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We investigate stochastic homogenization for some degenerate quasilinear parabolic PDEs. The underlying nonlinear operator degenerates along the space variable, uniformly in the nonlinear term: the degeneracy points correspond to the degeneracy points of a reference diffusion operator on the random medium.

Assuming that this reference diffusion operator is ergodic, we can prove the homogenization property for the quasilinear PDEs, by means of the first order approximation method. The (nonlinear) limit operator needn't be nondegenerate. Concrete examples are provided.

Introduction

We are interested in the asymptotic behavior, as the parameter ε vanishes, of the solutions on ]0, T ] × O of the PDEs

∂ t u ε (t, x) -div a(ω, x/ε, ∇ x u ε (t, x)) + f (ω, x/ε, x, u ε (t, x), ∇ x u ε (t, x)) = 0, (1) 
(t, x) ∈]0, T ] × O, with u ε (0, x) = 0 for x ∈ O and u ε (t, x) = 0 for (t, x) ∈]0, T ] × ∂O. In these equations, T denotes a positive real and O ⊂ R d a bounded convex open set of class C 2+α , for α > 0. The parameter ω evolves in a random medium Ω, endowed with a σ-algebra G and a probability measure µ, with suitable stationarity and ergodicity properties. For all x ′ ∈ R d , y ∈ R and z ∈ R d , the fields (ω, x) → a(ω, x, z) and (ω, x) → f (ω, x, x ′ , y, z) are stationary.

The main interest of our work lies in the possible degeneracies of the leading elliptic parts -div(a(ω, x/ε, ∇ x u ε (t, x))), ε > 0. Both in the periodic and stochastic cases, the underlying field a is, in many papers devoted to homogenization, assumed to be strictly monotone with respect to the gradient term (i.e. uniformly elliptic in the linear framework). For example, in the recent work by Efendiev and Pankov [START_REF] Efendiev | Homogenization of nonlinear random parabolic operators[END_REF] devoted to time-space homogenization of nonlinear random parabolic operators, the leading part fulfills a nondegeneracy property. However, as pointed out in earlier papers, the uniform ellipticity condition is far from being minimal. For example, in a series of articles, De Arcangelis and Serra Cassano [START_REF] De Arcangelis | On the homogenization of degenerate elliptic equations in divergence form[END_REF], Paronetto and Serra Cassano [START_REF] Paronetto | On the convergence of a class of degenerate parabolic equations[END_REF] and Paronetto [START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of degenerate elliptic-parabolic equations[END_REF] investigate the periodic homogenization of a class of degenerate linear equations. Loosely speaking, the diffusion coefficient is controlled by the identity matrix up to a scalar function that satisfies a Muckenhoupt condition. In a similar spirit, Huang et al. [START_REF] Huang | Homogenization of degenerate quasilinear parabolic equations with periodic structure[END_REF] consider nonlinear equations with periodic coefficients and Engström et al. [START_REF] Engström | Homogenization of random degenerated nonlinear monotone operators[END_REF] investigate homogenization of nonlinear random operators.

Our work relies on a different observation, which permits to deal with more general degeneracies (see Section 4 for a detailed comparison). In the linear case, the ellipticity assumption can be replaced by an ergodicity assumption on the underlying nonrescaled operator (see e.g. Rhodes [START_REF] Rhodes | On homogenization of space-time dependent and degenerate random flows[END_REF][START_REF] Rhodes | Homogenization of locally ergodic diffusions with possibly degenerate diffusion matrix[END_REF]). Indeed, if a has the form a(ω, x, z) = â(ω, x)z for a symmetric matricial field â(ω, •) with entries in H 1 loc (R d ), the leading part -div(â(ω, x)∇ x •) induces a self-adjoint operator on the random medium Ω, denoted by L â (see e.g. Papanicolaou and Varadhan [START_REF] Papanicolaou | Boundary value problems with rapidly oscillating random coefficients[END_REF][START_REF] Papanicolaou | Diffusions with random coefficients[END_REF]). If this operator is ergodic, that is if the invariant functions for the associated semigroup are the constant functions, then the homogenization property holds for the rescaled operators. To adapt this idea to the nonlinear case, we assume that a in (1) has the form [START_REF] De Arcangelis | On the homogenization of degenerate elliptic equations in divergence form[END_REF] a(ω, x, z) = σ(ω, x)A(ω, x, σ(ω, x)z), ω ∈ Ω, x, z ∈ R d , where A(ω, x, z) is a strictly monotone vector with respect to z, uniformly in (ω, x), and σ(ω, x) is a symmetric matrix such that ã(ω, •), with ã(ω, x) = σ(ω, x)σ(ω, x), has entries in H 1 loc (R d ) and the operator L ã is ergodic on the random medium Ω, as explained above. This factorized form for the diffusion coefficient explains the title of our work: in (1), the rescaled operators degenerate along the space variable, uniformly with respect to the gradient term. We make a similar assumption on the source term f and assume that it may be expressed as f (ω, x, x ′ , y, z) = F (ω, x, x ′ , y, σ(ω, x)z), ω ∈ Ω, x, x ′ ∈ R d , y ∈ R, z ∈ R d , where F is Lipschitz continuous in y and z, uniformly in ω, x and x ′ .

We are then able, see Theorem 3.6, to establish the homogenization property for the solutions (u ε ) ε>0 : we prove that they converge in L ∞ ([0, T ], L 2 (Ω × O)) towards the solution of a limit equation, whose form is detailed below. We also manage to describe, in a strong sense, the asymptotic behavior of the gradients of (u ε ) ε>0 and prove, in particular, their convergence up to a corrector term. We emphasize that our convergence result is an annealed version of the homogenization property unlike [START_REF] Efendiev | Homogenization of nonlinear random parabolic operators[END_REF] where the convergence is stated for almost every realization of the stationary field. Even in the linear case, it seems that it is the price to pay for considering possibly degenerate operators.

The key point in our proof is a nonlinear version of the Birkhoff ergodic theorem on the random medium for quantities of the form

(3) T 0 O h(ω, x/ε, x, u ε (t, x))dx dt.
The word nonlinear indicates that the functionals that we investigate depend on the solutions (u ε ) ε>0 . Using the ergodicity of L ã, we manage to prove an averaging property for [START_REF] Efendiev | Homogenization of nonlinear random parabolic operators[END_REF] with respect to the highly oscillating variable. Loosely speaking, under suitable conditions on h,

(3) is close, in L 1 (Ω × [0, T ] × O), to Ω T 0
O h(ω, 0, x, u ε (t, x))dxdtdµ(ω). Of course, the ergodicity of L ã is deeply connected to the geometry of the degeneracies of the matrix ã: the coefficients ã and a are allowed to degenerate in certain directions only or to vanish on sets of null Lebesgue measure only. To the best of our knowledge, the only paper where the coefficient diffusion may vanish on sets of non-zero Lebesgue measure is due to Hairer and Pardoux [START_REF] Hairer | Homogenization of periodic linear degenerate PDEs[END_REF]. In this work, the medium is periodic so that the authors can consider nondivergence operators with a non-zero drift. The role of the drift is crucial: it permits to preserve the ergodicity property on the areas where the diffusion coefficient vanishes. However, to make up for these local strong degeneracies, the authors require the existence of a strongly regularizing open area, so that the underlying diffusion coefficients cannot degenerate on the whole space. On the opposite, this situation is allowed in our setting (see Subsection 9.3 in Rhodes [START_REF] Rhodes | Homogenization of locally ergodic diffusions with possibly degenerate diffusion matrix[END_REF]).

In our framework, there are two main technical difficulties: first, the random medium is not compact and specific arguments to the periodic case fall short; second, for ε > 0, the solution u ε to (1) belong, at time t, to a subspace, denoted by H σ(ω,•/ε),1 0 (O), of L 2 (O) which is larger than H 1 0 (O) and for which the classical H 1 0 (O) ֒→ L 2 (O) compactness arguments fail (loosely speaking, H

σ(ω,•/ε),1 0 (O) is the space of functions ϕ ∈ L 2 (O) such that σ(ω, •/ε)∇ϕ exists in L 2 (O))
. For this reason, the G convergence theory (see Efendiev and Pankov [3], Pankov [START_REF] Pankov | G-convergence and homogenization of nonlinear partial differential operators[END_REF] and Svanstedt [START_REF] Svanstedt | G-convergence of parabolic operators[END_REF]) or refinements of this method (see the previous cited articles [START_REF] De Arcangelis | On the homogenization of degenerate elliptic equations in divergence form[END_REF][START_REF] Paronetto | On the convergence of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of degenerate elliptic-parabolic equations[END_REF] for Sobolev embeddings of suitable weighted spaces) fall short of establishing the homogenization property.

We thus use the first order approximation method (see Jikov, Kozlov and Oleinik [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF], Chapter 7), that is we seek an approximation of u ε of the form (4)

u ε (t, x) ∼ ū(t, x) + χ ε 2 ω, x/ε, ∇ x ū(t, x) ,
where χ λ (ω, x, z) denotes, for every z ∈ R d , an approximate corrector, that is a stationary field, solution of the equation

λχ λ (ω, x, z) -div σ(ω, x)A(ω, x, σ(ω, x)z + ∇ x χ λ (ω, x, z)) = 0,
and ū stands for the solution of the presumed limit equation. The main difficulty in ( 4) is that ū and χ λ are not differentiable in all the directions of the space because of the degeneracies of a. In short, the field χ λ (ω, x/ε, z) is just differentiable along the matrix σ(ω, x/ε) (i.e. ∇ x χ λ (ω, x/ε, z) doesn't exist but we can give a sense to σ(ω, x/ε)∇ x χ λ (ω, x/ε, z)). Similarly, the solution ū is just differentiable along the matrix ς, equal to the square root of the effective diffusion coefficient α associated to the reference matrix ã, i.e. ς = α 1/2 . As a consequence, we have to develop a tedious regularization procedure to overcome the lack of differentiability in (4) (see Section 6 in the paper).

The reason why ū is not differentiable in all the directions of the space is simple: the limit equation may be degenerate. At this step, we mention that this situation doesn't happen under the Muckenhoupt condition introduced in [START_REF] De Arcangelis | On the homogenization of degenerate elliptic equations in divergence form[END_REF][START_REF] Engström | Homogenization of random degenerated nonlinear monotone operators[END_REF][START_REF] Huang | Homogenization of degenerate quasilinear parabolic equations with periodic structure[END_REF][START_REF] Paronetto | On the convergence of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of degenerate elliptic-parabolic equations[END_REF] (see Section 4 for a detailed discussion). In our setting, the limit equation has the form

(5) ∂ t ū(t, x) -div Ā(∇ x ū(t, x)) + F x, ū(t, x), ∇ x ū(t, x) = 0, (t, x) ∈]0, T ] × O,
with ū(0, x) = 0 for x ∈ O and ū(t, x) = 0 for (t, x) ∈]0, T ] × ∂O. We can show that the limit coefficient Ā can be factorized by ς, that is Ā(z) = ς Â(ςz), z ∈ R d , for a strictly monotone vector Â. In particular, the equation ( 5) is degenerate if the rank of α is less than or equal to d -1. Similarly, the limit source term has the form F (x, y, z) = F (x, y, ςz), x ∈ R d , y ∈ R, z ∈ R d , for a mapping F , Lipschitz continuous with respect to (y, z), uniformly in x. To understand in a better way the geometry of the limit equation ( 5), we can think of the case where ς is diagonal. Up to a change of variables, this is always possible since ς has a diagonal form in a suitable orthonormal basis. In this case, the equation ( 5) may be seen as a system of nondegenerate nonlinear equations parameterized by the kernel of ς, or equivalently by the kernel of α. We then understand in a deeper way the regularity of the limit solution ū. Along the sections of the domain O with respect to the kernel of α, the regularity of ū follows from classical PDE results. For example, if the initial coefficients a and f are smooth, we can prove that ū is smooth along the image of α. The convexity of the domain plays a crucial role at this point: since O is smooth and convex, the sections of the domain are regular.

The last question the reader may ask is the following: what can be said about the rank of α ? To be honest, this is a difficult question. We refer to Hairer and Pardoux [START_REF] Hairer | Homogenization of periodic linear degenerate PDEs[END_REF] for a general discussion on this question in a different framework than ours. In our specific setting, we just provide two interesting examples: we first expose a surprising situation where the homogenized coefficient degenerates (and may even reduce to zero) in spite of strong nondegeneracy conditions of the initial coefficient over a domain with full Lebesgue measure; in the second example, we show that α may be uniformly elliptic even if ã is not (see Section 4 in the paper).

We now present the organization of the paper. In Section 2, we describe the random medium and expose the different assumptions. In Section 3, we detail the main results of the paper. In Section 4, we provide several examples. In Section 5, we investigate the corrector equations and discuss a nonlinear version of the ergodic theorem. The proof of the homogenization property if detailed in Section 6 and the geometry of the limit equation is discussed in Section 7.

