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An extension of the FETI domain decomposition

method for incompressible and nearly

incompressible problems

B. Vereecke∗, H. Bavestrello†, D. Dureisseix‡

Abstract

Incompressible and nearly incompressible problems are treated herein
with a mixed finite element formulation in order to avoid ill-conditioning
that prevents accuracy in pressure estimation and lack of convergence for
iterative solution algorithms. A multilevel dual domain decomposition
method is then chosen as an iterative algorithm: the original FETI and
FETI-DP methods are extended to deal with such problems, when the dis-
cretization of the pressure field is discontinuous throughout the elements.
A dedicated augmentation of the algorithms is proposed and the different
methods are compared with several preconditioners, for bidimensional test
cases. The resulting approaches are both optimal and numerically scal-
able, and their costs are estimated with a complexity analysis.
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1 Introduction

Incompressible or nearly incompressible problems arise, for instance, from fluid
flows, polymer injection, casting, extruding, spinning, or from the simulation of
elastomer structures, etc. Because low order divergence-free displacement dis-
cretizations with finite elements may lead to severe locking problems (see [1] for
instance), the treatment of such problems is usually performed with an approx-
imation of the incompressibility (or divergence-free) condition. For instance,
one may use the penalty method, or equivalently for the case of elasticity, a
Poisson’s ratio close to 0.5; but these methods lead to ill-conditioned systems
of equations. When the size of the problem increases, this can prevent the use
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of iterative methods, though they are often less CPU expensive than direct ap-
proaches, [2, 3]. Furthermore, the precision obtained for the pressure estimation
is poor. Other techniques use a conforming or non-conforming mixed finite ele-
ment (displacement – pressure formulation), with or without under-integration
[4, 5].

In this paper, we are dealing with mixed formulation and pressure – displace-
ment (or celerity for Stokes problem) coupled problems, within the context of
large-scale finite element simulations. In this situation, domain decomposition
methods are efficient computational strategies well suited to parallel architecture
computers, especially multilevel approaches, see [6, 7, 8] for instance. Several
multilevel domain decomposition methods have already been applied to incom-
pressible problems. Concerning overlapping Schwarz methods, the reader can
refer to [9]. For non-overlapping Schur methods, the primal BDD method [10]
(for Balancing Domain Decomposition) has been extended: see for instance
[11, 12, 13], but less has been done for dual methods. Usually, the incompress-
ible condition is treated iteratively with a Uzawa iteration (i.e. with a physical
partitioning of the unknowns), or a pressure correction algorithm is used. In
these cases, the inner-loop linear systems are solved with classical domain de-
composition; see [14] and [15, 16] for an example of each of these approaches.
A monolevel dual Schur method has been used in [17], but the extension to a
multilevel scheme has not been addressed. Concerning other monolevel Schur
methods for Stokes problem, one may refer to the early work [18] or [19]. In all
of these cases, a monolevel scheme does not possess the numerical scalability
property.

We are using herein a dual and multilevel domain decomposition method —
the FETI method [20] (for Finite Element Tearing and Interconnecting) — and
we take into account the flexibility of such a method to extend the original algo-
rithm to incompressible or nearly incompressible linear elasticity problems, while
keeping the coupling between displacement and pressure inside each subdomain.
We first discuss the treatment of incompressibility with a mixed formulation, for
the cases where the pressure discretization is discontinuous, and propose a first
extension of the method that preserve the original performances obtained on
compressible cases. The test cases concern 2D plane strain problems and illus-
trates the influence of the size of the problem, and of the number of subdomains.
The resulting algorithms are still optimal and numerically scalable. Finally, an
augmentation of the method dedicated to (nearly) incompressible problems is
proposed to improve the previous performances. Both the original FETI and
the dual-primal FETI-DP [21] methods are extended to (nearly) incompressible
problems and lead to the FETI-I and FETI-DPI approaches.

2 Treatment of incompressibility

For compressible linear elasticity, the material behavior is modelled with the
Hooke’s law that relates the stress σ to the strain ε through a bijective linear
operator D. With an isotropic material, only 2 independent coefficients are
needed, for instance, the Young’s modulus E and the Poisson’s ratio ν, or the
Lamé’s coefficients µ (shear modulus) and λ:

σ = Dε = 2µε + λ(Tr ε)1 =
E

1 + ν
ε +

νE

(1 + ν)(1 − 2ν)
(Tr ε)1
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For nearly incompressible materials, when U is the displacement field, div U =
Tr ε(U) → 0, ν → 0.5 and λ → ∞, such that λ(Tr ε) remains finite. Without a
particular care, this coefficient is expected to be poorly evaluated [22]; moreover,
when a purely displacement-oriented finite element formulation is used, the
condition number of the rigidity matrix increases as ν goes close to 0.5. This
phenomenon is amplified when the size of the finite element model increases,
and can prevent a classical iterative algorithm to converge, if applied to such
an ill-conditioned problem.

2.1 Mixed formulation

To circumvent the previous difficulties, a mixed formulation is classically used,
see [23, 4, 24, 25] for instance. Both the displacement and the pressure (related
to the term H = λ Tr ε) are discretized. The drawbacks are a larger problem
with an higher fill-in, and a rigidity matrix which is no more symmetric positive
definite.

In order to simplify, consider a structure Ω made with a linear isotropic
material. It is subjected to a body force f

d
and an external force field F d

on a part ∂2Ω of its boundary. A classical variational formulation (also called
perturbated Lagrangian) consists in finding the saddle point (U,H) of:

∫

Ω

{
µTr[ε(U)ε(U)] −

1

2λ
H2 + H Tr ε(U)

}
dΩ −

∫

Ω

U · f
d
dΩ −

∫

∂2Ω

U · F ddS

Once U and H are correctly discretized, the corresponding linear system of
equations is: [

K CT

C −N

] [
u

h

]
=

[
f

0

]
(1)

u and h are the vectors of unknowns describing the fields U and H; K is a
standard rigidity matrix associated to a material with a shear modulus µ and
a null second Lamé coefficient; C is a coupling term and N becomes null when
the physical material is incompressible:

uT CT h = hT Cu =

∫

Ω

H Tr ε(U)dΩ ; hT
1 Nh2 =

∫

Ω

H1
1

λ
H2dΩ

K and N are both symmetric definite positive (SPD), but this is not the case
for the matrix of the system (1).

For compressible cases, N is regular and the elimination of the unknown h in
(1) can be performed with a condensation and leads to: (K +CT N−1C)u = f .
When ν → 0.5, N → 0 and this formulation is equivalent to a penalization
procedure, intended to prescribe Tr ε(U) ≈ 0.

