all smooth function ϕ from Rd into R and this
relationship still holds for ū.

We will also prove the following approximation result.

Theorem 7.3. Under the assumptions of Theorem 7.2, we can find a sequence (ǔm)m≥1

of continuous functions on [0, T ]×Rd, vanishing outside a compact subset of [0, T ]×Rd,
infinitely continuously differentiable (C.D. in short) in space on [0, T ]×Rd, once C.D. in
time on Q̄T , such that (∂tǔm)m≥1 are infinitely C.D. in space on QT , supm≥1 ‖∇

ς
xǔm‖

QT
∞

is finite, and

(45) ǔm
Unif.
−→

[0,T ]×Rd
ū, ∇ς

xǔm
Pointwise
−→
QT

∇ς
xū,

(

∂tǔm,∇
2,ς
x,xǔm

) L2

−→
QT

(

∂tū,∇
2,ς
x,xū

)

.

Corollary 7.4. Theorem 6.1 holds.

Proof. The convergence of (ūn)n≥1 towards ū follows from Theorem 7.1 (using the
(ς, C3.5)-monotonicity of Ā and using (19), the reader can check (42)). The regularity of
each ūn, n ≥ 1, is given by Theorem 7.2. The construction of the smooth approximations
of ūn, for each n ≥ 1, follows from Theorem 7.3 (set ûn,m = ǔm with (Ān, F̄n) as
underlying coefficients).
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7.2 Strategy for the Proof of Theorems 7.2 & 7.3

The proof relies on a change of coordinates along the eigenvectors of the matrix α.
Loosely speaking, in the new coordinates, the PDE (13) may be expressed as a system of
nondegenerate PDEs defined on a smaller space than Rd, the system being parameterized
by the kernel of the matrix α. We are then able to exploit the standard theory for
nondegenerate equations.

In what follows, the assumptions of Theorem 7.2 are in force.

Proposition 7.5. Let ū denote the solution of (13) (in the sense of Theorem 3.5), r
denote the rank of α, (λi)1≤i≤r stand for the non-zero eigenvalues of α, M be a d × d
orthogonal matrix such that MαM∗ = Jr, Jr being the d × d diagonal matrix with
(λ1, . . . , λr, 0, . . . ) as diagonal and v̄ be the function given by v̄(t, x) = ū(t,M∗x) for all
(t, x) ∈ Q̂T = [0, T ] × Ô, Ô = MO. Let Ir denote the d × d diagonal matrix of rank r
with (1, . . . , 1, 0, . . . ) as diagonal (i.e. with r “ones” and d− r “zeros” on the diagonal).
If v̄ belongs to the spaces C(Closure(Q̂T )) and CIr,1,2(Q̂T ) and satisfies (44) with respect
to ∂Ô (instead of ∂O), to Q̂T (instead of QT ) and to Ir (instead of ς), then Theorem
7.2 holds.

Similarly, if we can find a sequence (v̌m)m≥1 of continuous functions on [0, T ] × Rd,
vanishing outside a compact subset of [0, T ]×Rd, infinitely C.D. in space on [0, T ]×Rd,
once C.D. in time on Closure(Q̂T ), such that (∂tv̌m)n≥1 are infinitely C.D. differentiable

in space on Q̂T , supm≥1 ‖∇
ς̂
xv̌m‖

Q̂T
∞ is finite and (45) holds with respect to Q̂T (instead

of QT ), Ir (instead of ς) and (v̌m, v̄) (instead of (ǔm, ū)), then Theorem 7.3 holds.

Proof. For (t, x) ∈ QT , z ∈ Rd and λ small enough, we can write ū(t, x + λςz) =

v̄(t,Mx+ λMςz). Since ς is the symmetric square root of α, we have MςM∗ = J
1/2
r , so

that Mςz = J
1/2
r Mz belongs to Er = Vect(e1, . . . , er). We deduce that ū is differentiable

with respect to x along Im(ς). The same argument holds for the second order derivatives.
Moreover, ∇ς

xū(t, x) = ςM∗∇Ir
x v̄(t,Mx) and ∇2,ς

x,xū(t, x) = ςM∗∇2,Ir
x,x v̄(t,Mx)Mς.