Setup and assumptions

Random medium. Following [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF], we introduce the following Definition 2.1. Let (Ω, G, µ) be a probability space and τ x ; x ∈ R d a group of measure preserving transformations acting ergodically on Ω:

1) ∀A ∈ G, ∀x ∈ R d , µ(τ x A) = µ(A), 2) If for any x ∈ R d τ x A = A, then µ(A) = 0 or 1, 3) For any measurable function g on (Ω, G, µ), the function (x, ω) → g(τ x ω) is measurable on (R d × Ω, B(R d ) ⊗ G).
The expectation with respect to the random medium is denoted by E. In what follows we use the bold type to denote a function g from Ω into R (or more generally into R n , n ≥ 1) and the unbold type g(ω, x) (or just g(x) when possible) to denote the associated representation mapping (ω, x) → g(τ x ω). Similarly, for a family (g(•, z)) z∈R n , n ≥ 1, of functions from Ω into R n , we denote by g(ω, x, z) (or just g(x, z) when possible) the mapping (ω, x, z) → g(τ x ω, z). The space of square integrable functions on (Ω, G, µ) is denoted by L 2 (Ω), the usual norm by | • | Ω 2 and the corresponding inner product by ( • , • ) Ω 2 . Then, the operators on L 2 (Ω) defined by T x g(ω) = g(τ x ω) form a strongly continuous group of unitary maps in L 2 (Ω). The group possesses d generators defined by

D i g = lim h→0 h -1 [T he i g -g] if exists, which are closed and densely defined. Setting C = Span g ⋆ ϕ; g ∈ L ∞ (Ω), ϕ ∈ C ∞ c (R d ) , with g ⋆ ϕ(ω) = R d g(τ x ω)ϕ(x) dx, the space C is dense in L 2 (Ω) and C ⊂ Dom(D i ) for all 1 ≤ i ≤ d, with D i (g ⋆ ϕ) = -g ⋆ ∂ϕ/∂x i . If g ∈ Dom(D i ), we also have D i (g ⋆ ϕ) = D i g ⋆ ϕ.
Structure of the PDE. As explained in Introduction, we assume in the whole paper that the nonlinearities of order one can be factorized by a reference matrix. We thus introduce the following Definition 2.2. Given a function ϕ from R × R d into R (the definition below may be adapted in a trivial way when the values of ϕ belong to a normed space), a d×d symmetric matrix σ and a positive constant C, ϕ is said

((1, σ), C)-Lipschitz continuous if for all y, y ′ ∈ R and z, z ′ ∈ R d (6) |ϕ(y, z) -ϕ(y ′ , z ′ )| ≤ C |y -y ′ | + |σ(z -z ′ )| . Given a function ϕ from R d into R d , a d × d symmetric matrix σ and a constant C ≥ 1, ϕ is said (σ, C)-strictly monotone if for all ζ ∈ R d and for all z, z ′ ∈ R d (7) (i) ϕ(0), ζ ≤ C |σζ| (ii) ϕ(z) -ϕ(z ′ ), ζ ≤ C |σ(z -z ′ )| |σζ| (iii) C -1 |σ(z -z ′ )| 2 ≤ ϕ(z) -ϕ(z ′ ), z -z ′ .
We can prove, for a ((1, σ), C)-Lipschitz continuous function ϕ, that there exists a ((1, I d ), C)-Lipschitz continuous function Φ (I d denotes the identity matrix of size d) such that ϕ(y, z) = Φ(y, σz) (1 ). Similarly, for a (σ, C)-strictly monotone function ϕ, there exists an (I d , C)-strictly monotone function Φ such that ϕ(z) = σΦ(σz) (2 ) . In both cases, the function Φ can be constructed with the same regularity as the function ϕ.

From now on, the coefficients a : Ω × R d → R d and f : Ω × O × R × R d → R denote measurable functions with respect to the underlying product σ-fields. In the whole paper, we assume that there exists a constant Λ ≥ 1 such that Assumption 2.3 (Control). There exists a measurable function σ : Ω → S d (R) (set of d × d symmetric real matrices), bounded by Λ, such that a(ω, •) is ( σ(ω), Λ)-strictly monotone for each ω ∈ Ω. Assumption 2.4 (Regularity). For each fixed ω ∈ Ω and for all x ∈ O, |f (ω, x, 0, 0)| ≤ Λ and f (ω, x, •, •) is ((1, σ(ω)), Λ)-Lipschitz continuous.

Assumption 2.5 (Ergodicity). The entries of the mapping ω ∈ Ω → ã(ω) = σ σ(ω) belong to ∩ 1≤i≤d D i . In particular, we can define the operator S(•) = (1/2) d i,j=1 D i (ã i,j D j •) on C and consider its Friedrichs extension (see [5, p. 53]), which is selfadjoint. We then assume that the semi-group generated by S is ergodic, that is, its invariant functions are µ almost surely constant (see e.g. Rhodes [START_REF] Rhodes | On homogenization of space-time dependent and degenerate random flows[END_REF]).

From Assumption 2.3, we can express a as a(ω, z) = σ(ω)A(ω, σ(ω)z), for an (I d , Λ)strictly monotone coefficient A(ω, ζ). We can choose a jointly measurable version of A. Similarly, we can write f (ω, x, y, z) = F (ω, x, y, σ(ω)z), where F is a measurable mapping such that F (ω, x, •, •) is ((1, I d ), Λ)-Lipschitz continuous for all ω ∈ Ω and x ∈ R d .

Notation. We put Q T = [0, T ] × O. For a measurable function h defined on a measurable space (E, T ) endowed with a finite measure π, we denote by h E 2 and h E ∞ the L 2 and L ∞ norms of h on this space. For a function h ∈ L 1 (Ω×O), the notation

M dx [h(•, x)] stands for E O h(ω, x)dx. For a function h ∈ L 1 (Ω × Q T ), M dt,dx [h(•, t, x)] stands for E T 0 O h(ω, t, x)dtdx and, for t ∈ [0, T ], M ds,dx t [h(•, s, x)] stands for E t 0 O h(ω, s, x) dsdx. Similarly, for an element A ∈ G ⊗B([0, T ]) ⊗B(O), Q dt,dx [A] stands for M dt,dx [1 A ].
3 Main Results

Solvability of the PDEs

For a given bounded function Ψ : O → R d×d , for which the entries of ΨΨ * are in H 1 (O), we define H Ψ,1 0 as the completion of C ∞ K (O) (smooth functions on O with a compact support), with respect to the norm

N Ψ : ϕ ∈ C ∞ K (O) → [( ϕ O 2 ) 2 + Ψ∇ϕ O 2 ) 2 ] 1/2 . By the regularity of Ψ, the quadratic form ϕ ∈ C ∞ K (O) → [N Ψ (ϕ)]
2 is closable, so that H Ψ,1 0 may be seen as a subspace of L 2 (O). Equipped with the norm induced by N Ψ , it is a Hilbert space. We put H Ψ,-1 = (H Ψ,1 0 ) ′ . For ω ∈ Ω and ε > 0, we put

V ε,ω = H σ(ω,•/ε),1 0 . The closure of {σ(ω, •/ε)∇ϕ, ϕ ∈ C ∞ K (O)} in [L 2 (O)] d is denoted by G ε,ω . It is then clear that the mapping ϕ ∈ C ∞ K (O) → σ(ω, •/ε)∇ϕ ∈ G ε,ω
can be extended to the whole V ε,ω , so that a function g ∈ V ε,ω admits a gradient along the direction σ(ω, •/ε), denoted by ∇ σ(ω,•/ε) g.

The mapping ϕ ∈ V ε,ω → (ϕ, ∇ σ(ω,•/ε) ϕ) is an isometry from V ε,ω onto a closed subspace of [L 2 (O)] d+1 . For this reason, V ε,ω is separable. Theorem 3.1. For ω ∈ Ω and ε > 0, there exists a unique function u

ε,ω in L 2 (]0, T [, V ε,ω ), with ∂ t u ε,ω ∈ L 2 (]0, T [, (V ε,ω ) ′ ), satisfying for a.e. t ∈]0, T [ and for all ϕ ∈ V ε,ω O ∂ t u ε,ω (t, x)ϕ(x)dx + O A ω, x/ε, ∇ σ(ω,•/ε) u ε,ω (t, x) , ∇ σ(ω,•/ε) ϕ(x) dx + O F ω, x/ε, x, u ε,ω (t, x), ∇ σ(ω,•/ε) u ε,ω (t, x) ϕ(x)dx = 0,
and verifying u ε,ω (0, •) = 0. We say that the function u ε,ω is the unique solution of (1).

Except in particular cases, the index ω will be omitted in u ε,ω .

Remark. Since u ε,ω ∈ L 2 (]0, T [, V ε,ω ) and ∂ t u ε,ω ∈ L 2 (]0, T [, (V ε,ω ) ′ ), we can prove that u ε,ω ∈ C([0, T ], L 2 (O)) (see [12, Th. 3.1 & Prop. 2.1, Ch. 1]
). For this reason, the initial condition is well defined.

Proof. We can assume without loss of generality that ε = 1. We also assume for the moment that f (ω, x, y, z) and F (ω, x, y, z) don't depend on (y, z). We thus investigate the evolution problem

∂ t u 1 (t, x) -div σ(ω)A(ω, x, ∇ σ(ω,•) x u 1 (t, x)) + f (ω, x, x) = 0, (t, x) ∈]0, T ] × O, (8) 
with the initial condition u ε,ω (0, •) = 0. The nonlinear operator

A 1,ω : ϕ ∈ V 1,ω → -div σ(ω)A(ω, •, ∇ σ(ω,•) ϕ(•)) ∈ (V 1,ω
) ′ is Lipschitz continuous and strictly monotone on V 1,ω : this proves the unique solvability of the evolution equation when f and F don't depend on (y, z), see [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF]Th. 1.2,Ch. 2]. The general case can be treated in a usual way, by means of the Picard fixed point theorem. Proposition 3.2. For every ω ∈ Ω, we can find a version ũε,ω of u ε,ω such that the mapping (ω, t, x) ∈ Ω × [0, T ] × O → (ũ ε,ω , ∇ σ(ω,•/ε) ũε,ω )(t, x) is jointly measurable with respect to the product σ-field G ⊗ B([0, T ]) ⊗ B(O). Without loss of generality, we can assume that, for all (ω, t)

∈ Ω × [0, T ], ũε,ω (t, •) is a version of u ε,ω (t, •). In particular, ũε,ω ∈ C([0, T ], L 2 (O)).
In what follows, we write u ε,ω for ũε,ω .

Proof. We can assume without loss of generality that ε = 1. We then follow the proof of Theorem 3.1. When the coefficients f (ω, x, y, z) and F (ω, x, y, z) don't depend on (y, z), the solvability of ( 8) follows from a Faedo-Galerkin approximation (see again [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF]Sec. 1,Ch. 2]). The construction of an orthonormal basis of V 1,ω can be achieved in a measurable way with respect to the parameter ω: we first choose an orthonormal basis of L 2 (O) composed of smooth functions with a compact support and we then apply the Gram-Schmidt procedure. As a by-product, the Faedo-Galerkin approximations are jointly measurable. The limit, that is the solution of ( 8), admits a jointly measurable version, as written in the statement of Proposition 3.2.

Using a Picard iteration sequence, we can prove that the result remains true when f and F depend on (y, z).

The proof of the following estimate is left to the reader:

Proposition 3.3. There exists a constant C 3.3 such that, for all ε > 0, sup t∈[0,T ] M dx [|u ε (t, x)| 2 ] + M dt,dx [|∇ σ(x/ε) x u ε (t, x)| 2 ] ≤ C 3.3 .

Limit Equation

We are now in position to introduce the homogenized problem (see ( 13)). As announced in Introduction, it may be degenerate. For this reason, we have to control the possible degeneracies with respect to a suitable norm on C ∞ K (O), as done in Section 3.1 for the equation ( 1). This norm is induced by the effective diffusion coefficient associated to ã.

We prove in Section 5 the following

Proposition 3.4. Define D as the closure in (L 2 (Ω)) d of the set { σDϕ, ϕ ∈ C}. Then, there exists an element ξ = ( ξ1 , . . . , ξd ) ∈ D d such that, for all z ∈ R d , div( σ( σz + ξz)) = 0 (the product ξz stands for the combination d i=1 z i ξi : each function ξi , 1 ≤ i ≤ d, is R d valued so that ξ is a matricial function).
It satisfies the following variational formula [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF] inf

ϕ∈D E | σz + ϕ| 2 = E |( σ + ξ)z| 2 = z, αz , with α = E[( σ + ξ)( σ + ξ) * ].
Moreover, for all z ∈ R d , the auxiliary problem

(10) div σA(•, σz + ξ(•, z)) = 0 admits a unique (weak) solution ξ(•, z) in D. Setting ς = α 1/2 , the mapping z ∈ R d → σz + ξ(•, z) ∈ D is (ς, C 3.4 )-Lipschitz continuous for some positive constant C 3.4 : (11) ∀z, z ′ ∈ R d , E[| σ(z -z ′ ) + ξ(•, z) -ξ(•, z ′ )| 2 ] ≤ C 3.4 |ς(z -z ′ )| 2 .
Remark. By [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF], we can find a jointly measurable version of ξ(ω, z).