For incompressible cases, N = 0 and h is interpreted as a Lagrange mul-
tiplier in (1) that enforces the discrete form of the divergence-free condition:
Cu = 0.

A trivial generalization of the previous formulation can be obtained with a
slightly different splitting of spherical terms in the constitutive relation:

σ = 2µε + λ̃(Tr ε)1 + p1
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with p = (λ− λ̃) Tr ε; λ̃ is a parameter to be chosen (λ̃ = 0 recovers the previous
formulation with p = H). The corresponding variational formulation is to find
the saddle point of:

∫

Ω

{
1

2
Tr[ε(U){2µε(U) + λ̃ Tr ε(U)1}] + p Tr ε(U) −

1

2(λ − λ̃)
p2

}
dΩ+

−

∫

Ω

U · f
d
dΩ −

∫

∂2Ω

U · F ddS

and the discrete linear system of equations is:

[
K̃ CT

C −M

] [
u

p

]
=

[
f

0

]
(2)

K̃ is a standard rigidity matrix associated to a material with a shear modulus
µ and a second Lamé coefficient equal to λ̃; M still becomes null when the
physical material is incompressible:

pT
1 Mp2 =

∫

Ω

p1
1

λ − λ̃
p2dΩ

2.2 Field discretization

To avoid spurious terms in the solution and locking phenomena, the discretiza-
tion of both fields U and p must be chosen accordingly to the LBB condition, or
must pass successfully the patch tests, [4, 26, 27]. In this paper, we use a discon-
tinuous discretization of the pressure p, a continuous one for the displacement
U , and the finite element in all of the forecoming bidimensional examples is the
straight-edge triangle with a linear interpolation of the pressure, a quadratic in-
terpolation of the displacement augmented with a third order bubble (P2 bubble
- P1 discontinuous). This element is LBB stable and 2d order.

3 Domain decomposition

In order to solve the systems (1) or (2), several strategies can be used.
A direct monolithic factorisation requires a suitable degree of freedom (dof)

renumbering scheme and/or a suitable dof pivoting due to the lack of SPD
property for the global problem matrix. Such a direct approach suffers from a
high computational cost when the size of the problem increases. An iterative
scheme can then be of interest to keep these costs affordable. Among them, par-
titioning techniques can be applied: for instance, a physical splitting between
displacement and pressure dof, or a geometric splitting of the domain in sub-
domains. We are interested herein in such methods: the domain is partitioned
into non overlapping subdomains, the displacement-pressure coupled problem
remains coupled on each of them. If the pressure is not subjected to continuity
conditions, “gluing” requirements on the interface between subdomains is only
concerned with a null displacement jump.

The algorithms we are developing are based on the dual multilevel domain
decomposition FETI [20]. More precisely, two versions of this method, the so-
called FETI and FETI-DP formulations, are extended to get the FETI-I and
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H

h

Ωs

Γ

Ω

U.y = 0

U = 0

F = 0
U = Ud

1

Figure 1: Decomposition in subdomains Ωs, and a global interface Γ

Figure 2: Decomposition in n = 12, 27, 48, 75 subdomains

FETI-DPI solution schemes, both for incompressible or nearly incompressible
problems.

The proposed test problems used throughout this paper concern an ideal-
ized 2D incompressible polymer flow through an extrusion die, treated with
plane strain assumption (remark that with plane stress, the incompressibility
condition does not prescribe any constraint on the in-plane kinematics). Due
to symmetry, only half of the problem is modelled on Figure 1. A parabolic
displacement field is prescribed on the left, while there is a free surface on the
right. The structure is decomposed into n subdomains Ωs, s = 1, . . . , n, and
a global interface Γ between them. h denotes a characteristic size of the finite
elements, and H, the size of the subdomains. With an overall length of the
problem set to 1, the subdomain size H varies from 1/6 to 1/15 when the num-
ber of subdomains increases from 12 to 75, on Figure 2. Figure 3 presents the
solution obtained with n = 27 subdomains and a mesh refinement h/H = 1/6.

3.1 Extension of the FETI method to (nearly) incompress-
ible problems

The FETI method is a dual domain decomposition method: the discrete kine-
matic “gluing” condition between subdomains is dualized via Lagrange multi-
pliers [20, 7]. When using a conforming finite element mesh for all the domain
Ω, the Lagrange multipliers λ are defined at each node of the global interface
Γ between subdomains. They represent the corresponding nodal force acting
from a subdomain s on a subdomain s′ (when using the convention s < s′ to
uniquely define the sign of λ). Therefore, each subdomain s needs a signed

�✂✁ ✄✂☎

p✆ ✝✟✞ ✁ �✂✠

✝ �✂✁ �✂✡
✝ �✂✁ ✡✂✄

Figure 3: Solution to the die problem with n = 27 subdomains and h/H = 1/6;
left: displacement field, right: field of variable p
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boolean matrix B(s) to map the global force vector λ onto the forces acting on

its boundary: −B(s)T
λ. The kinematic constraint on the jump of displacement

between neighboring subdomains on the global interface is therefore:

∑

s

B(s)u(s) = 0 (3)

The finite element equilibrium of a subdomain s, submitted to the external
generalized forces f (s) and the action of the multipliers, is:

K
(s)
H

[
u(s)

p(s)

]
=

[
f (s)

0

]
−

[
B(s)T

0

]
λ with K

(s)
H =

[
K̃(s) C(s)T

C(s) −M (s)

]
(4)

K
(s)
H is symmetric, but not positive and not obviously definite: for floating

subdomains, i.e. subdomains with no prescribed displacement, or with internal

mechanisms, the kernel of K
(s)
H contains rigid body motions. The set of such

rigid body motions and null pressure of such a subdomain s is denoted by R(s).
The first step to build the FETI-I method is to condense the unknowns

u(s) and p(s) onto the multiplier λ: provided that the right hand side of (4) is
orthogonal to R(s), i.e.

R(s)T

{[
f (s)

0

]
−

[
B(s)T

0

]
λ

}
= 0 (5)

the solution is obtained with an indefinite rigid body motion field using one of

the pseudo-inverses K
(s)
H

+
of K

(s)
H : (4) is equivalent to

[
u(s)

p(s)

]
= K

(s)
H

+

{[
f (s)

0

]
−

[
B(s)T

0

]
λ

}
+ R(s)α(s)

α(s) are the arbitrary coordinates of the rigid body motion basis R(s). Using
this expression in the constraint (3) leads to

Fλ − Gα − d = 0

with

F =
∑

s

[
B(s) 0

]
K

(s)
H

+

[
B(s)T

0

]
d =

∑

s

[
B(s) 0

]
K

(s)
H

+
[
f (s)

0

]

G =
[[

B(1) 0
]
R(1) . . .