Now, we can give a sense to div(Ā(∇xū)). According to Footnotes 1 and 2, we can
find an (Id, C3.5)-strictly monotone function Â such that Ā(z) = ςÂ(ςz) for all z ∈ Rd.
Since Ā is smooth, we can assume that Â is also smooth. Hence, Ā(∇xū(t, x)) may
be expressed in a more rigorous way as ςÂ(ςM∗∇Ir

x v̄(t,Mx)). For every test function
ψ ∈ C∞

K (O) and every t ∈ [0, T ]
∫

O

〈ςÂ(ςM∗∇Ir
x v̄(t,Mx)),∇xψ(x)〉dx =

∫

Ô

〈MςÂ(ςM∗∇Ir
x v̄(t, x)),∇x(ψ(M∗x))〉dx.

Since (Mς)i,j = 0 for r ≤ i ≤ d, 1 ≤ j ≤ d, we can compute div(MςÂ(ςM∗∇Ir
x v̄(t, x))).

It is equal to
∑r

i,j=1[∂Âi/∂zj ](ςM
∗∇Ir

x v̄(t, x))(ςM
∗∇2,Ir

x,x v̄(t, x)Mς)i,j =
∑r

i,j=1[∂Âi/∂zj ]

26



(∇ς
xū(t,M

∗x))(∇2,ς
x,xū(t,M

∗x))i,j. We can easily complete the proof of Theorem 7.2. The
proof of Theorem 7.3 is similar.

We characterize the function v̄ as follows

Proposition 7.6. Let Â and F̂ be smooth functions from Rd into Rd and from Ô×R×Rd

into R such that (Ā(z), F̄ (x, y, z)) = (ςÂ(ςz), F̂ (Mx, y, ςz)) for (x, y, z) ∈ O×R×Rd (see
Footnotes 1 and 2 for their construction) and let ς̂ = ςM∗ and R = (1{i=j})1≤i≤d,1≤j≤r (R

is a d× r matrix). For w ∈ Rd−r, we denote by Ôw the open set {X ∈ Rr, (X,w) ∈ Ô}
and by I the set {w ∈ Rd−r, Ôw 6= ∅}. For each w ∈ I, we consider the PDE

∂U

∂t
(t, X) −

r
∑

i=1

∂

∂Xi

(

R∗ς̂∗Â(ς̂R∇XU(t, X))
)

i

+ F̂
(

X,w, U(t, X), ς̂R∇XU(t, X)
)

= 0,

(46)

(t, X) ∈]0, T ]×Ôw, with the boundary condition U(t, X) = 0 for t = 0 and for X ∈ ∂Ôw.
Assume that for every w ∈ I, we can find a strong solution U(·, ·;w) to the PDE

(46) in the space C(Closure(Q̂w
T )) ∩ C1,2(Q̂w

T ) (with Q̂w
T = [0, T ] × Ôw), such that

sup
w∈I

[

‖∇XU(·, ·;w)‖
Q̂w

T
∞ + ‖∂tU(·, ·;w)‖

Q̂w
T

2 + ‖∇2
X,XU(·, ·;w)‖

Q̂w
T

2

]

< +∞.

Assume also that the function V , given by V (t, (X,w)) = U(t, X;w) for w ∈ I and
(t, X) ∈ Q̂w

T and V (t, (X,w)) = 0 elsewhere, is continuous, vanishes on {0} × Ô ∪
[0, T ]× ∂Ô and satisfies sup{|V (t, (X,w))|/dist((X,w), ∂Ô), (t, (X,w)) ∈ Q̂T} < +∞.
Then, the functions v̄ and V coincide.