Theorem 3.5. For x ∈ O, y ∈ R and z ∈ R d , set (12) 
Ā(z) = E σA(•, σz + ξ(•, z)) , F (x, y, z) = E F (•, x, y, σz + ξ(•, z)) .
Then, for some constant C 3.5 > 0, Ā is (ς, C 3.5 )-strictly monotone and, for all

x ∈ O, | F (x, 0, 0)| ≤ C 3.5 and F (x, •, •) is ((1, ς), C 3.5 )-Lipschitz continuous. As a consequence, the PDE defined on ]0, T ] × O by (13) ∂ t ū(t, x) -div Ā(∇ x ū(t, x)) + F x, ū(t, x), ∇ x ū(t, x) = 0, (t, x) ∈]0, T ] × O,
with a null boundary condition on

{0} × O ∪ ]0, T ] × ∂O, admits a unique solution ū ∈ L 2 (]0, T [, H ς,1 0 (O)), with ∂ t ū ∈ L 2 (]0, T [, H ς,-1 (O)). Proof.
We check the strict monotonicity of Ā (cf. ( 7)) by means of [START_REF] Jikov | Homogenization of differential operators and integral functionals[END_REF]. Indeed, from Proposition 3.4, we know that, for all z ∈ R d , A(•, σz + ξ(•, z)) and σz + ξz belong to

D ⊥ . Hence, for ζ ∈ R d , Ā(0), ζ = E σζ, A(•, ξ(•, 0)) = E ( σ + ξ)ζ, A(•, ξ(•, 0)) ≤ C E |( σ + ξ)ζ| 2 1/2 .
This proves (7.i). We turn to (7.iii)

. For z, z ′ , ζ ∈ R d , we claim Ā(z) -Ā(z ′ ), z -z ′ = E A(•, σz + ξ(•, z)) -A(•, σz ′ + ξ(•, z ′ )), σ(z -z ′ ) + ξ(•, z) -ξ(•, z ′ ) ≥ Λ -1 E | σ(z -z ′ ) + ξ(•, z) -ξ(•, z ′ )| 2 ≥ Λ -1 inf ϕ∈D E | σ(z -z ′ ) + ϕ| 2 = Λ -1 |ς(z -z ′ )| 2 . ( 14 
)
We establish (7.ii)

. For z, z ′ , ζ ∈ R d , we claim Ā(z) -Ā(z ′ ), ζ = E A(•, σz + ξ(•, z)) -A(•, σz ′ + ξ(•, z ′ )), σζ + ξζ ≤ Λ E | σ(z -z ′ ) + ξ(•, z) -ξ(•, z ′ )| 2 1/2 |ςζ| (15)
Plugging ( 15) into ( 14), we deduce that [START_REF] Papanicolaou | Boundary value problems with rapidly oscillating random coefficients[END_REF], we complete the proof of (7.ii). As a by-product, we deduce [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF]. We let the reader check the Lipschitz properties of F in y and z.

E[| σ(z -z ′ ) + ξ(•, z) -ξ(•, z ′ )| 2 ] ≤ Λ 2 (E[| σ(z - z ′ ) + ξ(•, z) -ξ(•, z ′ )| 2 ]) 1/2 |ς(z -z ′ )|. By
We investigate the solvability of (13) as in Theorem 3.1.

Homogenization Property

We present below the homogenization property: the sequence

(u ε ) ε>0 converges towards ū in L ∞ ([0, T ], L 2 (Ω × O))
as ε tends to zero. We are also able to specify the convergence of the gradients: the distance in

L 2 (]0, T [, L 2 (Ω × O)) between ∇ σ(x/ε) x u ε and σ(x/ε)∇ x ū(t, x) + ξ(x/ε, ∇ x ū(t, x)) tends to zero as ε vanishes.
The reader may object that σ(x/ε)∇ x ū(t, x) and ξ(x/ε, ∇ x ū(t, x)) are meaningless since the gradient of ū doesn't exist in all the directions of the space. In fact, by means of standard convolution argument, we can find a sequence (ϕ

n ) n≥1 of measurable functions from [0, T ] × R d into R, such that ϕ n (t, •) belongs to C ∞ (O) for every t ∈ [0, T ] and (ϕ n , ς∇ x ϕ n ) → (ū, ∇ ς x ū) in (L 2 (]0, T [×O)) d+1 . By (11), the sequence (ω, t, x) → σ(ω)∇ x ϕ n (t, x) + ξ(ω, ∇ x ϕ n (t, x)) is a Cauchy sequence in L 2 (Ω × [0, T ] × O) and the limit doesn't depend on the choice of the approximating sequence (ϕ n ) n≥1 . It is denoted by (ω, t, x) → σ(ω)∇ x ū(t, x) + ξ(ω, ∇ x ū(t, x)).
Theorem 3.6. Under Assumptions 2.3, 2.4 and 2.5,

lim ε→0 sup 0≤t≤T E O (u ε -ū)(t, x) 2 dx + E T 0 O ∇ σ(x/ε) x u ε (t, x) -[σ(x/ε)∇ x ū(t, x) + ξ(x/ε, ∇ x ū(t, x))] 2 dt dx = 0.

Examples

An Example where the Effective Diffusion Matrix is Null

We now tackle the construction of a two-dimensional periodic example where the diffusion coefficient σ is uniformly elliptic over an open subset of R 2 but the effective diffusion coefficient α is null. To this purpose, we define the 2π-periodic diffusion coefficient on

R 2 σ(x 1 , x 2 ) = (1 -cos(x 1 ))(1 -cos(x 2 ))I 2
, where I 2 stands for the 2 ×2 identity matrix. We first prove the ergodicity of the semi-group associated to the operator S = (1/2)× 2 i,j=1 ∂ i (ã ij (x 1 , x 2 )∂ j ) acting on periodic functions of two variables (ã = σ σ). Basically, this holds true because of the ellipticity of ã on the cell

C =]0, 2π[ 2 .
Here is a precise argument. We denote by X the diffusion process with generator S. It is sufficient to establish that, for a given starting point x ∈ C and a given Borel subset B ⊂ C, with λ Leb (B) > 0 (λ Leb denotes the Lebesgue measure), P x (X t ∈ B) > 0. For such a set and n ∈ N * , we put

B n = C n ∩ B, with C n =]1/n, 2π -1/n[×]1/n, 2π -1/n[.
We can choose n large enough to ensure λ Leb (B n ) > 0 and x ∈ C n . Moreover, we can modify the coefficient σ out of C n so that the modified coefficient σn is periodic and uniformly elliptic on the torus. We then denote by X n the diffusion process with

generator Sn = (1/2) 2 i,j=1 ∂ i (ã n ij (x 1 , x 2 )∂ j ). We have P x (X t ∈ B) ≥ P x (X t ∈ B n ; ∀s < t, X s ∈ C n ) = P x (X n t ∈ B n ; ∀s < t, X n s ∈ C n ).
This latter quantity is strictly positive by the uniform ellipticity of ãn (see [START_REF] Stroock | Diffusion semi-groups corresponding to uniformly elliptic divergence form operators[END_REF]).

We prove that the effective diffusion coefficient is null. We can consider the column vector V = (1, 0) * and the sequence of 2π-periodic functions (ϕ n ) n defined, for (

x 1 , x 2 ) ∈ C, by ϕ n (x 1 , x 2 ) = 1 if x 1 ∈ [n -1 , 2π -n -1 ] and ϕ n (x 1 , x 2 ) = 1 -nπ otherwise.
The vector (ϕ n (x 1 , x 2 ), 0) * corresponds to the gradient of the function

F n (x 1 , x 2 ) = x 1 0 ϕ n (u, x 2
) du and thus belongs to D. Keeping the notations of Subsection 3.2, (9) yields

V, αV ≤ 1 4π 2 C |σ(V -DF n )| 2 dx 1 dx 2 ≤ 3 4π 2π 0 (1 -ϕ n ) 2 (1 -cos(x 1 )) 2 dx 1 = 3n 2 π 2 n -1 0 (1 -cos(x 1 )) 2 dx 1 .
An easy calculation proves that the latter quantity converges to zero as n goes to infinity so that α degenerates along the x 1 -axis. The same argument holds for the x 2 -axis. Therefore, the matrix α is null. From a probabilistic point of view, the diffusion process X cannot leave the cell from which it starts. As a consequence, the rescaled process (X ε t = εX t/ε 2 ) t≥0 , which corresponds to the rescaled operator

Sε = (1/2) 2 i,j=1 ∂ i (ã ij (x 1 /ε, x 2 /ε)∂ j )
, cannot leave the cell of diameter 2πε from which it starts. The limit process is thus constant and the effective diffusion matrix is zero.

A Random Chessboard Structure Example

We now set out an example in the stationary framework (and in the two-dimensional setting). We fix a parameter 0 < p < 1 and we consider, as random medium, the set Ω = [0, 1] 2 × {0, 1}

2 , equipped with the product σ-field and with the following product measure: the two first marginal distributions are uniform distributions on [0, 1] and the other ones are Bernoulli distributions of parameter p. We can check that the transformations

∀y ∈ R 2 , ∀ω = (u, (a k ) k∈ 2 ) ∈ Ω, τ y ω = (u + y -⌊u + y⌋, (a ⌊k+u+y⌋ ) k∈ 2 )
fit Definition 2.1, where, for y ∈ R 2 , ⌊y⌋ stands for the vector whose coordinates are the integer parts of the coordinates of y. Roughly speaking, we are drawing a chessboard on R 2 whose origin is randomly chosen over [0, 1] 2 . We are then coloring each square either in black with probability p or in white with probability 1p.

We tackle the construction of σ. We define D as the 2 × 2 matrix with D 1,1 = 1 and D i,j = 0 for i = 1 or j = 1. Then, we put

∀ω = (u, (a k ) k∈ 2 ) ∈ Ω, σ(ω) = a 0 I 2 + (1 -a 0 )D.
An easy calculation proves that for each ω = (u, (a k ) k∈ 2 ) ∈ Ω and each y ∈ R 2 , σ(τ y ω) = a ⌊y+u⌋ I 2 + (1a ⌊y+u⌋ )D: for a fixed environment ω, the matrix σ(ω, y) is equal to I 2 on black squares and to D on white ones. We now regularize σ: we choose a smooth density ̺ on R 2 with a very small support and we put σ = σ ⋆ ̺. The ergodicity property for L σ σ is very intuitive. Indeed, the matrix σ(ω, •) only degenerates on white squares, and in fact only on a part of each of them (depending on the support of ̺) and only along the y 2 -axis direction: while lying on the degenerating part of a white square, the diffusion associated to (1/2) 2 i,j=1 ∂ i ((σσ) i,j (y 1 , y 2 )∂ j ) can only move along the y 1axis direction. Nevertheless, with probability 1, the process encounters a black square sooner or later (since the parameter p belongs to ]0, 1[): it thus manages to move up and down and hence to reach every given square. Ergodicity follows. Rigorous arguments are however left to the reader. It is plain to prove that the matrix α given by ( 9) is nondegenerate.

Comparison with Existing Literature

We let the reader check that the previous examples do not satisfy a Muckenhoupt condition, as expressed in [START_REF] Engström | Homogenization of random degenerated nonlinear monotone operators[END_REF][START_REF] Huang | Homogenization of degenerate quasilinear parabolic equations with periodic structure[END_REF][START_REF] Paronetto | On the convergence of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF][START_REF] Paronetto | Homogenization of degenerate elliptic-parabolic equations[END_REF]. Conversely, if a diffusion matrix ã satisfies a Muckenhoupt condition, then it is ergodic in the sense of Assumption 2.5 because of [17, Cor. 2.5] and [START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF]Th. 2.8]. We also emphasize that the Muckenhoupt condition prevents the homogenized diffusion coefficient ã from degenerating. Indeed, for a smooth function ϕ defined on Ω and X ∈ R d , we have (λ(ω) denotes the smallest eigenvalue of ã(ω)

) |X| 2 = E(X + Dϕ) 2 ≤ E[λ -1 ] E (X + Dϕ) * ã(X + Dϕ . Because of the
Muckenhoupt condition, λ -1 is integrable. The nondegeneracy of the effective diffusion coefficient associated to ã follows from (9).

5 Preliminary Results for the Proof of Theorem 3.6

Auxiliary Problems

We now investigate the auxiliary problems and deduce, as a by-product, Proposition 3.4. The solvability of the linear auxiliary problem, related to σ is standard, as well as the variational formula (see [START_REF] Rhodes | Homogenization of locally ergodic diffusions with possibly degenerate diffusion matrix[END_REF]). Thus, we just focus on the construction of ξ.

Approximated Auxiliary Problems. For ϕ, ψ ∈ C, we set (we extend in an obvious manner the notation (•,

•) Ω 2 to [L 2 (Ω)] d ) (ϕ, ψ) Ω 1,2 = -(ϕ, Sψ) Ω 2 = (1/2)(ãDϕ, Dψ Ω 2 , and the associated seminorm ϕ Ω 1,2 = [(ϕ, ϕ) Ω 1,2 ] 1/2 . Then, we can set, for any ϕ, ψ ∈ C, E(ϕ, ψ) = (ϕ, ψ) Ω 2 + (ϕ, ψ) Ω 1,2 .
This defines an inner product on C × C and we denote by H 1 the completion of C for the resulting norm. By the regularity of ã, E is closable and H 1 may be seen as a subspace of L 2 (Ω). Equipped with the norm induced by E, H 1 is a Hilbert space. For any ϕ, ψ ∈ C, we have (ϕ, ψ) Ω 1,2 = (1/2)( σDϕ, σDψ) Ω 2 , so that the mapping Ξ : C → D, ϕ → σDϕ can be extended to the whole space H 1 . For each function ϕ ∈ H 1 , we denote Ξ(ϕ) by ∇ σϕ : this represents in a way the gradient of the function ϕ along the direction σ.