[
B(n) 0

]
R(n)

]
αT =

[
α(1)T

. . . α(n)T
]

In order to complete the problem, the equations (5) are needed for each
subdomain. Assembling them leads to:

GT λ = e with e =

[
R(1)T

[
f (1)

0

]
. . .R(n)T

[
f (n)

0

]]
(6)

Finally, the dual problem is to find (λ,α) such that:

[
F −G

−GT 0

] [
λ

α

]
=

[
d

−e

]
(7)
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Table 1: The projected conjugate gradient algorithm

Initialize

λ0 = G(GT G)−1e

r0 = d − F λ0

Iterate k = 1, 2, · · · until convergence

Project wk−1 = P T rk−1

Precondition zk−1 = F̄ −1wk−1

Re-project yk−1 = P zk−1

Conjugate ζk =
yk−1

T

wk−1

yk−2T

wk−2
(ζ1 = 0)

Search direction pk = yk−1 + ζkpk−1 (p1 = y0)

Matrix-vector product qk = F pk

Line search ηk =
pk−1

T

wk−1

pkT

qk

Update λk = λk−1 + ηkpk

Residual rk = rk−1
− ηkqk

A key point is that, though we use a mixed formulation, F is still symmet-
ric positive (not definite, especially when there are redundancies in kinematic
constraints (3)).

To prove it, consider first the initial formulation (1), and an arbitrary mul-
tiplier field λ; for the subdomain s, define

[
v(s)

π(s)

]
= K

(s)
H

+

[
B(s)T

λ

0

]

Then,

λT F (s)λ =
[
B(s)λT 0

]
K

(s)
H

+

[
B(s)T

λ

0

]

=
[
B(s)λT 0

] [v(s)

π(s)

]
=
[
B(s)λT 0

] [ v(s)

−π(s)

]

=
[
v(s)T

π(s)T
]
K

(s)
H

[
v(s)

−π(s)

]
= v(s)T

K(s)v(s) + π(s)T
N (s)π(s)

As K(s) and N (s) are positive, F (s) and F =
∑

s F (s) are positive too. The
next step is to recall that the generalized formulation (2) is strictly equivalent
to the previous one for the local solution u(s), and p(s) = λh(s)/(λ− λ̃), so the
positivity is ensured for this formulation also, as soon as λ̃ 6= λ.

Therefore, a projected conjugate gradient is applicable to solve (7). A pro-
jection is required to enforce the admissibility condition (6) for λ. The projector
is for instance P = 1 − G(GT G)−1GT . The corresponding overall algorithm
does not differ from the classical FETI method; in order to be self-contained, it
is recalled in Table 1.

One has to notice that

• at each iteration, the algorithm requires 2 projections;

7



Figure 4: Coarse nodes for the die problem with n = 27 subdomains

• each projection is a coarse problem on the entire domain with the rigid
body motion coefficients α as unknowns;

• the computational kernel is the matrix-vector product Fv. F is never
explicitly assembled; the product is performed in parallel as it requires
independent Neumann problems on each subdomains;

• the preconditioner F̄−1 is intended to be easily parallelizable. Its design
is recalled in a following section.

This approach is a straightforward extension of the FETI method to mixed
problems with a discontinuous discretized pressure field. Using a continuous
approximation of the pressure would require a “gluing” in the pressure field at
the interface. The operator F would be no more positive, and so, an other
iteration scheme is required (GMRes for instance); this feature is out of the
scope of the present paper.

An other situation is very similar to the one we consider herein: the case
where the pressure is chosen to be continuous over any subdomain, but dis-
continuous throughout the interface as discussed in [17]. In such a case, the
discretized solution obviously depends on the domain decomposition.

3.2 Extension of the dual-primal version to (nearly) in-
compressible problems

Recently, a modified version of the FETI method have been designed under
the FETI-DP acronym (for FETI Dual-Primal) [21, 28]. Using an upgraded
gluing kinematical condition, it allows the local rigidities of the subdomains to
be regular, and needs only one coarse problem resolution per iteration. The key
point is the definition of “corner” nodes that will constitute the coarse nodes
of the problem. A simple way to define them is to use the geometric corners of
the subdomains in 2D, but other possibilities exist, as soon as clamping these
nodes leads to a regular Neumann problem on every subdomain, and to a regular
coarse problem [29].

For the example of the Figure 1, and n = 27 subdomains, the coarse nodes
are represented on Figure 4.

For (nearly) incompressible problems, it begins also with the splitting of

the local dof (per subdomain) into local corner dof u
(s)
c and the remaining

ones u
(s)
r . Prescribing corner continuity between subdomains is equivalent to

extract u
(s)
c from a unique global vector of corner dof uc: u

(s)
c = B

(s)
c uc. The

remaining kinematic continuity conditions on interfaces is still expressed with

a Lagrange multiplier λr and a boolean mapping matrix B
(s)
r . The variational

8



form corresponding to the equilibrium of the subdomains is:

∀ u(s)
r

⋆
, p(s)⋆

, u(s)
c

⋆
= B(s)

c u⋆
c ,




u
(s)
c

⋆

u
(s)
r

⋆

p(s)⋆




T

K
(s)
H




u
(s)
c

u
(s)
r

p(s)


 =




u
(s)
c

⋆

u
(s)
r

⋆

p(s)⋆




T 


f
(s)
c

f
(s)
r

0


−




u
(s)
c

⋆

u
(s)
r

⋆

p(s)⋆




T 


0

B
(s)
r

T

0


λr

with K
(s)
H =




K̃
(s)
cc K̃

(s)
cr C

(s)
c

T

K̃
(s)
rc K̃

(s)
rr C

(s)
r

T

C
(s)
c C

(s)
r −M (s)




It can be split in the local part per subdomain s:

K
(s)
Hrr

[
u

(s)
r

p(s)

]
=

[
f

(s)
r

0

]
−

[
B

(s)
r

T

0

]
λr −

[
K̃

(s)
rc

C
(s)
c

]
B(s)

c uc

with K
(s)
Hrr

=

[
K̃

(s)
rr C

(s)
r

T

C
(s)
r −M (s)

]
(8)

and the remaining coarse part which is assembled on the entire domain:
(
∑

s

B(s)
c

T
K̃(s)

cc B(s)
c

)
uc +

∑

s

B(s)
c

T
[
K̃

(s)
cr C

(s)
c

T
] [

u
(s)
r

p(s)