Proof. Since ū satisfies the PDE (13), we can prove by a change of variable that the
function v̄ belongs to L2(]0, T [, H ς̂,1

0 (Ô)) and that ∂tv̄ belongs to L2(]0, T [, H ς̂,−1(Ô)).
Moreover, v̄ satisfies the PDE

(47)
∂v̄

∂t
(t, x) − div

(

ς̂∗Â(∇ς̂
xv̄(t, x))

)

+ F̂
(

x, v̄(t, x),∇ς̂
xv̄(t, x)

)

= 0,

with v̄(0, ·) = 0. This equation is uniquely solvable, so that we can complete the proof
of Proposition 7.6 by proving that the function V satisfies (47) on Q̂T .

To prove that V satisfies the PDE (47), we consider, for all n ≥ 1, a smooth func-
tion ηn : Rd → [0, 1] such that ηn(x) = 1 if dist(x, Ôc) ≥ 2/n and ηn(x) = 0 if
dist(x, Ôc) ≤ 1/n (Ôc denotes the complementary of Ô). For a d-dimensional molli-

fier p(d), we can set, for all n ≥ 1, p
(d)
n = ndp(d)(n·) and Vn(t, ·) = (V (t, ·)ηn) ∗ p

(d)
n2
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for all t ∈ [0, T ]. Since V is continuously differentiable on Q̂T with respect to the
r first coordinates and since the kernel of ς̂ corresponds to the d − r last coordi-
nates, we claim that ς̂∇xVn(t, ·) = (ηnς̂R∇XV (t, ·)) ∗ p

(d)

n2 + (V (t, ·)ς̂∇xηn) ∗ p
(d)

n2 . Since

sup{|V (t, (X,w))|/dist((X,w), ∂Ô), (t, (X,w)) ∈ Q̂T} < +∞, it is plain to deduce that
(Vn(t, ·))n≥1 converges towards V (t, ·) for every t ∈ [0, T ] with respect to the norm N ς̂

and that V ∈ L∞([0, T ], H ς̂,1
0 (Ô)). Of course, ∇ς̂

xV = ς̂R∇XV . Moreover, we know that
∂tV ∈ L2(]0, T [×Ô) and thus to L2(]0, T [, H ς̂,−1(Ô)). Now, for every smooth function
ϕ ∈ C∞

K (Ô) and for every 0 ≤ t ≤ T , we deduce from (46) and from the equivalence
((X,w) ∈ Ô ⇔ w ∈ I and X ∈ Ôw)

∫ t

0

∫

Ô

〈Â(ς̂R∇XV (s, x)), ς̂∇ϕ(x)〉dxds

=

∫

I

[
∫ t

0

∫

Ôw

〈Â(ς̂R∇XU(s,X;w)), ς̂R∇Xϕ(X,w)〉dXds

]

dw

= −

∫

Ô

V (t, x)ϕ(x)dx+

∫

Ô

V (0, x)ϕ(x)dx−

∫ t

0

∫

Ô

F̂
(

x, V (s, x),∇ς̂
xV (s, x)

)

ϕ(x)dsdx.

This completes the proof.

Theorems 7.2 and 7.3 follow from Proposition 7.5 and 7.6 and the following

Theorem 7.7. For w ∈ I, the PDE (46) admits a unique strong solution U(·, ·;w) satis-
fying the conditions required in the statement of Proposition 7.6. Moreover, the function
V , given by V (t, (X,w)) = U(t, X;w) for w ∈ I and (t, X) ∈ Q̂w

T and V (t, (X,w)) = 0
elsewhere, as well as the function v̄, given by v̄(t, x) = ū(t,M∗x), (t, x) ∈ Q̂T , coincide
and fulfill the conditions exhibited in the statement of Proposition 7.5.