For λ > 0 and z ∈ R d , we can consider the approximated corrector equation λχ λdiv( σA(•, σz + ∇ σχ λ (•, z))) = 0, i.e. for all ϕ ∈ H 1 , ( 16)

λE χ λ ϕ + E A(•, σz + ∇ σχ λ (•, z)), ∇ σϕ = 0.
The nonlinear operator

A λ : ψ ∈ H 1 → λψ -div( σA(•, σz + ∇ σψ)) ∈ H ′
1 is strictly monotone and Lipschitz continuous on H 1 , so that the equation A λ (ψ) = 0 admits a unique solution, denoted by χ λ (•, z) (see [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications, Vols IIA and IIB[END_REF]Th. 26.A]). We let the reader prove Lemma 5.1. There exists a constant C 5.1 such that, for all λ > 0 and

z ∈ R d , λE[|χ λ (•, z)| 2 ] +E[|∇ σχ λ (•, z)| 2 ] ≤ C 5.1 (1 + |z| 2 ).
Convergence and Regularity of the Approximated Correctors. Proposition 5.2. For all z ∈ R d , the equation (10) admits a unique (weak) solution in D. In particular, Proposition 3.4 holds (the proof of (11) follows from the proof of Theorem 3.5). Moreover,

lim λ→0 E[λ|χ λ (•, z)| 2 + |∇ σχ λ (•, z) -ξ(•, z)| 2 ] = 0.
Proof. Similarly to [START_REF] Papanicolaou | Diffusions with random coefficients[END_REF], we seek for a field ξ(•, z) ∈ D such that, for all ϕ ∈ H 1 ,

E[ A(•, σz + ξ(•, z)), ∇ σϕ ] = 0.
Considering the nonlinear operator A : θ ∈ D → -div( σA(•, σz + θ)) ∈ D ′ , we can prove as above that the equation ( 10) admits a unique solution (D is a closed subspace of [L 2 (Ω)] d and is, for this reason, reflexive). Choosing ϕ = χ λ (•, z), for a given λ > 0, we obtain

E[ A(•, σz + ξ(•, z)), ∇ σχ λ (•, z) ] = 0. Since ξ(•, z) belongs to D, we can find a sequence (ϕ n ) n≥1 in C, such that ∇ σϕ n → ξ(•, z) in [L 2 (Ω)] d .
In particular, by the (I d , Λ)-strict monotonicity of A(ω, •) for each ω ∈ Ω and by Lemma 5.1, there exists a sequence (ε n (λ)) n≥1 , vanishing as n → +∞, uniformly in λ, such that

E[ A(•, σz + ∇ σϕ n ), ∇ σχ λ (•, z) ] = ε n (λ).
Making the difference with (16

) (with ϕ = χ λ (•, z)), we deduce that λE[(χ λ (•, z)) 2 ]+ E[ A(•, σz + ∇ σχ λ (•, z)) -A(•, σz + ∇ σϕ n ), ∇ σχ λ (•, z) ] = -ε n (λ), that is, λE χ λ (•, z) 2 + E A(•, σz + ∇ σχ λ (•, z)) -A(•, σz + ∇ σϕ n ), ∇ σ χ λ (•, z) -ϕ n = -ε n (λ) -E A(•, σz + ∇ σχ λ (•, z)) -A(•, σz + ∇ σϕ n ), ∇ σϕ n = -ε n (λ) + λE χ λ (•, z)ϕ n + E A(•, σz + ∇ σϕ n ), ∇ σϕ n . By Lemma 5.1, λχ λ (•, z) → 0 in L 2 (Ω) as λ tends to 0. Moreover, E[ A(•, σz + ∇ σϕ n ), ∇ σϕ n ] = E[ A(•, σz + ∇ σϕ n ) -A(•, σz + ξ(•, z)), ∇ σϕ n ] → 0 as n → +∞.
Hence, we can first fix n large enough and then λ small enough to let the right-hand side in the above expression be small.

Proposition 5.3. There exists a constant C 5.3 such that, for all h ∈ R d ,

sup λ>0,z∈R d λE |χ λ (•, z + h) -χ λ (•, z)| 2 + E |∇ σ χ λ (•, z + h) -χ λ (•, z) | 2 ≤ C 5.3 |h| 2 .
In particular, the convergence in Proposition 5.2 is uniform on compact subsets of R d .

Proof. Fix λ > 0 and z, h ∈ R d and consider v = χ λ (•, z + h)χ λ (•, z). From ( 16), we can write for ϕ ∈ H 1

λE vϕ + E A(•, σ(z + h) + ∇ σχ λ (•, z + h)) -A(•, σz + ∇ σχ λ (•, z)), ∇ σϕ = 0.
Choosing ϕ = v, we obtain

λE v 2 + E A(•, σ(z + h) + ∇ σχ λ (•, z + h)) -A(•, σz + ∇ σχ λ (•, z)), σh + ∇ σv = E A(•, σ(z + h) + ∇ σχ λ (•, z + h)) -A(•, σz + ∇ σχ λ (•, z)), σh .
Since A(ω, •) is (I d , Λ)-strictly monotone for each ω ∈ Ω, there exist C, C ′ ≥ 0 such that

λE v 2 + E | σh + ∇ σv| 2 ≤ CE | σh + ∇ σv|| σh| ≤ C ′ |h|E | σh + ∇ σv| 2 1/2 .

Nonlinear Ergodic Theorem

The following result is the key point in our method. Using the ergodic properties of S (see Assumption 2.5), we establish a nonlinear version of the ergodic theorem on the random medium (the term nonlinear indicates that the functionals that we investigate depend on the solutions of (1)). As prescribed in [START_REF] Bensoussan | Asymptotic methods in periodic media[END_REF], the strategy consists in introducing the resolvent equation associated with S.

Theorem 5.4. Let Ψ ∈ L 2 (Ω × [0, T ] × O) and h : [0, T ] × O × R → R be a measurable function, such that sup (t,x)∈Q T |h(t, x, 0)| < +∞ and y ∈ R → h(t, x, y) is Lipschitz continuous, uniformly in (t, x) ∈ Q T . Setting Ψ(t, x) = E[Ψ(•, t, x)], we claim, (17) lim ε→0 sup 0≤t≤T E t 0 O Ψ(x/ε, s, x)h(s, x, u ε (s, x)) -Ψ(s, x)h(s, x, u ε (s, x)) dxds = 0.
Proof. We first assume that there exist a function ψ ∈ L ∞ (Ω), with E[ψ] = 0, a real R 0 > 0 and a smooth function ϕ : [0, T ] × R d → R, satisfying ϕ(t, x) = 0 for dist(x, ∂O) ≤ 1/R 0 , such that Ψ(ω, t, x) = ψ(ω)ϕ(t, x). We also consider a smooth function h

: [0, T ] × O × R → R, satisfying h(t, x, y) = 0 for (t, x) ∈ [0, T ] × R d and |y| > R 0 .
We consider the resolvent equation λv λdiv( σ∇ σv λ ) = ψ. For a test function θ ∈ C ∞ K (O), we can integrate the resolvent equation against ℓ ⋆ θ, for any ℓ ∈ L ∞ (Ω). We deduce, for a.e. ω ∈ Ω,

λ O v λ (x/ε)θ(x)dx + ε O ∇ σ v λ (x/ε), σ(x/ε)∇θ(x) dx = O ψ(x/ε)θ(x)dx.
Up to a regularization argument for u ε (t, .), we can choose θ(x) = ϕ(t, x)h(t, x, u ε (t, x)) for a.e. t ∈ [0, T ]. We deduce that there exists a constant C, depending on ψ, ϕ and h, such that

sup 0≤t≤T E t 0 O ψ(x/ε)ϕ(s, x)h(s, x, u ε (s, x))dxds ≤ C λE[|v λ |] + ε E[|∇ σv λ | 2 ] 1/2 1 + M dt,dx |∇ σ(x/ε) x u ε (t, x)| 2 .
By the ergodicity of the operator associated to ã, we know that λ 2 E[(v λ ) 2 ] → 0 as λ → 0 (see [START_REF] Olla | Homogenization of diffusion processes in Random Fields[END_REF] for a particular case or [START_REF] Rhodes | Homogenization of locally ergodic diffusions with possibly degenerate diffusion matrix[END_REF] and references therein for the general case). By Proposition 3.3, we can first choose λ small enough and then ε small enough to let the above right-hand side be small. This completes the proof in this first case. We know that the linear combinations of functions of the type (ω, t, x)

→ ϕ(ω)η(t)× ρ(x) with ϕ ∈ L ∞ (Ω), η ∈ C ∞ ([0, T ]) and ρ ∈ C ∞ c (O) are dense in the space L 2 (Ω × [0, T ] × O).
As a by-product, [START_REF] Paronetto | On the convergence of a class of degenerate parabolic equations[END_REF] still holds for Ψ ∈ L 2 (Ω × [0, T ] × O) and h as described above. Details are left to the reader.

We now assume that h is just bounded in (t, x) and Lipschitz continuous in y, as prescribed in the statement. We claim [START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF] lim

R→0 lim sup ε→0 M dt,dx 1 {|u ε (t,x)|>R} |Ψ(x/ε, t, x)||u ε (t, x)| = 0.
By [START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF], we can assume, without loss of generality, that the support of h is compact. We then complete the proof by approximating h by a sequence of smooth functions (h n ) n≥1 , vanishing for large values of y, such that T 0

O sup y∈R |h(t, x, y)h n (t, x, y)| 2 dtdx → 0. We prove [START_REF] Paronetto | Homogenization of a class of degenerate parabolic equations[END_REF]. By the Cauchy-Schwarz inequality and Proposition 3.3, it is sufficient to prove lim R→+∞ lim sup ε→0 M dt,dx [Ψ 2 (x/ε, t, x)1 {|u ε (t,x)|>R} ] = 0. For all R > 0 and ε > 0, the stationarity property yields

M dt,dx [Ψ 2 (x/ε, t, x)1 {|u ε (t,x)|>R} ] = M dt,dx [Ψ 2 (ω, t, x) ×1 {|u ε,τ -x/ε ω (t,x)|>R} ]
. By a uniform integrability argument, it is sufficient to investigate the measure of the set {|u ε,τ -x/ε ω (t, x)| > R} for large values of R. Again by the stationarity property and Proposition 3.3, we have

Q dt,dx [{|u ε,τ -x/ε ω (t, x)| > R}] ≤ (1/R)M dt,dx [|u ε,ω (t, x)|] ≤ C/R.

Proof of Theorem 3.6

As explained in Introduction, we use the first order approximation method to establish Theorem 3.6 (see ( 4)). Unfortunately, because of the degeneracies of ã, the solution of the limit PDE as well as the solutions of the auxiliary problems are not are regular enough to do it straight. This is the reason why we introduce a specific regularization procedure.

Regularization Procedure. We first introduce regular versions of the PDE [START_REF] Pankov | G-convergence and homogenization of nonlinear partial differential operators[END_REF].

We denote by p a one-dimensional mollifier. For for all n ≥ 1, we put p n (•) = np(n •) and we denote by η n a smooth function from R d into [0, 1], such that η n (x) = 1 for dist(x, O c ) ≥ 2/n (O c denotes the complementary of O) and η n (x) = 0 for dist(x, O c ) ≤ 1/n. We assume that ∇η n O ∞ ≤ γn, for some constant γ > 0. Denoting by * the convolution product, we set, for (x, y, z

) ∈ R d × R × R d , Fn = {[(η n ⊗ 1 1 ⊗ 1 d ) × F ] * p ⊗2d+1 n 2 }(x, y, z) with (η n ⊗ 1 1 ⊗ 1 d )(x, y, z) = η n (x). Then, Fn (x, •, •
) is bounded at (0, 0) by γ ′ C 3.5 , for a constant γ ′ > 0, and is ((1, ς), C 3.5 )-Lipschitz continuous. Using Footnotes 1 and 2, we can prove [START_REF] Paronetto | Homogenization of degenerate elliptic-parabolic equations[END_REF] ∀R > 0, lim

n→+∞ sup |y|≤R,|ςz|≤R | F (•, y, z) -Fn (•, y, z)| O 2 = 0.
Similarly, we put, for ω ∈ Ω and z ∈ R d , A n (ω, z) = [A(ω, σ(ω) • +ξ(ω, •)) * p ⊗d n ](z) if defined and 0 if not (for each z ∈ R d , the convolution product is defined for a.e. ω), so that div( σA n (•, z)) = 0. We put Ān (z) = E[ σA n (•, z)], so that Ān = Ā * p ⊗d n (see ( 12)) and Ān is (ς, γ ′ C 3.5 )-strictly monotone (up to a modification of γ ′ ). By [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF], [START_REF] Rhodes | On homogenization of space-time dependent and degenerate random flows[END_REF] lim

n→+∞ sup z∈R d E |A n (•, z) -A(•, σz + ξ(•, z))| 2 = 0.
We admit for the moment (the proof is given in Section 7) Theorem 6.1. For every n ≥ 1, we denote by ūn the solution of the PDE (13), with ( Ān , Fn ) as coefficients. Then,

(21) ūn (t, •) L 2 -→ O ū(t, •) unif. in t ∈ [0, T ], ∇ ς x ūn L 2 -→ [0,T ]×O ∇ ς x ū.
The functions (ū n ) n≥1 are once continuously differentiable (C.D. in short) in t, but are just twice C.D. in x along the directions of Im(ς). The derivatives along Im(ς) are denoted by ∇ ς x ūn and ∇ 2,ς x,x ūn : for (t, x) ∈ Q T , ∇ ς x ūn (t, x) is an element of R d (we can also prove that ∇ ς

x ūn (t, •) is as an element of H ς,1 0 (O) for all t ∈ [0, T ]) and ∇ 2,ς x,x ūn (t, x) an element of R d×d . For ν 1 , ν 2 ∈ R d , they are given by

(22) ∇ ς x ūn (t, x), ν 1 = ∂ ςν 1 ūn (t, x), ν 1 , ∇ 2,ς x,x ūn (t, x)ν 2 = ∂ 2 ςν 1 ,ςν 2 ūn (t, x).
For each n ≥ 1, ( 23) sup

Q T |ū n (t, x)| dist(x, ∂O) + ∇ ς x ūn Q T ∞ + ∂ t ūn , ∇ 2,ς x,x ūn Q T 2
< +∞, so that div( Ān (∇ x ūn )) exists as an element of L 2 (Q T ) ( 3 ). Moreover, for each n ≥ 1, there exists a sequence (û n,m ) m≥1 of continuous functions on [0, T ] × R d , infinitely C.D. in space on [0, T ] × R d , once C.D. in time on QT , such that (∂ t ûn,m ) m≥1 are infinitely C.D. in space on Q T , and

sup m≥1 m(û n,m -ūn ) [0,T ]×R d ∞ , ∇ ς x ûn,m Q T ∞ < +∞, ∇ ς x ûn,m Pointwise -→ Q T ∇ ς x ūn , ∂ t ûn,m , ∇ 2,ς x,x ûn,m L 2 -→ Q T ∂ t ūn , ∇ 2,ς x,x ūn as m → +∞. (24) 
Truncation. For each m ≥ 1, the function ûn,m doesn't vanish on [0, T ] × ∂O. For this reason, we set, for all (t, x) ∈ Q T , ūn,m (t, x) = ûn,m (t, x)η m (x), so that ūn,m ∈ C 1,2 ( QT ).