]
=
∑

s

B(s)
c

T
f (s)

c

With a correct choice of local corner dof, K
(s)
Hrr

is regular and (8) is equivalent
to: [

u
(s)
r

p(s)

]
= K

(s)
Hrr

−1

{[
f

(s)
r

0

]
−

[
B

(s)
r

T

0

]
λr −

[
K̃

(s)
rc

C
(s)
c

]
B(s)

c uc

}
(9)

The kinematic constraints on the interface depends only on u
(s)
r dof:

∑

s

[
B

(s)
r 0

] [
u

(s)
r

p(s)

]
= 0

With the previous expression of the local solution, (3.2) and (9) lead to:
[
Frr Frc

Fcr −K⋆
cc

] [
λr

uc

]
=

[
dr

−f⋆
c

]
(10)

with

Frr =
∑

s

[
B

(s)
r 0

]
K

(s)
Hrr

−1

[
B

(s)
r

T

0

]
dr =

∑

s

[
B

(s)
r 0

]
K

(s)
Hrr

−1
[
f

(s)
r

0

]

Frc =
∑

s

[
B

(s)
r 0

]
K

(s)
Hrr

−1

[
K̃

(s)
rc

C
(s)
c

]
B(s)

c Fcr = F T
rc

K⋆
cc =

∑

s

B(s)
c

T
K(s)

cc

⋆
B(s)

c K(s)
cc

⋆
= K̃(s)

cc −
[
K̃

(s)
cr C

(s)
c

T
]
K

(s)
Hrr

−1

[
K̃

(s)
rc

C
(s)
c

]

f⋆
c =

∑

s

B(s)
c

T
f (s)

c

⋆
B(s)

c f (s)
c

⋆
= f (s)

c −
[
K̃

(s)
cr C

(s)
c

T
]
K

(s)
Hrr

−1
[
f

(s)
r

0

]

9



The last step is the condensation of the corner dof uc on the Lagrange
multipliers λr in (10), uc = K⋆

cc
−1(f⋆

c + Fcrλr), to get:

F ⋆λr = d⋆ with F ⋆ = Frr + FrcK
⋆
cc

−1
Fcr and d⋆ = dr − FrcK

⋆
cc

−1
f⋆

c

(11)
Notice that the matrix problem F ⋆ is still symmetric positive. The proof

that Frr is positive is the same as the one previously used for FETI-I algorithm.
To prove that K⋆

cc is positive, let us consider




v
(s)
c

v
(s)
r

π(s)


 = K

(s)
H

+




f
(s)
c

0

0


 ⇒ K

(s)
H




v
(s)
c

v
(s)
r

π(s)


 =




f
(s)
c

0

0


 ⇒ K(s)

cc

⋆
v(s)

c = f (s)
c

As it has already been proved that

[
f

(s)
c

T
0 0

]
K

(s)
H

+




f
(s)
c

0

0


 ≥ 0

one gets

[
f

(s)
c

T
0 0

]



v
(s)
c

v
(s)
r

π(s)


 = f (s)

c

T
v(s)

c = v(s)
c

T
K(s)

cc

⋆
v(s)

c ≥ 0

So, K
(s)
cc

⋆
is positive, and K⋆

cc is positive too. To check if K⋆
cc is regular, let us

look for a displacement field such that uT
c K⋆

ccuc = 0. As all K
(s)
cc

⋆
are positive,

this is equivalent to u
(s)
c

T
K

(s)
cc

⋆
u

(s)
c = 0 for any subdomain s. As all K

(s)
rr

are regular: (i) K
(s)
cc

⋆
has rigid body motions (restricted to local c dof) as a

kernel, so u
(s)
c must be the restriction to local c dof of a rigid body motion u(s);

and (ii) progressing from a subdomain to its neighbors, if sufficiently connected
by some local c dof, one can conclude that all u(s) are the restriction on the
subdomains of the same global rigid body motion u. If the initial problem is
regular, the only admissible rigid body motion is u = 0, so uc = 0 too. This
concludes to the regularity of K⋆

cc. There are therefore less severe conditions on
the choice of corner modes to ensure regularity of K⋆

cc in such a way that less
corner nodes are required. They are discussed in [29] and are directly applicable
to the present case. Notice that, in 2D, when each subdomain shares with every
neighbor that has a common edge at least two corner nodes, the regularity is
guaranteed, though the number of corner nodes is not minimal. This is the case
for the following examples in this paper.

To discuss the definiteness of F ⋆, let us now consider

λT
r F ⋆λr = λT

r Frrλr + (λT
r Frc)K

⋆
cc

−1(Fcrλr) = 0

Due to the positivity of Frr and K⋆
cc, this leads to λT

r Frrλr = 0. With

[
v

(s)
r

π(s)

]
= K

(s)
Hrr

−1

[
B

(s)
r

T
λr

0

]
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as for FETI-I, it leads to
∑

s v
(s)
r

T
K̃

(s)
rr v

(s)
r +π(s)T

N (s)π(s) = 0. With K̃
(s)
rr and

N (s) SPD, we can conclude to v
(s)
r = 0 and π(s) = 0. So, B

(s)
r

T
λr = 0 for any

subdomain s. If there is no redundant multiplier (i.e. if each multiplier enforces
an independant gluing condition), this allows us to conclude to λr = 0. So, F ⋆

is definite, and therefore, is SPD. Notice that with redundant multipliers, F ⋆ is
not definite any more, but this does not prevent a conjugate gradient algorithm
to converge.

The FETI-DPI algorithm is a classical conjugate gradient applied to the
problem (11). The algorithm is then similar with the one in Table 1, but no
more projection is needed.

One has to notice that

• at each iteration, this algorithm requires the solution of only one global
coarse problem consisting in finding the displacement of corner dof, during
matrix-vector product F ⋆v;

• as previously, the choice of the preconditioner is discussed in the next
section.