7.3 Proof of Theorem 7.7

For w ∈ I, the PDE (46) may be expressed under the following (nondivergence) form

∂U

∂t
(t, X) −

r
∑

i,j=1

(

ς̂∗∂zÂ(ς̂R∇XU(t, X))ς̂
)

i,j

∂2U

∂Xi∂Xj

(t, X)

+ F̂
(

X,w, U(t, X), ς̂R∇XU(t, X)
)

= 0, (t, X) ∈]0, T ] × Ôw,

(48)

with the boundary condition U(t, X) = 0 for t = 0 or X ∈ ∂Ôw. We claim

Lemma 7.8. For w ∈ I, the PDE (48) admits a unique strong solution U(·, ·;w), that
is Hölder continuous, with a bounded gradient, on the closure of Q̂w

T , and whose partial
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derivatives of order one in t and of order two in x are Hölder continuous on every
compact subset of Q̂w

T .

Proof. We aim at applying [10, Th. 6.2, Ch. 5]. Since the matrices ((ς∗∂zÂ(z)ς)1≤i,j≤r

)z∈Rd are uniformly nondegenerate, the coefficients of (46) satisfy the required assump-
tions. The whole point is to verify that the section Ôw is smooth.

Generally speaking, the sections of a smooth domain may not be smooth. Because
of the convexity of the domain, this is true in our setting (see Lemma 7.9 below). This
completes the proof.

Lemma 7.9. The set I is a bounded open convex subset of Rd−r. Moreover, for every
w ∈ I, Ôw is an open convex subset of Rr.

For w ∈ I and (X,w) ∈ ∂Ô, we can find a non-empty ball B, of center (X,w), and a
smooth mapping ϕ from B to R, with a non-zero gradient, such that, for all (Y, z) ∈ B,
(Y, z) ∈ Ô (resp. ∂Ô) iff ϕ(Y, z) < 0 (resp. ϕ(Y, z) = 0). Then, ∇Xϕ(X,w) 6= 0 and
we can find a non-empty ball Bw, of center X, such that, for all Y ∈ Bw, Y ∈ Ôw (resp.
∂Ôw) iff ϕ(Y, w) < 0 (resp. ϕ(Y, w) = 0). In particular, for w ∈ I, (X,w) ∈ ∂Ô iff
X ∈ ∂Ôw and the boundary of Ôw has the same regularity as the boundary of O.

Proof. Left to the reader.

Lemma 7.10. There exist two constants 0 < α7.10 ≤ 1 and C7.10 such that, for all w ∈ I,

‖U(·, ·;w)‖
Q̂w

T
∞ ≤ C7.10, and for all (t, X), (t′, X ′) ∈ Q̂w

T , |U(t′, X ′;w) − U(t, X;w)| ≤
C7.10[|t

′ − t|α7.10/2 + |X ′ −X|α7.10 ].

Proof. By the nondivergence form (48) and the maximum principle, we can establish the

uniform boundedness of the family (‖U(·, ·;w)‖
Q̂w

T
∞ )w∈I . To obtain the uniform Hölder

continuity of the mappings (U(·, ·;w))w∈I, we can apply [10, Th. 1.1, Ch. 5] on each
Q̂w

T , w ∈ I. Since the sets (Q̂w
T )w∈I are all convex, the required Condition (A) (see [10,

p. 9]) is fulfilled for each of them with a0 = 1 and θ0 = 1/2.

Lemma 7.11. There exists C7.11 ≥ 0 such that, for all w ∈ I, ‖∇XU(·, ·;w)‖
Q̂w

T
∞ ≤ C7.11.

Moreover, there exists ρ7.11 > 0 such that U(t, X;w) = 0 for all (t, X) ∈ [0, T ] × Ôw if
meas(Ôw) < ρ7.11 ( meas(Ôw) stands for the measure of Ôw) or if dist(w, ∂I) < ρ7.11.

Proof. We know that there exists a real ρ > 0 such that F̄ (x, 0, 0) = 0 for x ∈ O and
dist(x, ∂O) < ρ, i.e. F̂ (X,w, 0, 0) = 0 for (X,w) ∈ Ô and dist((X,w), ∂Ô) < ρ.