Lemma 6.2. For each n ≥ 1, there exists a constant C 6.2 (n) such that, for all m ≥ 1,

∇ ς x ūn,m Q T ∞ ≤ C 6.2 (n). In particular, (∇ ς x ūn,m -∇ ς x ûn,m ) m≥1 converges to 0 in L 2 (Q T ). Proof. For (t, x) ∈ Q T , ∇ ς x ūn,m (t, x) = η m (x)∇ ς
x ûn,m (t, x) + ûn,m (t, x)ς∇η m (x). There is no difficulty to handle the first term since sup m≥1 ∇ ς

x ûn,m Q T ∞ is finite. For the second one, we can proceed as follows. For (t, 23) and [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications, Vols IIA and IIB[END_REF].

x) ∈ Q T , ûn,m (t, x)ς∇η m (x) = 0 if dist(x, ∂O) ≥ 2/m. If dist(x, ∂O) ≤ 2/m, |û n,m (t, x)ς∇η m (x)| ≤ γm|ς||ū n (t, x)| + γm|ς||û n,m (t, x) -ūn (t, x)| ≤ C(n), by (
Regularization of the correctors. Similarly, we regularize the paths of the approximated correctors (χ λ (•, z)) z∈R d , λ > 0. For n ≥ 1 and z ∈ R d , we can find θ λ n (•, z) ∈ C such 3 Referring to Footnotes 1 and 2, we can write Ān (•) = ς Ân (ς•) for a regular function Ân : R d → R. The quantity div( Ān (∇ x ūn )) may be expressed as div( Ān (∇

x ūn )) = div(ζ Ân (∇ ζ x ūn )) = d i,j=1 [∂( Ân ) i /∂z j ](∇ ζ x ūn )(∇ 2,ζ x,x ūn ) i,j = ∂ z Ân (∇ ζ x ūn ), ∇ 2,ζ
x,x ūn . The detailed proof is given in Section 7.

that E[|χ

λ (•, z) -θ λ n (•, z)| 2 + |∇ σχ λ (•, z) -∇ σθ λ n (•, z)| 2 ] ≤ 1/n. We put for all ω ∈ Ω and z ∈ R d χ λ n (ω, z) = R d θ λ n (ω, n -1 ⌊nz ′ ⌋)p ⊗d n (z -z ′ )dz ′ .
We can see that χ λ n (•, z) ∈ C for all z ∈ R d and that, for all ω ∈ Ω and

z ∈ R d , ∇ σχ λ n (ω, z) = [∇ σθ λ n (ω, n -1 ⌊n•⌋) * p ⊗d n ](z) (in particular, the function (ω, z) ∈ Ω×R d → (χ λ n (ω, z), ∇ σχ λ n (ω, z)) is jointly measurable). Proposition 5.3 yields (25) lim n→+∞ sup λ>0,z∈R d E λ|χ λ n (•, z) -χ λ (•, z)| 2 + |∇ σχ λ n (•, z) -∇ σχ λ (•, z)| 2 = 0.
Moreover, by Propositions 5.2 and 5.3, for each n ≥ 1 and every compact subset

K ⊂ R d , (26) sup λ>0 sup z∈K E |∇ σχ λ n (•, z)| 2 < +∞, lim λ→0 λ sup z∈K E |χ λ n (•, z)| 2 + |∂ z χ λ n (•, z)| 2 = 0.
First Order Approximation.

Notation. In the whole proof, R ε n,m , Γ ε n,m and ∆ ε n,m denote, in a generic way, terms that satisfy lim ε→0 sup 0≤t≤T |R ε n,m (t)| = 0 for all n, m ≥ 1, lim m→∞ sup ε>0 sup 0≤t≤T |Γ ε n,m (t)| = 0 for all n ≥ 1, and lim n→+∞ sup m≥1,ε>0 sup 0≤t≤T |∆ ε n,m (t)| = 0. Their values may change from line to line. Similarly, we denote, in a generic way, by C constants that do not depend on (n, m, ε). The value of C may vary from line to line.

Definition. For n, m ≥ 1, we consider a sequence (ρ ε n,m ) ε>0 of smooth functions, from O into [0, 1], with compact supports, converging towards 1 in L 2 (O) (as ε tends to zero). We set for all ε > 0 and (t,

x) ∈ Q T (27) u ε n,m (t, x) = ūn,m (t, x) + εχ ε 2 n (x/ε, ∇ x ūn,m (t, x))ρ ε n,m (x).
Since ∇ x ūn,m is a smooth function, we can write

(28) ε 2 E |χ ε 2 n (x/ε, ∇ x ūn,m (t, x))| 2 ≤ sup ε 2 E[(χ ε 2 n (•, z)) 2 ], |z| ≤ sup (t,x)
|∇ū n,m (t, x)| .

By the Jensen inequality, (26) and Theorem 6.1, there exists a constant B ≥ 0 such that

∀t ∈ [0, T ], M dx |u ε n,m (t, x) -ūn,m (t, x)| 2 ≤ R ε n,m (t), M dx |u ε n,m (t, x)| 2 ≤ B + R ε n,m (t) + Γ ε n,m (t). ( 29 
)
Gradient of u ε n,m . In (27), we can differentiate the involved terms with respect to x along σ(x/ε)

∇ σ(x/ε) x u ε n,m (t, x) = σ(x/ε)∇ x ūn,m (t, x) + ∇ σ χ ε 2 n (x/ε, ∇ x ūn,m (t, x)) + (ρ ε n,m (x) -1)∇ σχ ε 2 n (x/ε, ∇ x ūn,m (t, x)) + ερ ε n,m (x)σ(x/ε) ∂ z χ ε 2 n (x/ε, ∇ x ūn,m (t, x))∇ 2 x,x ūn,m (t, x) + εχ ε 2 n (x/ε, ∇ x ūn,m (t, x))σ(x/ε)∇ρ ε n,m (x) = σ(x/ε)∇ x ūn,m (t, x) + ∇ σ χ ε 2 n (x/ε, ∇ x ūn,m (t, x)) + i=1,2,3 T ε i,n,m (t, x). ( 30 
)
We wish to prove that T ε 1,n,m , T ε 2,n,m and T ε 3,n,m vanish in a suitable sense with ε. Term T ε 3,n,m . By ( 26) and ( 28), we claim

ε 2 M dt,dx |χ ε 2 n (x/ε, ∇ x ūn,m (t, x))| 2 |∇ρ ε n,m (x)| 2 ≤ R ε n,m (T ) ∇ρ ε n,m O 2 2 .
The family (ρ ε n,m ) ε>0 is not bounded in H 1 0 (O). However, we can choose, for each fixed n, m ≥ 1, the family (ρ ε n,m ) ε>0 such that M dt,dx [(T ε 3,n,m ) 2 ] vanishes as ε tends to zero. Terms T ε 1,n,m and T ε 2,n,m . Similarly, we can prove that, for each fixed n, m ≥ 1, the quantities

M dt,dx [|T ε 1,n,m (t, x)| 2 ] and M dt,dx [|T ε 2,n,m (t, x)| 2
] vanish as ε tends to zero. Convergence of the correctors in the gradient. By (30) and the above analysis,

M dt,dx |∇ σ(x/ε) x u ε n,m (t, x) -σ(x/ε)∇ x ūn,m (t, x) -∇ σ χ ε 2 n (x/ε, ∇ x ūn,m (t, x))| 2 ≤ R ε n,m (T ).
By (25), we can approximate

∇ σ χ ε 2 n (•, z) by ∇ σ χ ε 2 (•, z) in L 2
(Ω) (as n → +∞), uniformly in z and in ε. By Proposition 5.3, we can approximate ∇ σ χ ε 2 (•, z) by ξ(•, z) in L 2 (Ω) (as ε → 0), uniformly on compact sets. Since ∇ x ūn,m is smooth, we deduce

M dt,dx |∇ σ(x/ε) x u ε n,m (t, x) -σ(x/ε)∇ x ūn,m (t, x) -ξ(x/ε, ∇ x ūn,m (t, x))| 2 ≤ R ε n,m (T ) + ∆ ε n,m (T ). (31) 
By [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF], we can control σz + ξ(•, z) -ξ(•, 0) in L 2 (Ω) by |ςz|, for any z ∈ R d . By Lemma 6.2 and Theorem 6.1, ς∇ x ūn,m -∇ ς x ūn

Q T 2 → 0 as m → +∞ and ∇ ς x ūn -∇ ς x ū Q T 2 → 0 as n → +∞. We obtain (32) M dt,dx |∇ σ(x/ε) x u ε n,m (t, x)| 2 ≤ C + R ε n,m (T ) + Γ ε n,m ( 
T ). Time derivative of ūn,m . Computing the derivative with respect to t, we claim

(33) M dt,dx |∂ t u ε n,m (t, x) -∂ t ūn,m (t, x)| 2 ≤ R ε n,m (T ).
Distance between u ε n,m and u ε . By (1), Proposition 3.3, (29), ( 31), ( 32) and ( 33), for all t ∈ [0, T ],

M ds,dx t ∂ t (u ε -u ε n,m )(s, x)(u ε -u ε n,m )(s, x) + M ds,dx t A(x/ε, ∇ σ(x/ε) x u ε (s, x)) -A(x/ε, ∇ σ(x/ε) x u ε n,m (s, x)), ∇ σ(x/ε) x (u ε -u ε n,m )(s, x) = -M ds,dx t F (x/ε, x, u ε (s, x), ∇ σ(x/ε) u ε (s, x))(u ε -u ε n,m )(s, x) -M ds,dx t ∂ t ūn,m (s, x)(u ε -u ε n,m )(s, x) -M ds,dx t A(x/ε, ∇ σ(x/ε) x ūn,m (s, x) + ξ(x/ε, ∇ x ūn,m (s, x))), ∇ σ(x/ε) x (u ε -u ε n,m )(s, x) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t) = -S ε 1,n,m (t) -S ε 2,n,m (t) -S ε 3,n,m (t) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t). ( 34 
)
Lemma 6.3 (Term S ε 2,n,m ). For t ∈ [0, T ] (we recall that, for s ∈ [0, T ], the term Fn (x, ūn (s, x), ∇ x ūn (s, x)) is well defined since Fn (x, •, •) is ((1, ς), C 3.5 )-Lipschitz continuous and that the term div( Ān (∇ x ūn (s, x))) exists as an element of L 2 (Q T ), see Footnotes 1, 2 and 3),

S ε 2,n,m (t) = -M ds,dx t Fn (x, ūn (s, x), ∇ x ūn (s, x))(u ε -u ε n,m )(s, x) + M ds,dx t div Ān (∇ x ūn (s, x)) (u ε -u ε n,m )(s, x) + R ε n,m (t) + Γ ε n,m (t) 
. Proof. By [START_REF] Stroock | Diffusion semi-groups corresponding to uniformly elliptic divergence form operators[END_REF], we know that ∂ t ūn ∈ L 2 (Q T ). Hence,

S ε 2,n,m (t) = M ds,dx t ∂ t ûn,m (s, x)(u ε -u ε n,m )(s, x)η m (x) = M ds,dx t ∂ t ūn (s, x)(u ε -u ε n,m )(s, x) + M ds,dx t ∂ t ūn (s, x)(u ε -u ε n,m )(s, x)(η m (x) -1) + M ds,dx t ∂ t ûn,m (s, x) -∂ t ūn (s, x) (u ε -u ε n,m )(s, x)η m (x) .
By Proposition 3.3, ( 24) and (29), we deduce that

S ε 2,n,m (t) = M ds,dx t [∂ t ūn (s, x)(u ε -u ε n,m ) (s, x)] + R ε n,m (t) + Γ ε n,m (t).
From the PDE (13) (for the regularized coefficients), we complete the proof. Lemma 6.4 (Term S ε 3,n,m ). For all t ∈ [0, T ],