3.3 A first choice of preconditioner and the corresponding
comparisons

The first idea for preconditioning is to re-use the classical preconditioners in the
case of a compressible problem. The so-called Dirichlet preconditioner is fully
parallel and solves a Dirichlet-like problem per subdomain (with a prescribed
displacement on the boundary):

F̄−1
D =

∑

s

WB(s)

[
S

(s)
bb 0

0 0

]
B(s)T

W (12)

F̄−1
D applies to a kinematics jump on the interface and returns a generalized

force on the same interface. W is a diagonal matrix storing in each of its
entries the inverse of the multiplicity of an interfaced dof, and the subscript b
denotes the dof that lie on the boundary of the subdomain, and the subscript i,
the remaining ones. In particular, the standard rigidity matrix can be split in:

K̃(s) =

[
K̃

(s)
bb K̃

(s)
bi

K̃
(s)
ib K̃

(s)
ii

]

and a compressible preconditioner is: S
(s)
bb = K̃

(s)
bb − K̃

(s)
bi K̃

(s)
ii

−1
K̃

(s)
ib . This

preconditioner is a function of the coefficient λ̃, or equivalently of the coefficient

ν̃ = 1
2 λ̃/(λ̃ + µ), used to compute the stiffness K̃(s).

This preconditioner can be applied to each of the FETI-I and FETI-DPI

methods (for the second one, the matrix B
(s)
r is used and b dof are a partition

of the r dof; there is no residual belonging to c nodes because there is no
kinematic jump on these nodes all along iterations).

To compare the proposed methods to the standard FETI and FETI-DP
ones, the test case proposed in Figure 1 is used. The number of subdomains is
n = 48 (which corresponds to H = 1/12) and a refinement of the mesh such that
h/H = 1/6. The different algorithms have been implemented with MatlabTM.
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Table 2: Compared convergences (number of iterations) versus Poisson’s ratio

Poisson’s ratio ν 0.3 0.4 0.45 0.49 0.499 0.4995 0.5

FETI 35 39 46 83 168 183 -
FETI-I ν̃ = 0 35 37 40 46 50
FETI-I ν̃ = 0.29 35 36 38 43 47
FETI-I ν̃ = 0.44 42 43 44 49 52
FETI-I ν̃ = 0.48 56 57 59 67 72

FETI-DP 23 25 29 50 77 89 -
FETI-DPI ν̃ = 0 24 27 28 33 36
FETI-DPI ν̃ = 0.29 22 24 26 31 34
FETI-DPI ν̃ = 0.44 28 27 27 33 37
FETI-DPI ν̃ = 0.48 39 38 37 40 47
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Figure 5: Compared convergences (number of iterations) versus Poisson’s ratio;
left: for FETI like methods; right: for FETI-DP like methods

Figure 5 and Table 2 report the number of iterations required to reach conver-
gence. The convergence criteria is ‖wk‖/‖d‖ ≤ 10−7. This number of iterations
is plotted versus the Poisson’s ratio of the real material.

For compressible cases (ν < 0.5) both classical methods and adapted meth-
ods (with a mixed formulation) have similar performances; the methods suited
to incompressible problems are then not competitive with the classical ones for
this regime, as their finite element problems are larger, due to the pressure
unknowns. For the mixed formulations, the results are plotted for different val-
ues of the parameter ν̃. When ν̃ approaches 0.5, the bad conditioning of the
preconditioner decreases global performance, and the number of iterations is
higher than for the other cases. Taking ν̃ = 0.29 or even ν̃ = 0 (classical mixed
formulation) leads to good results.

For nearly incompressible cases (ν ≈ 0.5), the classical methods exhibit diffi-
culties to converge because the problem to solve is equivalent to a penalized one,
and so, is ill-conditioned. For FETI-I and FETI-DPI methods, the convergence
is preserved, even for the purely incompressible case (ν = 0.5).

The characteristics of the original FETI methods, for compressible linear
elasticity problems, concern the condition number κ of the iterations on the
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Table 3: Optimality test for n = 75 subdomains

h/H 1/3 1/6 1/10

FETI (compressible) 33 37 39
FETI-I (incompressible) 49 50 52
FETI-IA (incompressible) 38 39 40
FETI-DP (compressible) 20 23 26
FETI-DPI (incompressible) 34 36 39
FETI-DPIA (incompressible) 21 24 26
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Figure 6: Number of iterations depending of the problem size h/H (for n = 75
subdomains)

interface problem: it is asymptotically bounded as κ = O(1 + log H
h

)m. Usually
m = 3, or m = 2 with an appropriate projector, see [30].

3.3.1 Optimality test

The optimality test consists in keeping the number n of subdomains constant
while increasing the size of the problem, i.e. decreasing the ratio h/H. The
algorithm is optimal if the number of iteration weakly depends on h/H. Figure 6
and Table 3 report this number of iterations versus the ratio h/H. The different
curves correspond to an incompressible problem (ν = 0.5) and to ν̃ = 0.3
for FETI-I and FETI-DPI methods. In order to compare to a reference, the
number of iterations for a compressible case (ν = 0.3) and standard FETI
is also provided. FETI-IA and FETI-DPIA entries correspond to augmented
versions of the algorithms that will be discussed in a later section.

When using n = 75 subdomains, and h/H = 1/10, the problem possesses
15 000 elements, 45 000 pressure dof and about 61 000 displacement dof (without
the bubble dof which has been condensed at the element level).

All the tested approaches are optimal; nevertheless, for the incompressible
case, the convergence is not as efficient as for the compressible case: the number
of iterations is about 35% higher. Dual-primal versions of the methods need
systematically less iterations, but their costs are not necessarily the same. The
section 5 will discuss this last point.
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Table 4: Numerical scalability test for h/H = 1/10

H(n) 1/6 (12) 1/9 (27) 1/12 (48) 1/15 (75)

FETI (compressible) 31 35 37 39
FETI-I (incompressible) 38 46 49 52
FETI-IA (incompressible) 34 36 38 40
FETI-DP (compressible) 17 22 24 26
FETI-DPI (incompressible) 24 33 37 39
FETI-DPIA (incompressible) 17 22 25 26
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Figure 7: Number of iterations depending of the number of subdomains (for
h/H = 1/10)

3.3.2 Numerical scalability test

The numerical scalability test consists in keeping a local problem of constant
size (h/H constant) while increasing the number of subdomains (decreasing H),
and so, increasing the size of the global problem. Figure 7 and Table 4 report
the results for the same kind of situations than for the previous test.

The scalability is similar for all the methods. The previous remarks con-
cerning the number of iterations are still applicable.

3.4 A second Dirichlet-like preconditioner

The next idea for a preconditioner is to use the same mixed formulation as for
the direct problem. The form of the preconditioner is still the same, but now:

S
(s)
bb = K̃

(s)
bb −

[
K̃

(s)
bi C

(s)
b

]
K

(s)
Hii

−1

[
K̃

(s)
ib

C
(s)
b

T

]
with K

(s)
Hii

=

[
K̃

(s)
ii C

(s)
i

T

C
(s)
i −M (s)

]

(13)

S
(s)
bb does not depend any more on ν̃ so, for compressible cases, the results

are expected to be similar to those of the previous preconditioner.