We choose w ∈ I. If meas(Ôw) < ρr, then for every X ∈ Ôw, there exists a
point Y 6∈ Ôw such that sup1≤i≤r |Yi − Xi| < ρ. In particular, for every X ∈ Ôw,
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dist(X, ∂Ôw) < ρ, so that dist((X,w), ∂Ô) < ρ. Finally, F̂ (X,w, 0, 0) = 0 for all
X ∈ Ôw. It is then clear that U(t, X;w) = 0 for all (t, X) ∈ [0, T ] × Ôw.

If dist(w, ∂I) < ρ, then there exists z 6∈ I such that |w− z| < ρ. For every X ∈ Ôw,
|(X,w)− (X, z)| < ρ and (X, z) 6∈ Ô since Ôz = ∅. Hence, dist((X,w), ∂Ô) < ρ so that
F̂ (X,w, 0, 0) = 0. We conclude as in the previous paragraph.

If meas(Ôw) > ρr, we first estimate the gradient of U(·, ·;w) on the boundary of
∂Ôw. We can apply the classical barrier techniques for convex domain, see e.g. [6, Cor.
14.3]. We deduce that there exists a constant Γ ≥ 0, not depending on w, such that
sup{|∇XU(t, X;w)|, (t, X) ∈ [0, T ] × ∂Ôw} ≤ Γ.

We now estimate the gradient inside Ôw. We aim at applying [10, Th. 4.1, Ch. 5].
To this end, we define the normalized domain Uw = (meas(Ôw))−1/rÔw (so that the
measure of Uw is equal to one) as well as Υ(t, Z;w) = U(t, (meas(Ôw))1/rZ;w) for all
(t, Z) ∈ [0, T ] × Uw. Then, Υ satisfies a PDE of the same form as (46) (up to rescaling
factors that are controlled from above and from below). Since the measure of Uw is equal
to one, we can apply [10, Th. 4.1, Ch. 5]: the gradient of Υ can be estimated in terms of
the constant Γ (see the previous paragraph), the regularity of the coefficients (which is
independent of the parameter w) and the regularity of the boundary of Uw (the so-called
Condition (A) in [10, p. 9]). Since Uw is convex, we can choose (a0, θ0) = (1, 1/2) in
Condition (A), so that the gradient can be estimated independently of w.

Lemma 7.12. There exists a constant C7.12 ≥ 0 such that, for all t ∈ [0, T ] and (X,w) ∈
Ô, |U(t, X;w)| ≤ C7.12dist((X,w), ∂Ô).

Proof. Since the function U is bounded, we establish the statement for (X,w) close to
the boundary of Ô. To this end, we use a covering argument.

For every x0 ∈ ∂Ô, we denote by n0 the outward normal vector to Ô at x0. If one of
the r first coordinates of n0 is non-zero, we can find a non-empty ball B of center x0 and
a constant C > 0 such that, for (X,w) ∈ Ô∩B, dist(X, ∂Ôw) ≤ Cdist((X,w), ∂Ô). We
deduce that |U(t, X;w)| ≤ C×C7.11dist((X,w), ∂Ô), for all (t, (X,w)) ∈ [0, T ]×(Ô∩B).

If the r first coordinates of n0 are all equal to zero, the tangent space to Ô at x0 is
orthogonal to the kernel of ς̂ . By convexity, we know that Ô is either above or below
the tangent space. In particular, we can find a unitary vector ν, with ν1 = · · · = νr = 0,
and a non-empty ball B of center x0 and a real ε > 0 such that, for all (X,w) ∈ Ô ∩B,
Ôw+εν = ∅. We deduce that dist(w, ∂I) ≤ ε. For ε < ρ7.11, we obtain U(t, X;w) = 0
for all (X,w) ∈ Ô ∩ B.

Using a covering argument, we complete the proof.