-S ε 3,n,m (t) ≤ (2Λ) -1 M ds,dx t |∇ σ(x/ε) x (u ε -u ε n,m )(s, x)| 2 + M ds,dx t div Ān (∇ x ûn,m (s, x)) (u ε -u ε n,m )(s, x) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t).
Proof. Since ûn,m ∈ C 1,2 ( QT ), we can write, for every t ∈ [0, T ],

S ε 3,n,m (t) = M ds,dx t A(x/ε, ∇ σ(x/ε)
x ûn,m (s, x) + ξ(x/ε, ∇ x ûn,m (s, x))),

∇ σ(x/ε) x (u ε -u ε n,m )(s, x) + M ds,dx t A(x/ε, ∇ σ(x/ε) x ūn,m (s, x) + ξ(x/ε, ∇ x ūn,m (s, x))) -A(x/ε, ∇ σ(x/ε) x ûn,m (s, x) + ξ(x/ε, ∇ x ûn,m (s, x))), ∇ σ(x/ε) x (u ε -u ε n,m )(s, x) = S ε 3,n,m (1, t) + S ε 3,n,m (2, t). ( 35 
)
Since A is Lipschitz continuous, we deduce

|S ε 3,n,m (2, t)| ≤ (Λ/2)M ds,dx t |∇ σ(x/ε) x (ū n,m -ûn,m )(s, x) + ξ(x/ε, ∇ x ūn,m (s, x)) -ξ(x/ε, ∇ x ûn,m (s, x))| 2 + (2Λ) -1 M ds,dx t |∇ σ(x/ε) x (u ε -u ε n,m )(s, x)| 2 .
Using [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires[END_REF] and Lemma 6.2, we deduce that the first term in the above right hand side tends to zero as m tends to +∞, uniformly in ε. We deduce

(36) |S ε 3,n,m (2, t)| ≤ (2Λ) -1 M ds,dx t |∇ σ(x/ε) x (u ε -u ε n,m )(s, x)| 2 + Γ ε n,m (t).
Consider now S ε 3,n,m (1, t). We claim (the proof is given below)

S ε 3,n,m (1, t) = -M ds,dx t σ(x/ε)∂ z A n (x/ε, ∇ x ûn,m (s, x)), ∇ 2 x,x ûn,m (s, x) (u ε -ûn,m )(s, x) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t). 
(37)

Up to the proof of (37), we can complete the proof of Lemma 6.4. Indeed, we can apply Theorem 5.4 with Ψ(ω, t, x) = σ∂ z A n (•, ∇ x ûn,m (t, x)), ∇ 2 x,x ûn,m (t, x) and h(t, x, y) = yûn,m (t, x). The quantity Ψ(t, x) is equal to ∂ z Ān (∇ x ûn,m (t, x)), ∇ 2

x,x ûn,m (t, x) , that is Ψ(t, x) = div( Ān (∇ x ûn,m (t, x))). By (35), (36) and (37), the proof is over.

We prove (37) right now. By ( 20), ( 29), (32) and Proposition 3.3, it is sufficient to prove that for every smooth function ψ : O → R with a compact support, for all ε > 0, n, m ≥ 1 and t ∈ [0, T ] and for a.e. ω ∈ Ω,

O A n (x/ε, ∇ x ûn,m (t, x)), σ(x/ε)∇ψ(x) dx = - O σ(x/ε)∂ z A n (x/ε, ∇ x ûn,m (t, x)), ∇ 2
x,x ûn,m (t, x) ψ(x)dx.

We denote by I ε n,m (t) the left hand side and by J ε n,m (t) the right hand side. We wish to prove that E[ϕI ε n,m (t)] = E[ϕJ ε n,m (t)] for each function ϕ ∈ C. Using the stationarity of the medium, we have, for all t ∈ [0, T ],

M dx ϕI ε n (t) = O E ϕ(τ -x/ε •) σA n (•, ∇ x ûn,m (t, x)) , ∇ψ(x) dx = M dx ϕJ ε n (t) + 1/ε O E A n (•, ∇ x ûn,m (t, x)), ∇ σϕ(τ -x/ε •) ψ(x)dx.
Since div( σA n (•, z)) = 0 for all z ∈ R d , the last term above vanishes.

End of the proof. From (34), Lemmas 6.3 and 6.4, we obtain

M dx |(u ε -u ε n,m )(t, •)| 2 + (2Λ) -1 M ds,dx t |(∇ σ(•/ε) u ε -∇ σ(•/ε) u ε n,m )(s, x)| 2 ≤ -M ds,dx t F (x/ε, x, u ε (s, x), ∇ σ(x/ε) u ε (s, x))(u ε -u ε n,m )(s, x) + M ds,dx t Fn (x, ūn (s, x), ∇ x ūn (s, x))(u ε -u ε n,m )(s, x) + M ds,dx t div Ān (∇ x ûn,m (s, x)) -div Ān (∇ x ūn (s, x)) (u ε -u ε n,m )(s, x) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t) = U ε 1,n,m (t) + U ε 2,n,m (t) + U ε 3,n,m (t) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t). (38) 
We first treat U ε 1,n,m . By the Lipschitz continuity of F in (y, z) and by ( 29) and (31), we deduce, for a constant C ≥ 0,

U ε 1,n,m (t) ≤ -M ds,dx t F x/ε, x, ūn,m (s, x), (σ(•/ε)∇ x ūn,m + ξ(•/ε, ∇ x ūn,m ))(s, x) × (u ε -u ε n,m )(s, x) + CM ds,dx t |u ε -u ε n,m | 2 (s, x) + (4Λ) -1 M ds,dx t |∇ σ(•/ε) x u ε -∇ σ(•/ε) x u ε n,m | 2 (s, x) + R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t). (39) 
For U ε 2,n,m , we have, for all R ≥ 0, 19), ( 21) and (29), we deduce that

U ε 2,n,m (t) -M ds,dx t F (x, ūn (s, x), ∇ x ūn (s, x))(u ε -u ε n,m )(s, x) ≤ M ds,dx t sup |y|≤R,|ςz|≤R | Fn -F |(x, y, z)|u ε -u ε n,m |(s, x) + CM ds,dx t (1 + |ū n | + |∇ ς x ūn |)(s, x)|u ε -u ε n,m |(s, x)1 {(|ūn|+|∇ ς x ūn|)(s,x)>R} . By Proposition 3.3, (
|U ε 2,n,m (t) -M ds,dx t [ F x, ūn (s, x), ∇ x ūn (s, x) (u ε -u ε n,m )(s, x)]| ≤ R ε n,m (t) + Γ ε n,m (t) + ∆ ε n,m (t). (40) 
By Proposition 3.3, Theorem 6.1, Footnote 3 and (29), we can find, for each n ≥ 1, a constant C n , such that for all m ≥ 1,

|U ε 3,n,m (t)| 2 ≤ div Ān (∇ x ûn,m ) -div Ān (∇ x ūn ) Q T 2 2 M ds,dx t |u ε -u ε n,m | 2 (s, x) ≤ C n ∇ 2,ς x,x (û n,m -ūn ) Q T 2 + |∇ 2,ς x,x ūn ||∇ ς x (û n,m -ūn )| Q T 2 2 × M ds,dx t |u ε -u ε n,m | 2 (s, x) ≤ R ε n,m (t) + Γ ε n,m (t). (41) 
By ( 39), ( 40) and (41), we deduce

M dx |(u ε -u ε n,m )(t, x)| 2 + (4Λ) -1 M ds,dx t |(∇ σ(•/ε) u ε -∇ σ(•/ε) u ε n,m )(s, x)| 2 ≤ CM ds,dx t |(u ε -u ε n,m )(s, x)| 2 -M ds,dx t F x/ε, x, ūn,m (s, x), (σ(•/ε)∇ x ūn,m + ξ(•/ε, ∇ x ūn,m ))(s, x) × (u ε -u ε n,m )(s, x) + M ds,dx t F (x, ūn (s, x), ∇ x ūn (s, x))(u ε -u ε n,m )(s, x) + R ε n,m (t) + ∆ ε n,m (t) + Γ ε n,m (t). 
We apply Theorem 5.4 to

Ψ(ω, t, x) = F (ω, x, ūn,m (t, x), σ(ω) 
∇ x ūn,m (t, x)+ξ(ω, ∇ x ūn,m (t, x))) and h(t, x, y) = yūn,m (t, x). By the Lipschitz property of F , ( 24), (29) and by Lemma 6.2, this makes the sum of the second and third terms disappear. It remains to choose n large enough to let ∆ ε n,m be small, m large enough to let Γ ε n,m be small too and then ε small enough to treat R ε n,m . The Gronwall lemma permits to conclude.

7 Analysis of the Limit PDE 7.1 Main Results and Proof of Theorem 6.1

The proof of the following result is left to the reader Theorem 7.1. Under Assumptions 2.3, 2.4 and 2.5, we consider a sequence ( Ān , Fn ) n≥1 of coefficients, satisfying the same monotonicity, growth and Lipschitz continuity properties as Ā and F . We also assume that

lim n→+∞ sup |α 1/2 ζ| -1 Ān (•) -Ā(•), ζ R d ∞ , α 1/2 ζ = 0, ζ ∈ R d = 0, ∀R ≥ 0, lim n→+∞ sup |y|≤R,|ςz|≤R | Fn (•, y, z) -F (•, y, z)| O 2 = 0. ( 42 
)
For all n ≥ 1, we denote by ūn the solution of the limit PDE (13) associated to ( Ān , Fn ). Then,

(43) ūn (t, •) L 2 -→ O ū(t, •) unif. in t ∈ [0, T ], ∇ ς x ūn L 2 -→ [0,T ]×O ∇ ς x ū.
In the sequel, we prove that the solution of the PDE ( 13) is smooth in the directions of Im(ς) if the coefficients are smooth and if the source term vanishes in the neighborhood of ∂O. We then apply this result to the family (ū n ) n≥1 given in the previous statement.

Theorem 7.2. If the coefficients Ā and F are smooth, i.e. C ∞ b , and if there exists a real ρ 7.2 > 0 such that F (x, 0, 0) = 0 for dist(x, ∂O) ≤ ρ 7.2 , then the unique solution ū of the PDE (13) belongs to the spaces C( QT ) and C ς,1,2 (Q T ) (i.e. ∂ t ū, ∇ ς x ū and ∇ 2,ς

x,x ū are continuous on Q T , see [START_REF] Svanstedt | G-convergence of parabolic operators[END_REF] for a definition of these notations) and satisfies

(44) sup Q T |ū(t, x)| dist(x, ∂O) + ∇ ς x ū Q T ∞ + ∂ t ū, ∇ 2,ς x,x ū Q T 2 < +∞.
Moreover, the PDE (13) can be written in a nondivergence form: there exists a smooth mapping

Θ from R d into R d×d such that div( Ā(∇ x ϕ))(x) = d i,j=1 [Θ i,j (∇ ς x ϕ(x))(∇ 2,ς x,x ϕ (x)) i,j
] for all (t, x) ∈ Q T and for all smooth function ϕ from R d into R and this relationship still holds for ū.

We will also prove the following approximation result. 

ǔm

Unif.

-→

[0,T ]×R d ū, ∇ ς x ǔm Pointwise -→ Q T ∇ ς x ū, ∂ t ǔm , ∇ 2,ς x,x ǔm L 2 -→ Q T ∂ t ū, ∇ 2,ς
x,x ū .

Corollary 7.4. Theorem 6.1 holds.

Proof. The convergence of (ū n ) n≥1 towards ū follows from Theorem 7.1 (using the (ς, C 3.5 )-monotonicity of Ā and using [START_REF] Paronetto | Homogenization of degenerate elliptic-parabolic equations[END_REF], the reader can check (42)). The regularity of each ūn , n ≥ 1, is given by Theorem 7.2. The construction of the smooth approximations of ūn , for each n ≥ 1, follows from Theorem 7.3 (set ûn,m = ǔm with ( Ān , Fn ) as underlying coefficients).

Strategy for the Proof of Theorems & 7.3

The proof relies on a change of coordinates along the eigenvectors of the matrix α.

Loosely speaking, in the new coordinates, the PDE (13) may be expressed as a system of nondegenerate PDEs defined on a smaller space than R d , the system being parameterized by the kernel of the matrix α. We are then able to exploit the standard theory for nondegenerate equations.

In what follows, the assumptions of Theorem 7.2 are in force. Proof. For (t, x) ∈ Q T , z ∈ R d and λ small enough, we can write ū(t, x + λςz) = v(t, Mx + λMςz). Since ς is the symmetric square root of α, we have MςM * = J 1/2 r , so that Mςz = J 1/2 r Mz belongs to E r = Vect(e 1 , . . . , e r ). We deduce that ū is differentiable with respect to x along Im(ς). The same argument holds for the second order derivatives. Moreover, ∇ ς x ū(t, x) = ςM * ∇ Ir x v(t, Mx) and ∇ 2,ς x,x ū(t, x) = ςM * ∇ 2,Ir x,x v(t, Mx)Mς. Now, we can give a sense to div( Ā(∇ x ū)). According to Footnotes 1 and 2, we can find an (I d , C 3.5 )-strictly monotone function  such that Ā(z) = ς Â(ςz) for all z ∈ R d . Since Ā is smooth, we can assume that  is also smooth. Hence, Ā(∇ x ū(t, x)) may be expressed in a more rigorous way as ς Â(ςM * ∇ Ir x v(t, Mx)). For every test function

ψ ∈ C ∞ K (O) and every t ∈ [0, T ] O ς Â(ςM * ∇ Ir x v(t, Mx)), ∇ x ψ(x) dx = Ô Mς Â(ςM * ∇ Ir x v(t, x)), ∇ x (ψ(M * x)) dx. Since (Mς) i,j = 0 for r ≤ i ≤ d, 1 ≤ j ≤ d, we can compute div(Mς Â(ςM * ∇ Ir x v(t, x))). It is equal to r i,j=1 [∂ Âi /∂z j ](ςM * ∇ Ir x v(t, x))(ςM * ∇ 2,Ir x,x v(t, x)Mς) i,j = r i,j=1 [∂ Âi /∂z j ] (∇ ς x ū(t, M * x))(∇ 2,ς
x,x ū(t, M * x)) i,j . We can easily complete the proof of Theorem 7.2. The proof of Theorem 7.3 is similar.