For incompressible case, this preconditioner cannot be applied since K
(s)
Hii

is
singular; the next section will discuss this topic.
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For the (nearly) incompressible case, using this preconditioner is not obvi-
ously efficient: the residual (kinematic jump on interface) can have components
with a significant volume variation per subdomain. Due to its nearly incompress-
ibility nature, the preconditioner will return a force field on the boundary with
a high hydrostatic component, and so, will impair convergence. To exemplify
this point, let us consider again the test case of the die problem with a nearly
incompressible material (ν = 0.4995), n = 48 subdomains and h/H = 1/6.
We use FETI-I method with ν̃ = 0.3 and different preconditioners: F̄−1

C for
compressible preconditioner of section 3.3, and F̄−1

H for this last preconditioner
using (13). The convergence rate is related to the condition number κ of the
iteration matrix F̄−1

D P T FP . Once we get rid of null eigenvalues correspond-
ing to the unbalanced eigenvectors, and to the redundant gluing conditions, we
obtain: κ(P T FP ) = 586, κ(F̄−1

C P T FP ) = 255 and κ(F̄−1
H P T FP ) = 1114.

As the condition number is higher for the nearly incompressible preconditioner,
the convergence is expected to be lower.

This last preconditioner is therefore not useful if used alone. Nevertheless,
its design is a motivation for the augmentation of the algorithms, in the next
section.

4 Augmentation of the algorithms

Up to now, the basis of the FETI-I and FETI-DPI algorithms are very similar
to the original FETI and FETI-DP ones because they do not take into account
the particularities of the problem to be solved. This feature could improve the
performance of the algorithms. For instance, for an incompressible case, one
may use an incompressible preconditioner. This can be used only if the residual
to which this preconditioner is applied, satisfies the constant volume condition
per subdomain. Such a constraint is an augmentation.

This technique has been previously used to accelerate the convergence by
prescribing additional constraints to the successive iterates of the algorithm
[31, 32, 28]. The drawback is the increase of the coarse problem size. If the
acceleration counterbalances this overhead of cost, the performance of the overall
algorithm is improved. It is now known in the litterature that an augmentation
is mandatory for FETI-DP to be scalable for second order 3D problems.

We propose in this paper an augmentation suited to the kind of problems we
are dealing with. As a first step, this augmentation is built for the incompressible
case.

4.1 Augmentation of FETI-I algorithm for incompressible
cases

In this situation, if one wishes to use an incompressible preconditioner, the
residual it is applied to must satisfy a solvability condition: the volume of
the subdomain s which is completely surrounded by neighbors (or prescribed
displacement boundary) must be constant when a displacement V is prescribed
by the preconditioner on its boundary. Let us denote by U its prolongation
inside the subdomain Ωs (U |∂Ωs

= V ); the condition is:
∫

Ωs

Tr ε(U)dΩ =

∫

∂Ωs

V · ndS = 0
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where n is the outward unit normal vector on the boundary. Once discretized,

this condition is equivalent to p
(s)
1

T
C(s)u(s) = 0 with a uniform pressure field

p
(s)
1 on the whole subdomain (for instance equal to unity). The constraint

matrix is then easily computed from the coupling matrix C(s): c(s) = p
(s)
1

T
C(s).

The Dirichlet preconditioner (12) and (13) acts on the projected residual:

P T r = P T
∑

s B(s)u(s). For the subdomain s, B(s)T
WP T r are the dis-

placements computed in the beginning of the preconditioning step, so the con-

straint must be enforced on them: Q(s)T
P T

∑
s B(s)u(s) = 0 with Q(s)T

=

c(s)B(s)T
W . With Q =

[
Q(1) . . .Q(n)

]
, which has a full column rank, the n

additional constraints are

QT P T
∑

s

B(s)u(s) = 0 (14)

As this constraint is obviously satisfied for the solution of the problem (for
which P T

∑
s B(s)u(s) = 0), it can be prescribed to any subdomain, even if it

possesses a free boundary. Doing this avoids the detection of the subdomains
that have a singular Neumann problem during preconditioning.

To enforce these constraints, an additional multiplier γ enriches the previous
ones [31, 32], and satisfies automatically the admissibility condition: λ + PQγ

replaces λ in the previous FETI-I algorithm (4), (3), (5).
γ can be interpreted as a uniform pressure value per subdomain. Keeping it

in a coarse problem allows the solution to satisfy the additional constraints at
each iteration, and so, is expected to improve convergence.

With the equations (14), the overall problem to be solved is:




F FPQ −G

QT P T F L 0

−GT 0 0






λ

γ

α


 =




d

QT P T d

−e


 with L = QT P T FPQ

To build the corresponding algorithm, the following ways are equivalent:
using the FETI2 framework [32] with the interpretation of an additional coarse
space correction with the regular matrix L, or, as it is done herein, condensing
the new unknowns γ on the other ones to get:

[
F ⋆ −G

−GT 0

] [
λ

α

]
=

[
d⋆

−e

]

with F ⋆ = F − FPQL−1QT P T F and d⋆ = d − FPQL−1QT P T d, and ap-
ply the previous FETI-I algorithm to this new problem. the overall algorithm
is the same as in Table 1; the difference in the implementation is the need
for the additional coarse problem (with matrix L) within the matrix-vector
product F ⋆p. The preconditioning step allows to apply the eventually singu-
lar (because incompressible) Dirichlet preconditioner to the residual: if s is
a subdomain with all of its boundary subjected to a prescribed displacement

v(s) = B(s)T
WP T

∑
s B(s)u(s), the Dirichlet problem to be solved on this

subdomain is:

K
(s)
Hii

[
v

(s)
i

p(s)

]
= −

[
K̃

(s)
ib

C
(s)
b

T

]
v

(s)
b
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If K
(s)
Hii

is singular, its kernel is exactly a uniform pressure
[
0 p

(s)
1

T
]T

. As the

right hand side is orthogonal to this kernel as soon as the augmentation condition
is satisfied, the solution is then defined up to an undetermined uniform pressure
field per subdomain. This field is not required to be determined: first, only
forces on the boundary are extracted from the preconditioned solution and,
second, this correction will be automatically added in the augmented coarse
problem within the multiplier γ.