Lemma 7.13. There exists a constant C7.13 ≥ 0 such that, for all w ∈ I, ‖∂tU(·, ·;w)‖
Q̂w

T
2

+ ‖∇2
X,XU(·, ·;w)‖

Q̂w
T

2 ≤ C7.13.
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Proof. In the whole proof, all the balls we consider are constructed with respect to
the underlying L∞ norm. We fix w ∈ I and we first estimate ∇2

X,XU(·, ·;w) near the

boundary of ∂Ôw. We choose to this end X0 ∈ ∂Ôw. By Lemma 7.9, we can find a real
ε > 0 and a mapping ϕ : Br(X

0, 2ε) × Bd−r(w, 2ε) → R, with a non-zero gradient with
respect to the first coordinates (i.e. ∇Xϕ is not zero), such that

∀z ∈ Bd−r(w, 2ε), ∀X ∈ Br(X
0, 2ε), X ∈ Ôz(resp. ∂Ôz) ⇔ ϕ(X, z) < 0 (resp. = 0).

Modifying the order of the coordinates as well as ε if necessary, we can assume with-
out loss of generality that the rth coordinate of the gradient ∇Xϕ doesn’t vanish
on Br(X

0, 2ε) × Bd−r(w, 2ε). In particular, inf |y−X0
r |≤ε ϕ(X0

1 , . . . , X
0
r−1, y, w) < 0 and

sup|y−X0
r |≤ε ϕ(X0

1 , . . . , X
0
r−1, y, w) > 0.

By continuity of ϕ, we can find 0 < ε′ < ε such that

ρ− = sup
{

inf
|Xr−X0

r |≤ε
ϕ(X1, . . . , Xr, z), |z − w| ≤ ε′, |Xj −X0

j | ≤ ε′, 1 ≤ j ≤ r − 1
}

< 0,

ρ+ = inf
{

sup
|Xr−X0

r |≤ε

ϕ(X1, . . . , Xr, z), |z − w| ≤ ε′, |Xj −X0
j | ≤ ε′, 1 ≤ j ≤ r − 1

}

> 0.

Now, we consider, for all z ∈ Bd−r(w, 2ε), the change of variable Ψ(·, z) : (X1, . . . , Xr) ∈
B(X0, 2ε) 7→ (Y1, . . . , Yr) = (X1 − X0

1 , . . . , Xr−1 − X0
r−1, ϕ(X1, . . . , Xr)). By definition

of ρ− and ρ+, we can check that, for all z ∈ Rd−r such that |z − w| ≤ ε′, the cylinder
] − ε′, ε′[r−1×]ρ−, 0[ is included in Ψ(B(X0, 2ε) ∩ Ôz, z).

For |z − w| ≤ ε′, we can write the PDE (46) in the new coordinates (Y1, . . . , Yr).
For t ∈]0, T ] and Y ∈] − ε′, ε′[r−1×]ρ−, 0[, we set Υ(t, Y ; z) = U(t,Ψ−1(Y ); z), so that
Υ(·, ·; z) satisfies on ]0, T ]×] − ε′, ε′[r−1×]ρ−, 0[ (with the notation (DΨ)i,j = ∂Ψi/∂Xj)

∂Υ

∂t
(t, Y ) −

r
∑

i=1

∂

∂Yi

[

DΨ(Ψ−1(Y, z), z)R∗ς̂∗Â
(

ς̂RDΨ∗(Ψ−1(Y, z), z)∇Y Υ(t, Y )
)]

i

+

r
∑

i=1

[ ∂

∂Yi

[

DΨ(Ψ−1(Y, z), z)
]

R∗ς̂∗Â
(

ς̂RDΨ∗(Ψ−1(Y, z), z)∇Y Υ(t, Y )
)]

i

+ F̂
(

Ψ−1(Y, z), z,Υ(t, Y ), ς̂RDΨ∗(Ψ−1(Y, z), z)∇Y Υ(t, Y )
)

= 0,

with the boundary condition Υ(t, Y ; z) = 0 for Yr = 0. It is crucial to note that all
these PDEs are defined on the same domain, with the same boundary condition on
the hyperplane Yr = 0. The underlying coefficients are regular with respect to the
variable Y , uniformly in z ∈ Br(w, ε