We characterize the function v as follows 

∂ ∂X i R * ς * Â(ςR∇ X U(t, X)) i + F X, w, U(t, X), ςR∇ X U(t, X) = 0, (46) 
(t, X) ∈]0, T ]× Ôw , with the boundary condition U(t, X) = 0 for t = 0 and for X ∈ ∂ Ôw .

Assume that for every w ∈ I, we can find a strong solution U(•, •; w) to the PDE (46) in the space C(Closure( Qw

T )) ∩ C 1,2 ( Qw T ) (with Qw T = [0, T ] × Ôw ), such that sup w∈I ∇ X U(•, •; w) Qw T ∞ + ∂ t U(•, •; w) Qw T 2 + ∇ 2 X,X U(•, •; w) Qw T 2 < +∞.
Assume also that the function V , given by V (t, (X, w)) = U(t, X; w) for w ∈ I and (t, X) ∈ Qw T and V (t, (X, w)) = 0 elsewhere, is continuous, vanishes on {0} × Ô ∪ [0, T ] × ∂ Ô and satisfies sup{|V (t, (X, w))|/dist((X, w), ∂ Ô), (t, (X, w)) ∈ QT } < +∞. Then, the functions v and V coincide.

Proof. Since ū satisfies the PDE (13), we can prove by a change of variable that the function v belongs to L 2 (]0, T [, H ς,1 0 ( Ô)) and that ∂ t v belongs to L 2 (]0, T [, H ς,-1 ( Ô)). Moreover, v satisfies the PDE (47)

∂v ∂t (t, x) -div ς * Â(∇ ς x v(t, x)) + F x, v(t, x), ∇ ς x v(t, x) = 0,
with v(0, •) = 0. This equation is uniquely solvable, so that we can complete the proof of Proposition 7.6 by proving that the function V satisfies (47) on QT .

To prove that V satisfies the PDE (47), we consider, for all n ≥ 1, a smooth function η n : R d → [0, 1] such that η n (x) = 1 if dist(x, Ôc ) ≥ 2/n and η n (x) = 0 if dist(x, Ôc ) ≤ 1/n ( Ôc denotes the complementary of Ô). For a d-dimensional mollifier p (d) , we can set, for all n ≥ 1, p

(d) n = n d p (d) (n•) and V n (t, •) = (V (t, •)η n ) * p (d) n 2
for all t ∈ [0, T ]. Since V is continuously differentiable on QT with respect to the r first coordinates and since the kernel of ς corresponds to the dr last coordinates, we claim that ς∇

x V n (t, •) = (η n ςR∇ X V (t, •)) * p (d) n 2 + (V (t, •)ς∇ x η n ) * p (d) n 2 . Since sup{|V (t, (X, w))|/dist((X, w), ∂ Ô), (t, (X, w)) ∈ QT } < +∞, it is plain to deduce that (V n (t, •)) n≥1 converges towards V (t, •) for every t ∈ [0, T ] with respect to the norm N ς and that V ∈ L ∞ ([0, T ], H ς,1 0 ( Ô)). Of course, ∇ ς x V = ςR∇ X V . Moreover, we know that ∂ t V ∈ L 2 (]0, T [× Ô) and thus to L 2 (]0, T [, H ς,-1 ( Ô)). Now, for every smooth function ϕ ∈ C ∞ K ( Ô)
and for every 0 ≤ t ≤ T , we deduce from (46) and from the equivalence ((X, w) ∈ Ô ⇔ w ∈ I and X ∈ Ôw )

t 0 Ô Â(ςR∇ X V (s, x)), ς∇ϕ(x) dxds = I t 0 Ôw Â(ςR∇ X U(s, X; w)), ςR∇ X ϕ(X, w) dXds dw = - Ô V (t, x)ϕ(x)dx + Ô V (0, x)ϕ(x)dx - t 0 Ô F x, V (s, x), ∇ ς x V (s, x) ϕ(x)dsdx.
This completes the proof.

Theorems 7.2 and 7.3 follow from Proposition 7.5 and 7.6 and the following Theorem 7.7. For w ∈ I, the PDE (46) admits a unique strong solution U(•, •; w) satisfying the conditions required in the statement of Proposition 7.6. Moreover, the function V , given by V (t, (X, w)) = U(t, X; w) for w ∈ I and (t, X) ∈ Qw T and V (t, (X, w)) = 0 elsewhere, as well as the function v, given by v(t, x) = ū(t, M * x), (t, x) ∈ QT , coincide and fulfill the conditions exhibited in the statement of Proposition 7.5.

Proof of Theorem 7.7

For w ∈ I, the PDE (46) may be expressed under the following (nondivergence) form

∂U ∂t (t, X) - r i,j=1 ς * ∂ z Â(ςR∇ X U(t, X))ς i,j ∂ 2 U ∂X i ∂X j (t, X) + F X, w, U(t, X), ςR∇ X U(t, X) = 0, (t, X) ∈]0, T ] × Ôw , (48) 
with the boundary condition U(t, X) = 0 for t = 0 or X ∈ ∂ Ôw . We claim Lemma 7.8. For w ∈ I, the PDE (48) admits a unique strong solution U(•, •; w), that is Hölder continuous, with a bounded gradient, on the closure of Qw T , and whose partial derivatives of order one in t and of order two in x are Hölder continuous on every compact subset of Qw T .

Proof. We aim at applying [10, Th. 6.2, Ch. 5]. Since the matrices ((ς * ∂ z Â(z)ς) 1≤i,j≤r ) z∈R d are uniformly nondegenerate, the coefficients of (46) satisfy the required assumptions. The whole point is to verify that the section Ôw is smooth. Generally speaking, the sections of a smooth domain may not be smooth. Because of the convexity of the domain, this is true in our setting (see Lemma 7.9 below). This completes the proof. For w ∈ I and (X, w) ∈ ∂ Ô, we can find a non-empty ball B, of center (X, w), and a smooth mapping ϕ from B to R, with a non-zero gradient, such that, for all (Y, z) ∈ B, (Y, z) ∈ Ô (resp. ∂ Ô) iff ϕ(Y, z) < 0 (resp. ϕ(Y, z) = 0). Then, ∇ X ϕ(X, w) = 0 and we can find a non-empty ball B w , of center X, such that, for all Y ∈ B w , Y ∈ Ôw (resp. ∂ Ôw ) iff ϕ(Y, w) < 0 (resp. ϕ(Y, w) = 0). In particular, for w ∈ I, (X, w) ∈ ∂ Ô iff X ∈ ∂ Ôw and the boundary of Ôw has the same regularity as the boundary of O.

Proof. Left to the reader. 

∈ I, ∇ X U(•, •; w) Qw T ∞ ≤ C 7.11 .
Moreover, there exists ρ 7.11 > 0 such that U(t, X; w) = 0 for all (t, X) ∈ [0, T ] × Ôw if meas( Ôw ) < ρ 7.11 ( meas( Ôw ) stands for the measure of Ôw ) or if dist(w, ∂I) < ρ 7.11 .

Proof. We know that there exists a real ρ > 0 such that F (x, 0, 0) = 0 for x ∈ O and dist(x, ∂O) < ρ, i.e. F (X, w, 0, 0) = 0 for (X, w) ∈ Ô and dist((X, w), ∂ Ô) < ρ.

We choose w ∈ I. If meas( Ôw ) < ρ r , then for every X ∈ Ôw , there exists a point Y ∈ Ôw such that sup 1≤i≤r |Y i -X i | < ρ. In particular, for every X ∈ Ôw , dist(X, ∂ Ôw ) < ρ, so that dist((X, w), ∂ Ô) < ρ. Finally, F (X, w, 0, 0) = 0 for all X ∈ Ôw . It is then clear that U(t, X; w) = 0 for all (t, X) ∈ [0, T ] × Ôw .

If dist(w, ∂I) < ρ, then there exists z ∈ I such that |w -z| < ρ. For every X ∈ Ôw , |(X, w) -(X, z)| < ρ and (X, z) ∈ Ô since Ôz = ∅. Hence, dist((X, w), ∂ Ô) < ρ so that F (X, w, 0, 0) = 0. We conclude as in the previous paragraph.

If meas( Ôw ) > ρ r , we first estimate the gradient of U(•, •; w) on the boundary of ∂ Ôw . We can apply the classical barrier techniques for convex domain, see e.g. [START_REF] Gilbarg | Elliptic partial equation of second order[END_REF]Cor. 14.3]. We deduce that there exists a constant Γ ≥ 0, not depending on w, such that sup{|∇

X U(t, X; w)|, (t, X) ∈ [0, T ] × ∂ Ôw } ≤ Γ.
We now estimate the gradient inside Ôw . We aim at applying [10, Th. 4.1, Ch. 5]. To this end, we define the normalized domain U w = (meas( Ôw )) -1/r Ôw (so that the measure of U w is equal to one) as well as Υ(t, Z; w) = U(t, (meas( Ôw )) 1/r Z; w) for all (t, Z) ∈ [0, T ] × U w . Then, Υ satisfies a PDE of the same form as (46) (up to rescaling factors that are controlled from above and from below). Since the measure of U w is equal to one, we can apply [10, Th. 4.1, Ch. 5]: the gradient of Υ can be estimated in terms of the constant Γ (see the previous paragraph), the regularity of the coefficients (which is independent of the parameter w) and the regularity of the boundary of U w (the so-called Condition (A) in [10, p. 9]). Since U w is convex, we can choose (a 0 , θ 0 ) = (1, 1/2) in Condition (A), so that the gradient can be estimated independently of w. Lemma 7.12. There exists a constant C 7.12 ≥ 0 such that, for all t ∈ [0, T ] and (X, w) ∈ Ô, |U(t, X; w)| ≤ C 7.12 dist((X, w), ∂ Ô).

Proof. Since the function U is bounded, we establish the statement for (X, w) close to the boundary of Ô. To this end, we use a covering argument.

For every x 0 ∈ ∂ Ô, we denote by n 0 the outward normal vector to Ô at x 0 . If one of the r first coordinates of n 0 is non-zero, we can find a non-empty ball B of center x 0 and a constant C > 0 such that, for (X, w) ∈ Ô ∩ B, dist(X, ∂ Ôw ) ≤ Cdist((X, w), ∂ Ô). We deduce that |U(t, X; w)| ≤ C ×C 7.11 dist((X, w), ∂ Ô), for all (t, (X, w)) ∈ [0, T ]×( Ô∩B).

If the r first coordinates of n 0 are all equal to zero, the tangent space to Ô at x 0 is orthogonal to the kernel of ς. By convexity, we know that Ô is either above or below the tangent space. In particular, we can find a unitary vector ν, with ν 1 = • • • = ν r = 0, and a non-empty ball B of center x 0 and a real ε > 0 such that, for all (X, w) ∈ Ô ∩ B, Ôw+εν = ∅. We deduce that dist(w, ∂I) ≤ ε. For ε < ρ 7.11 , we obtain U(t, X; w) = 0 for all (X, w) ∈ Ô ∩ B.

Using a covering argument, we complete the proof. Proof. In the whole proof, all the balls we consider are constructed with respect to the underlying L ∞ norm. We fix w ∈ I and we first estimate ∇ 2 X,X U(•, •; w) near the boundary of ∂ Ôw . We choose to this end X 0 ∈ ∂ Ôw . By Lemma 7.9, we can find a real ε > 0 and a mapping ϕ : B r (X 0 , 2ε) × B d-r (w, 2ε) → R, with a non-zero gradient with respect to the first coordinates (i.e. ∇ X ϕ is not zero), such that ∀z ∈ B d-r (w, 2ε), ∀X ∈ B r (X 0 , 2ε), X ∈ Ôz (resp. ∂ Ôz ) ⇔ ϕ(X, z) < 0 (resp. = 0).