4.2 Augmentation of FETI-DPI algorithm for incompress-
ible cases

The same procedure can be applied to the FETI-DPI algorithm. Briefly, the ad-

ditional constraint is this time: QT
∑

s B
(s)
r u

(s)
r = 0 with Q(s)T

= c
(s)
r B

(s)
r

T
W =

p
(s)
1

T
C

(s)
r B

(s)
r

T
W because at the current iteration, the correction to the so-

lution is performed with no residual on coarse nodes and so, the additional
constraint is only dealing with r dof. The corresponding problem to be solved
is: 


Frr FrrQ Frc

QT Frr QT FrrQ QT Frc

Fcr FcrQ −K⋆
cc






λr

γ

uc


 =




dr

QT dr

−f⋆
c




with a condensation of the coarse dof
[
γT uT

c

]T
on λr:

F ⋆

(
Frr −

[
FrrQ Frc

]
K̄⋆

cc

−1
[
QT Frr

Fcr

])
λr = dr−

[
FrrQ Frc

]
K̄⋆

cc

−1
[
QT dr

−f⋆
c

]

with K̄⋆
cc =

[
QT FrrQ QT Frc

FcrQ −K⋆
cc

]

The augmented coarse space is then a mixed coarse problem whose unknowns
are both the corner dof and the uniform pressure values.

To check if this coarse problem is LBB stable, in particular to avoid spurious
pressure oscillations, let us consider the condensation of K⋆

cc on coarse pressure

dof γ: QT FrrQ+QT FrcK̄
⋆
cc

−1
FcrQ = QT F ⋆Q. If F ⋆ is SPD (especially when

there is no redundant multiplier), this condensed matrix is symmetric positive.
Moreover, if we consider γT QT F ⋆Qγ = 0, we obtain Qγ = 0. As Q is full
column rank, one gets γ = 0, so the condensed matrix is SPD too. Its minimum
eigenvalue is then bounded away from zero, and the coarse matrix problem is
stable.

4.3 General case and numerical results

As already mentioned, the augmentation consists in prescribing a constraint
that will be satisfied at convergence, because it enforces the residual to be or-
thogonal to a wider subspace: QT

∑
s B(s)u(s) = 0. The present augmentation

can obviously been applied to nearly incompressible cases as well, without any
modification of the algorithm.

Now, the different possibilities are the following, when the material is nearly
incompressible or purely incompressible:
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Table 5: Comparison of convergences for different algorithms (NI = nearly
incompressible, I = incompressible, C = compressible)

NI problems I problem
ν = 0.49 ν = 0.499 ν = 0.4995 ν = 0.5

NI preconditioner FETI-I 49 77 80
NI preconditioner FETI-IA 37 39 39
NI preconditioner FETI-DPI 52 68 69
NI preconditioner FETI-DPIA 22 23 23

I preconditioner FETI-IA 40
I preconditioner FETI-DPIA 25

C preconditioner FETI-I 43 47 47 47
C preconditioner FETI-IA 34 36 37 37
C preconditioner FETI-DPI 31 34 34 34
C preconditioner FETI-DPIA 21 22 22 22

• for the non-augmented algorithms FETI-I and FETI-DPI: the precondi-
tioner can be compressible or nearly incompressible;

• for the augmented algorithms denoted with FETI-IA and FETI-DPIA:
the preconditioner can be compressible, nearly incompressible or incom-
pressible.

The compressible Dirichlet preconditioner has already been tested for FETI-
I and FETI-DPI algorithms. To compare with FETI-IA and FETI-DPIA, the
results have already been given in Tables 3 and 4. Obviously, the additional con-
straints improve convergence. The results are very similar to the compressible
case, in terms of number of iterations.

As already mentioned, the treatment of compressible problems with the pro-
posed algorithms is not efficient. For nearly incompressible problems and in-
compressible problems, the performance in terms of the number of iterations
with different preconditioners can be found in Table 5. The tested problem is
the die problem with n = 48 subdomains, h/H = 1/6 and for ν̃ = 0.3. As it is
not clearly interesting to use an incompressible preconditioner for nearly incom-
pressible problems or nearly incompressible preconditioners for incompressible
problems, the corresponding results are not reported.

Clearly, in each case, the convergence rate in increased when switching from
FETI to FETI-DP, and with the augmentation of the algorithms. Concerning
the influence of the preconditioner, the situation is not so clear: the compressible
preconditioner (due to its regularity) is more efficient than other ones. Even
with purely incompressible problems with augmentation, the use of compressible
preconditioner is to be recommended. So, this is now the choice we made, in
particular in the next section.

5 Implementation and complexity analysis

A complexity analysis is a way to estimate the costs of algorithms; nevertheless
it should be used only for an estimation of the main trends rather than a proof
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of efficiency. It is not able to measure the effective parallel potentialities of
an algorithm, nor its ability to take into account a particular architecture of a
parallel machine to tune the algorithm (as for unlooping, vectorizing or locality
of datas) and the cost of data access in memory. On the positive side, the
floating point operation count does not interfere with the performance of a
particular operating system and compiler; it is close to the algorithmic part
and the main choices done when implementing it (full entry matrix, skyline
solver. . . ). It provides also information on how the cost scales with respect to the
parameters of the problem solved. For instance, we choose to consider problems
with a regular decomposition into subdomains (m × m subdomains in 2D, and
m × m × m subdomains in 3D); and regular meshes for each subdomain. This
allows to determine the structure of the sparse matrices involved, independently
of the dof renumbering scheme used.

We considered herein banded symmetric matrices, and we assumed that the
renumbering scheme, the solver for local subdomain non SPD problems, and
the eventual pivoting scheme, see [33], does not destroy the bandwidth. This
assumption is optimistic for large number of dof, as the probability to detect
a null pivot that does not correspond to a rigid body motion, increases. In
particular, when needed, the detection of rigid body motions in subdomains
will be preferably performed with a geometric inspection [34, 35].

5.1 Matrix structures

In all of the following cost estimations, we separated the initialization phase
of the various algorithms (computation of elementary matrices; local factor-
izations; computation of coarse matrix; corresponding right hand side, and its
factorization; factorization of the preconditioner) and the cost of an iteration
(local solves for matrix-vector product of conjugate gradient, and for precondi-
tioner; coarse solves; global operation on interface fields).

The assembling of matrices and vectors, or disassembling of global vectors
(at element or subdomain levels) have been neglected as soon as they involve

boolean matrices B(s),B
(s)
c ,B

(s)
r . . .