′). The underlying diffusion matrices are also
elliptic, uniformly with respect to Y and z.
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We now aim at applying [10, Th. 4.1, Ch. 5]. The difficulty is that the values of the
function Υ(·, ·; z), for z ∈ Br(w, ε

′), are unknown on the boundary of ] − ε′, ε′[r−1×] −
ρ−, 0[, except on ]− ε′, ε′[r−1×{0}. Referring to the proof of [10, Th. 4.1, Ch. 5] (see in
particular [10, p. 441 & 442]), this is not a real problem: we can draw a regular open
domain U inside ]−ε′, ε′[r−1 ×]ρ−, 0[ and containing ]−ε′/2, ε′/2[r−1×]ρ−/2, 0[. On U , we

have ‖∇2
Y,Y Υ(·, ·; z)‖

[0,T ]×U
2 ≤ C for all z ∈ Bd−r(w, ε

′) and for a constant C independent
of z. Using the diffeomorphisms (Ψ(·, z))|z−w|≤ε′, we can pull back these estimates to
(Ψ−1(U , z))|z−w|≤ε′. All the underlying Jacobian determinants are uniformly controlled

with respect to z, so that (up to a modification of C) ‖∇2
X,XU(·, ·; z)‖

[0,T ]×Ψ−1(U ,z)
2 ≤ C

for all z ∈ Bd−r(w, ε
′).

Consider now V =] − ε′/2, ε′/2[r−1×]ρ−/2, ρ+/2[. It is clear that Ψ−1(U , z) ⊃
Ψ−1(V, z) ∩Ôz for |z − w| ≤ ε′. Moreover, the set ∪|z−w|<ε′Ψ

−1(V, z) × {z} is clearly
open and contains (X0, w). Here is the result that we have proved: for all w ∈ I and

X0 ∈ ∂Ôw, there exist η > 0 and C ≥ 0 such that ‖∇2
X,XU(·, ·; z)‖

[0,T ]×(Ôz∩Br(X0,η))
2 ≤ C

for all z ∈ Bd−r(w, η).
Consider now J = {w ∈ I, dist(w, ∂I) ≥ ρ7.11}. It is a compact subset of Rd−r. By

means of Lemma 7.9, we can prove that ∪w∈J ∂Ô
w × {w} is a compact subset of Rd.

In particular, we can cover it by open sets of the previous form: we can find N points
(X i, wi)1≤i≤N , wi ∈ J and X i ∈ ∂Ôwi

, as well as N constants (Ci)1≤i≤N and N reals
(ηi)1≤i≤N , such that

⋃

w∈J ∂Ô
w × {w} ⊂

⋃N
i=1Br(X

i, ηi) × Bd−r(w
i, ηi),(49)

∀1 ≤ i ≤ N, ∀z ∈ Bd−r(w
i, ηi), ‖∇

2
X,XU(·, ·; z)‖[0,T ]×(Ôz∩Br(Xi,ηi))

2 ≤ Ci.(50)

From (49), we can find a real δ > 0 such that ∀w ∈ J , ∀X ∈ Ôw, dist(X, ∂Ôw) < δ ⇒
(X,w) ∈ ∪N

i=1Br(X
i, ηi) × Bd−r(w

i, ηi), so that we can find a constant C ′ such that

(51) ∀w ∈ J ,

∫ T

0

∫

{X∈Ôw , dist(X,∂Ôw)<δ}

|∇2
X,XU(t, X;w)|2dtdX ≤ C ′.

Now, again for w ∈ J , we can apply the interior estimates given in [10, (4.7), Ch. 5] on
the set {X ∈ Ôw, dist(X, ∂Ôw) ≥ δ}. We deduce (up to a modification of C ′) that

(52)

∫ T

0

∫

{X∈Ôw , dist(X,∂Ôw)≥δ}

|∇2
X,XU(t, X;w)|2dtdX ≤ C ′.