Modifying the order of the coordinates as well as ε if necessary, we can assume without loss of generality that the rth coordinate of the gradient ∇ X ϕ doesn't vanish on B r (X 0 , 2ε) × B d-r (w, 2ε). In particular, inf |y-X 0 r |≤ε ϕ(X 0 1 , . . . , X 0 r-1 , y, w) < 0 and sup |y-X 0 r |≤ε ϕ(X 0 1 , . . . , X 0 r-1 , y, w) > 0. By continuity of ϕ, we can find 0 < ε ′ < ε such that ρ -= sup inf |Xr-X 0 r |≤ε ϕ(X 1 , . . . , X r , z), |z -w| ≤ ε ′ , |X j -X 0 j | ≤ ε ′ , 1 ≤ j ≤ r -1 < 0,

ρ + = inf sup |Xr-X 0 r |≤ε ϕ(X 1 , . . . , X r , z), |z -w| ≤ ε ′ , |X j -X 0 j | ≤ ε ′ , 1 ≤ j ≤ r -1 > 0.
Now, we consider, for all z ∈ B d-r (w, 2ε), the change of variable Ψ(•, z) : (X 1 , . . . , X r ) ∈ B(X 0 , 2ε) → (Y 1 , . . . , Y r ) = (X 1 -X 0 1 , . . . , X r-1 -X 0 r-1 , ϕ(X 1 , . . . , X r )). By definition of ρ -and ρ + , we can check that, for all z ∈ R d-r such that |z -w| ≤ ε ′ , the cylinder ]ε ′ , ε ′ [ r-1 ×]ρ -, 0[ is included in Ψ(B(X 0 , 2ε) ∩ Ôz , z).

For |z -w| ≤ ε ′ , we can write the PDE (46) in the new coordinates (Y 1 , . . . , Y r ). For t ∈]0, T ] and Y ∈]ε ′ , ε ′ [ r-1 ×]ρ -, 0[, we set Υ(t, Y ; z) = U(t, Ψ -1 (Y ); z), so that Υ(•, •; z) satisfies on ]0, T ]×]ε ′ , ε ′ [ r-1 ×]ρ -, 0[ (with the notation (DΨ) i,j = ∂Ψ i /∂X ≤ C for all z ∈ B d-r (w, ε ′ ) and for a constant C independent of z. Using the diffeomorphisms (Ψ(•, z)) |z-w|≤ε ′ , we can pull back these estimates to (Ψ -1 (U, z)) |z-w|≤ε ′ . All the underlying Jacobian determinants are uniformly controlled with respect to z, so that (up to a modification of C) ∇ 2 X,X U(•, •; z)

[0,T ]×Ψ -1 (U ,z) 2

≤ C for all z ∈ B d-r (w, ε ′ ).

Consider now V =]ε ′ /2, ε ′ /2[ r-1 ×]ρ -/2, ρ + /2[. It is clear that Ψ -1 (U, z) ⊃ Ψ -1 (V, z) ∩ Ôz for |z -w| ≤ ε ′ . Moreover, the set ∪ |z-w|<ε ′ Ψ -1 (V, z) × {z} is clearly open and contains (X 0 , w). Here is the result that we have proved: for all w ∈ I and X 0 ∈ ∂ Ôw , there exist η > 0 and C ≥ 0 such that ∇ 2 X,X U(•, •; z)

[0,T ]×( Ôz ∩Br(X 0 ,η)) 2

≤ C for all z ∈ B d-r (w, η).

Consider now J = {w ∈ I, dist(w, ∂I) ≥ ρ 7.11 }. It is a compact subset of R d-r . By means of Lemma 7.9, we can prove that ∪ w∈J ∂ Ôw × {w} is a compact subset of R d . In particular, we can cover it by open sets of the previous form: we can find N points (X i , w i ) 1≤i≤N , w i ∈ J and X i ∈ ∂ Ôw i , as well as N constants (C i ) 1≤i≤N and N reals (η i ) 1≤i≤N , such that w∈J ∂ Ôw × {w} ⊂ N i=1 B r (X i , η i ) × B d-r (w i , η i ), (49) ∀1 ≤ i ≤ N, ∀z ∈ B d-r (w i , η i ), ∇ 2 X,X U(•, •; z)

[0,T ]×( Ôz ∩Br(X i ,η i )) 2

≤ C i . (50) 
From (49), we can find a real δ > 0 such that ∀w ∈ J , ∀X ∈ Ôw , dist(X, ∂ Ôw ) < δ ⇒ (X, w) ∈ ∪ N i=1 B r (X i , η i ) × B d-r (w i , η i ), so that we can find a constant C ′ such that (51) ∀w ∈ J , 

Theorem 7 . 3 .

 73 Under the assumptions of Theorem 7.2, we can find a sequence (ǔ m ) m≥1 of continuous functions on [0, T ] × R d , vanishing outside a compact subset of [0, T ] × R d , infinitely continuously differentiable (C.D. in short) in space on [0, T ]×R d , once C.D. in time on QT , such that (∂ t ǔm ) m≥1 are infinitely C.D. in space on QT , sup m≥1 ∇ ς x ǔm Q T ∞is finite, and

Proposition 7 . 5 .

 75 Let ū denote the solution of (13) (in the sense of Theorem 3.5), r denote the rank of α, (λ i ) 1≤i≤r stand for the non-zero eigenvalues of α, M be a d × d orthogonal matrix such that MαM * = J r , J r being the d × d diagonal matrix with (λ 1 , . . . , λ r , 0, . . . ) as diagonal and v be the function given by v(t, x) = ū(t, M * x) for all (t, x) ∈ QT = [0, T ] × Ô, Ô = MO. Let I r denote the d × d diagonal matrix of rank r with (1, . . . , 1, 0, . . . ) as diagonal (i.e. with r "ones" and dr "zeros" on the diagonal). If v belongs to the spaces C(Closure( QT )) and C Ir,1,2 ( QT ) and satisfies (44) with respect to ∂ Ô (instead of ∂O), to QT (instead of Q T ) and to I r (instead of ς), then Theorem 7.2 holds.Similarly, if we can find a sequence(v m ) m≥1 of continuous functions on [0, T ] × R d , vanishing outside a compact subset of [0, T ] × R d , infinitely C.D. in space on [0, T ] × R d , once C.D. in time on Closure( QT ), such that (∂ t vm ) n≥1 are infinitely C.D. differentiable in space on QT , sup m≥1 ∇ ςx vm QT ∞ is finite and (45) holds with respect to QT (instead of Q T ), I r (instead of ς) and (v m , v) (instead of (ǔ m , ū)), then Theorem 7.3 holds.

Proposition 7 . 6 .

 76 Let  and F be smooth functions from R d into R d and from Ô×R×R d into R such that ( Ā(z), F (x, y, z)) = (ς Â(ςz), F (Mx, y, ςz)) for (x, y, z) ∈ O×R×R d (see Footnotes 1 and 2 for their construction) and let ς = ςM * and R = (1 {i=j} ) 1≤i≤d,1≤j≤r (R is a d × r matrix). For w ∈ R d-r , we denote by Ôw the open set {X ∈ R r , (X, w) ∈ Ô} and by I the set {w ∈ R d-r , Ôw = ∅}. For each w ∈ I, we consider the PDE ∂U ∂t (t, X) -r i=1

Lemma 7 . 9 .

 79 The set I is a bounded open convex subset of R d-r . Moreover, for every w ∈ I, Ôw is an open convex subset of R r .

Lemma 7 . 10 .

 710 There exist two constants 0 < α 7.10 ≤ 1 and C 7.10 such that, for all w ∈ I, U(•, •; w) Qw T ∞ ≤ C 7.10 , and for all (t, X), (t ′ , X ′ ) ∈ Qw T , |U(t ′ , X ′ ; w) -U(t, X; w)| ≤ C 7.10 [|t ′ -t| α 7.10 /2 + |X ′ -X| α 7.10 ]. Proof. By the nondivergence form (48) and the maximum principle, we can establish the uniform boundedness of the family ( U(•, •; w) Qw T ∞ ) w∈I . To obtain the uniform Hölder continuity of the mappings (U(•, •; w)) w∈I , we can apply [10, Th. 1.1, Ch. 5] on each Qw T , w ∈ I. Since the sets ( Qw T ) w∈I are all convex, the required Condition (A) (see [10, p. 9]) is fulfilled for each of them with a 0 = 1 and θ 0 = 1/2. Lemma 7.11. There exists C 7.11 ≥ 0 such that, for all w

Lemma 7 . 13 . 2 + ∇ 2 X 2 ≤

 713222 There exists a constant C 7.13 ≥ 0 such that, for all w ∈ I,∂ t U(•, •; w) Qw T ,X U(•, •; w) Qw T C 7.13 .

  -1 (Y, z), z)R * ς * Â ςRDΨ * (Ψ -1 (Y, z), z)∇ Y Υ(t, Y ) i + r i=1 ∂ ∂Y i DΨ(Ψ -1 (Y, z), z) R * ς * Â ςRDΨ * (Ψ -1 (Y, z), z)∇ Y Υ(t, Y ) i + F Ψ -1 (Y, z), z, Υ(t, Y ), ςRDΨ * (Ψ -1 (Y, z), z)∇ Y Υ(t, Y ) = 0,with the boundary condition Υ(t, Y ; z) = 0 for Y r = 0. It is crucial to note that all these PDEs are defined on the same domain, with the same boundary condition on the hyperplane Y r = 0. The underlying coefficients are regular with respect to the variable Y , uniformly in z ∈ B r (w, ε ′ ). The underlying diffusion matrices are also elliptic, uniformly with respect to Y and z.We now aim at applying [10, Th. 4.1, Ch. 5]. The difficulty is that the values of the function Υ(•, •; z), for z ∈ B r (w, ε ′ ), are unknown on the boundary of ] -ε ′ , ε ′ [ r-1 ×]ρ -, 0[, except on ]ε ′ , ε ′ [ r-1 ×{0}. Referring to the proof of [10, Th. 4.1, Ch. 5] (see in particular [10, p. 441 & 442]), this is not a real problem: we can draw a regular open domain U inside ]-ε ′ , ε ′ [ r-1 ×]ρ -, 0[ and containing ]-ε ′ /2, ε ′ /2[ r-1 ×]ρ -/2, 0[. On U, we have ∇ 2 Y,Y Υ(•, •; z) [0,T ]×U 2

T 0 {X∈

 0 Ôw , dist(X,∂ Ôw )<δ} |∇ 2 X,X U(t, X; w)| 2 dtdX ≤ C ′ .Now, again for w ∈ J , we can apply the interior estimates given in [10, (4.7), Ch. 5] on the set {X ∈ Ôw , dist(X, ∂ Ôw ) ≥ δ}. We deduce (up to a modification of C ′ ) that (52)T 0 {X∈ Ôw , dist(X,∂ Ôw )≥δ} |∇ 2 X,X U(t, X; w)| 2 dtdX ≤ C ′ .Gathering (51) and (52), we complete the proof for w ∈ J (the estimate for ∂ t U(•, •; w) follows from the nondivergence form (48)). If dist(w, ∂I) < ρ 7.11 , U(•, •; w) is zero.

The matrix σ may be expressed as σ = M diag[λ 1 , . . . , λ r , 0, . . . ]M * , for r reals λ 1 , . . . , λ r , different from zero, and for an orthogonal matrix M (diag[λ 1 , . . . , λ r , 0, . . . ] stands for the diagonal matrix of size d whose diagonal elements are equal to λ 1 , . . . , λ r , 0, . . . ). We set Φ(y, z) = ϕ(y, σ -1 z) with σ -1 = M diag[1/λ 1 , . . . , 1/λ r , 0, . . . ]M * .

Same construction as above, but with Φ(z) = σ -1 ϕ(σ -1 z) + C -1 M diag[0, . . . , 1 . . . ]M * z (the number of "0" is r and the number of "1" is dr).

Lemma 7.14. We set V (t, (X, w)) = U(t, X; w) for w ∈ I and (t, X) ∈ Qw T and V (t, (X, w)) = 0 elsewhere. The functions (t, (X, w)) ∈ [0, T ] × R d → V (t, (X, w)) and (t, (X, w))

X,X V ](t, (X, w)) are continuous. Proof. For w ∈ I, we extend the function U(•, •; w) to [0, T ]×R r by setting U(t, X; w) = 0 if (t, X) ∈ Qw T . By Lemma 7.10, the functions (U(•, •; w)) w∈R r are equicontinuous. Now, we consider w ∈ I and a sequence (w n ) n≥1 converging towards w. Since I is open, we can assume that (w n ) n≥1 is included in I. Using the equicontinuity property, we can also assume that the (U(•, •; w n )) n≥1 uniformly converges towards a continuous function U ∞ . We first prove that this function is equal to zero on [0, T ] × ∂ Ôw . We choose to this end X ∈ ∂ Ôw . By Lemma 7.9, (X, w) belongs to ∂ Ô. Expressing the boundary in local coordinates, we can find, for all n ≥ 1, a point

We can use interior estimates (see [10, Ths. 5.1 & 5.4, Ch. 5]) for the derivative in time and for the second order derivatives in space to prove that the limit function U ∞ satisfies the PDE (46) on Ôw . By Lemma 7.8, this proves that U ∞ = U(•, •; w). Now, we consider w ∈ I and a sequence (w n ) n≥1 converging towards w. If w ∈ Ī, it is obvious that U(•, •; w n ) = 0 for n large enough so that (U(•, •; w n )) n≥1 uniformly converges towards U(•, •; w). If w ∈ ∂I, then U(•, •; w n ) = 0 for n large enough by Lemma 7.12 and the sequence (U(•, •; w n )) n≥1 uniformly converges towards U(•, •; w).

For the continuity of the derivatives, we can proceed as above: on I, we use the interior estimates given in [10, Ths. 5.1 & 5.4, Ch. 5]; on I c , the result is obvious. -→

Proof. For a d-dimensional mollifier p (d) , we set, for all n ≥ 1, p

For a given x 0 ∈ Ô, there exists N ∈ N * such that B d (x 0 , 1/N) ⊂ Ô. We let the reader check that the following sequence fits all the required conditions:

(N +1)n (y)dy.