For FETI-I, the coarse space matrix GT G is symmetric and possesses the
connectivity of neighboring subdomains. For FETI-DPI, K⋆

cc has the same
connectivity as a mesh with corner nodes, and subdomains only connected with
these nodes as superelements. Concerning augmented algorithms, the structure
of the coarse problem is more complex because superlements are also connected
by an ‘internal’ dof corresponding to the coarse pressure γ. Nevertheless, it
still possesses a sparse pattern [36], and with the same assumption as for the
subdomain stiffness factorization, the costs are estimated with the corresponding
banded matrix storage, and costs are estimated accordingly. For FETI-IA, the
second level coarse problem matrix L = QT P T FPQ is full and symmetric,
due to the long distance coupling of the projection operator. For the tested
structure of the die problem (with h/H = 1/6 and n = 48 subdomains) the
corresponding morse pattern is also plotted on the previous expression.

5.2 Implementation choices

Concerning implementation efficiency, the idea is to store the information (rather
than recompute it on-the-fly several times when iterating) as soon as it concerns
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only fields on the boundary that need only to be stored distributedly at the sub-
domain level.

For instance, for FETI-DPI, during initialization phase, the vectors

V (s) = K
(s)
Hrr

−1

[
K

(s)
cr

C
(s)
c

]

are precomputed with the resolution of as many local systems as there are
corner nodes touching the subdomain s (and stored only on the boundary dof

b for iteration phase). Then, K
(s)
cc

⋆
= K

(s)
cc −

[
K

(s)
cr C

(s)
c

T
]
V (s), f
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=
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r and for matrix vector product F ⋆λr = Frrλr+FrcK

⋆
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with:
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]
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F s
rcλr
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r V (s)u(s)

c with u(s)
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For FETI-DPIA, the entries of FcrQ are computed as follows: the column
j is

∑

s

B(s)
c

T
V (s)T

[
B

(s)
r

T
Q(j)

0

]

and is computed only with the contributions of the subdomains s neighbors of

the subdomain j (due to the term B
(s)
r

T
Bj

r in B
(s)
r

T
Q(j), the other contribu-

tions are null). The term on line i and column j of QT FrrQ is therefore:

∑

s

[
Q(i)T

B
(s)
r 0

]
Asj with Asj = K

(s)
Hrr

−1

[
B

(s)
r

T
Q(j)

0

]

Similarly, Asj is stored on a subdomain s database only for neighbors j, and
only for local boundary dof b. Then

F̄ ⋆λr = Frrλr −
[
FrrQ Frc

]
K̄⋆

cc

−1
[
QT Frr

Fcr

]
λr

with FrrQµ =
∑

s

[
B

(s)
r 0

]∑

j

Asjµj

and similar computations of Frrλr and Fcrλr.

5.3 Numerical Results

With the previous scenario, the cost estimation can be plotted with respect
to the parameters H and h/H for each of the proposed algorithms. In 2D on
Figure 8, the initialization phase has been separated from the iterations, and in
order to have similar costs, 20 iterations are considered. FETI-I and FETI-IA
are plotted with dashed lines, while DP versions are plotted with plain lines.
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Figure 8: Complexity estimation for 2D problems
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Table 6: Comparison of complexities (in Mflop) for different algorithms

number of iterations init. cost iter. cost total cost
nit c1 c2 c1 + c2nit

FETI-I 47 151 6.24 445
FETI-IA 37 395 6.69 642
FETI-DPI 34 180 6.51 401
FETI-DPIA 22 225 7.19 383

To give an idea of the behavior of the methods, a 3D cost estimation has been
done as well and the results are plotted on Figure 9 for the initialization phase,
and for 100 iterations.

Both for the initialization and iteration phases, we can consider as a first
step that the costs of the previous algorithms arise from different sources:

• the coarse problem: the cost is related first to the number of subdomains,
and second, to the structure of the coarse problem itself;

• the subdomain problems: the cost is mainly related to the size of the local
problems on subdomains; it is driven by the coefficient h/H;

• additive operations like dot products on a global interface field, which
can be performed at subdomain level with few assembly or disassembly
operations.

Usually, the costs of the third category are negligible when compared to the
previous ones.

If the amount of operations that are done at the subdomain level is suffi-
ciently large when compared to the cost related to the coarse problem (i.e. if
h/H is sufficiently small), both the initialization and iteration costs have similar
evolutions when h/H decreases. Due to the higher fill-in in the coarse problem of
FETI-IA, the initialization cost grows very rapidly when the number of subdo-
main increases. Therefore, FETI-IA is probably not the most efficient approach
to use, for the cost estimation, as well as for the complexity of implementation.

Concerning iteration phase, the cost is almost the same for all of the ap-
proaches, especially for 3D case. Concerning initialization phase, the cost in-
creases from FETI-I, to FETI-DPI, and up to FETI-DPIA. To compare these
approaches, let us recall the convergence results for 2D incompressible case,
with compressible preconditioner, of Table 5. Table 6 evaluates the relative
costs with the previous complexity analysis (n = 48, H = n−0.5, h/H = 1/6).
It appears that for the proposed test case, using dual-primal version is more
efficient, as when an augmentation is used. Moreover, as it has been previously
highlighted in original papers on FETI-DP [21], it consumes less iterations and
is more robust than the previous FETI and FETI2 versions.

6 Summary and conclusions

The framework of standard FETI and FETI-DP versions with or without aug-
mentation has not been modified. To do so, we derived specific implementation
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for the mixed local problems per subdomain, without changing gluing condition
between them, thanks to a discontinuous pressure discretization. This feature
let us to expect an easy integration of the extension for incompressible or nearly
incompressible material with other developments of the FETI method, especially
for dynamics problems [37] and contact problems [38].

Without augmentation of the algorithm, optimality and numerical scalabil-
ity have been obtained in 2D. They are expected to pertain in 3D for the FETI-I
method, but not for the FETI-DPI without augmentation, as it has been pre-
viously noticed for compressible problems [28]. If the proposed augmentation
(only one constraint per subdomain) is not sufficient enough to recover the
numerical scalability in 3D, there will be no difficulty to add the previously de-
veloped augmentations [28], to the specific incompressible one proposed herein.
With this specific augmentation, the rigid body motion for FETI-I (and corner
modes for FETI-DPI) as well as a uniform pressure per subdomain is propa-
gated globally at each iteration. The performances obtained are then similar to
the one obtained for compressible problems.

Of course, though the use of uniform pressure for the augmentation is re-
quired in the case of purely incompressible behavior, other additional stress
modes may be used, for instance the generalized Trefftz basis.

The increase in size of the coarse problem leads to improved convergence
rate, but increases also the cost of the coarse problem (a complexity analysis
is required to predict the gain in performances) and impairs the parallel part
of the implementation. With a large number of subdomains, a particular care
of the coarse problem implementation is required as it is a bottleneck for the
parallelization.
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