Gathering (51) and (52), we complete the proof for w ∈ J (the estimate for ∂tU(·, ·;w)
follows from the nondivergence form (48)). If dist(w, ∂I) < ρ7.11, U(·, ·;w) is zero.

32



Lemma 7.14. We set V (t, (X,w)) = U(t, X;w) for w ∈ I and (t, X) ∈ Q̂w
T and V (t,

(X,w)) = 0 elsewhere. The functions (t, (X,w)) ∈ [0, T ] × Rd 7→ V (t, (X,w)) and
(t, (X,w)) ∈ Q̂T 7→ [∂tV,∇XV,∇

2
X,XV ](t, (X,w)) are continuous.

Proof. For w ∈ I, we extend the function U(·, ·;w) to [0, T ]×Rr by setting U(t, X;w) =
0 if (t, X) 6∈ Q̂w

T . By Lemma 7.10, the functions (U(·, ·;w))w∈Rr are equicontinuous.
Now, we consider w ∈ I and a sequence (wn)n≥1 converging towards w. Since I is

open, we can assume that (wn)n≥1 is included in I. Using the equicontinuity property,
we can also assume that the (U(·, ·;wn))n≥1 uniformly converges towards a continuous

function U∞. We first prove that this function is equal to zero on [0, T ] × ∂Ôw. We
choose to this end X ∈ ∂Ôw. By Lemma 7.9, (X,w) belongs to ∂Ô. Expressing the
boundary in local coordinates, we can find, for all n ≥ 1, a point Xn ∈ Rr \ Ôwn such
that Xn → X. Since U(t, Xn;wn) = 0 for t ∈ [0, T ] and n ≥ 1, we have U∞(t, X) = 0.

We can use interior estimates (see [10, Ths. 5.1 & 5.4, Ch. 5]) for the derivative in
time and for the second order derivatives in space to prove that the limit function U∞

satisfies the PDE (46) on Ôw. By Lemma 7.8, this proves that U∞ = U(·, ·;w).
Now, we consider w 6∈ I and a sequence (wn)n≥1 converging towards w. If w 6∈ Ī,

it is obvious that U(·, ·;wn) = 0 for n large enough so that (U(·, ·;wn))n≥1 uniformly
converges towards U(·, ·;w). If w ∈ ∂I, then U(·, ·;wn) = 0 for n large enough by
Lemma 7.12 and the sequence (U(·, ·;wn))n≥1 uniformly converges towards U(·, ·;w).

For the continuity of the derivatives, we can proceed as above: on I, we use the
interior estimates given in [10, Ths. 5.1 & 5.4, Ch. 5]; on Ic, the result is obvious.

Lemma 7.15. There exists a sequence (Vn)n≥1 of continuous functions on [0, T ] × Rd,
with compact supports, infinitely C.D. in space on [0, T ] × Rd, once C.D. in time on

Closure(Q̂T ), such that (∂tVn)n≥1 are infinitely C.D. in space on Q̂T , supn≥1 ‖∇XVn‖
Q̂T
∞

< +∞ (∇X and ∇2
X,X denote the derivatives along the r first coordinates of the space),

and Vn
Unif.
−→

[0,T ]×Rd
V , ∇XVn

Pointwise
−→
Q̂T

∇XV , ∂tVn
L2

−→
Q̂T

∂tV and ∇2
X,XVn

L2

−→
Q̂T

∇2
X,XV .

Proof. For a d-dimensional mollifier p(d), we set, for all n ≥ 1, p
(d)
n (·) = ndp(d)(n ·). For

a given x0 ∈ Ô, there exists N ∈ N∗ such that Bd(x0, 1/N) ⊂ Ô. We let the reader
check that the following sequence fits all the required conditions:

∀n ≥ 1, (t, x) ∈ [0, T ]×Rd, Vn(t, x) =

∫

Rd

V
(

t,
1

n+ 1
x0+

n

n+ 1
(x−y)

)

p
(d)
(N+1)n(y)dy.
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