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WILLIAMS’ DECOMPOSITION OF THE LEVY CONTINUUM RANDOM
TREE AND SIMULTANEOUS EXTINCTION PROBABILITY FOR
POPULATIONS WITH NEUTRAL MUTATIONS

ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

ABSTRACT. We consider an initial Eve-population and a population of neutral mutants,
such that the total population dies out in finite time. We describe the evolution of the
Eve-population and the total population with continuous state branching processes, and the
neutral mutation procedure can be seen as an immigration process with intensity propor-
tional to the size of the population. First we establish a Williams’ decomposition of the
genealogy of the total population given by a continuum random tree, according to the an-
cestral lineage of the last individual alive. This allows us to give a closed formula for the
probability of simultaneous extinction of the Eve-population and the total population.

1. INTRODUCTION

We consider an initial Eve-population whose size evolves as a continuous state branching
process (CB), Y? = (Y}, ¢ > 0), with branching mechanism g.. We assume this population
gives birth to a population of irreversible mutants. The new mutants population can be
seen as an immigration process with rate proportional to the size of the Eve-population. We
assume the mutations are neutral, so that this second population evolves according to the
same branching mechanism as the Eve-population. This population of mutants gives birth
also to a population of other irreversible mutants, with rate proportional to its size, and so
on. In [ff], we proved that the distribution of the total population size Y = (Y;,t > 0), which
is a CB with immigration (CBI) proportional to its own size, is in fact a CB, whose branching
mechanism v depends on the immigration intensity. The joint law of (Y, Y") is characterized
by its Laplace transform, see Section [l.1.4. This model can also be viewed as a special case
of multitype CB, with two types 0 and 1, the individuals of type 0 giving birth to offsprings
of type 0 or 1, whereas individuals of type 1 only have type 1 offsprings, see [[3, [f] for recent
related works.

In the particular case of Y being a sub-critical or critical CB with quadratic branching
mechanism (¢(u) = agu + Bu?, B > 0, ag > 0), the probability for the Eve-population to
disappear at the same time as the whole population is known, see [[7] for the critical case,
ap = 0, or Section 5 in [} for the sub-critical case, ap > 0. Our aim is to extend those results
for the large class of CB with unbounded total variation and a.s. extinction. Formulas given
in [P could certainly be extended to a general branching mechanism, but first computations
seem to be rather involved.

In fact, to compute those quantities, we choose here to rely on the description of the
genealogy of sub-critical or critical CB introduced by Le Gall and Le Jan [[Z] and developed
later by Duquesne and Le Gall [[f], see also Lambert [0 for the genealogy of CBI with
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2 ROMAIN ABRAHAM AND JEAN-FRANCOIS DELMAS

constant immigration rate. Le Gall and Le Jan defined via a Lévy process X the so-called
height process H = (H;,t > 0) which codes a continuum random tree (CRT) that describes
the genealogy of the CB (see the next section for the definition of H and the coding of the
CRT). Initially, the CRT was introduced by Aldous [[]] in the quadratic case: ¥(\) = A2
Except in this quadratic case, the height process H is not Markov and so is difficult to
handle. That is why they also introduce a measure-valued Markov process (p;,t > 0) called
the exploration process and such that the closed support of the measure p; is [0, Hy] (see also
the next section for the definition of the exploration process).

We shall be interested in the case where a.s. the extinction of the whole population holds
in finite time. The branching mechanism of the total population, Y, is given by: for A > 0,

(1) B(A) = oA + BAX + / w(de) (e_M —1+ M) :

(0,00)
where ap > 0, # > 0 and 7 is a Radon measure on (0,00) such that f(o OO)(E/\EQ) m(dl) < oo.
We shall assume that Y is of infinite variation, that is 8 > 0 or f(o 1 ¢m(dl) = oco. We shall

assume that a.s. the extinction of Y in finite time holds, that is, see Corollary 1.4.2 in [[f],
we assume that

“+oo
(2) v < 00.
(v)

We suppose that the process Y is the canonical process on the Skorokhod space D(R4, R ) of
cadlag paths and that the pair (Y, Y?) is the canonical process on the space D(R,, R, )?. Let
P, denote the law of the pair (Y,Y?) (see [f]) started at (Yo, YY) = (x,x). The probability
measure P, is infinitely divisible and hence admits a canonical measure N: it is a o-finite
measure on D(R,, R )? such that

(d) i i
(Y7 YO) = E (Y 7Y07 )
el

where ((Y?,Y%%) i € I) are the atoms of a Poisson measure on D(R,,R)? with intensity
zN(dY,dY?). In particular, we have

(3) E. [e_’\Yt] = exp(—zNJ[1 — e_)‘yt])

and u(\,t) = N[1 — e~*¥?] is the unique non-negative solution of

A dv
(4) / =t, fort>0and A >0.
u(nt) Y()
Let 7y = inf{t > 0;Y; = 0} be the extinction time of Y. Letting A go to oo in the previous
equalities leads to
Pu(1y < t) = exp —aN[ry > t],
where the positive function ¢(t) = N[ry > t] solves

* dv
— = f .
(5) /c(t) D) t, fort>0

Let us consider the exploration process (p¢,t > 0) associated with this CB. We denote by
N its excursion measure. Recall that the closed support of the measure p; is [0, Hy], where
H is the height process. Let L* be the total local time at level a of the height process H
(well-defined under N). Then, the process (L% a > 0) under N has the same distribution as
the CB Y under N.



WILLIAMS’ DECOMPOSITION 3

We decompose the exploration process, under the excursion measure, according to the
maximum of the height process. In terms of the CRT, this means that we consider the
longest rooted branch of the CRT and describe how the different subtrees are grafted along
that branch, see Theorem B.J. When the branching mechanism is quadratic, the height
process H is a Brownian excursion and the exploration process p; is, up to a constant, the
Lebesgue measure on [0, H;]. In that case, this decomposition corresponds to Williams’
original decomposition of the Brownian excursion (see [[§]). This kind of tree decomposition
with respect to a particular branch (or a particular subtree) is not new, let us cite [J], [4] for
instance, or [E, [, E] for related works on superprocesses.

We present in the introduction a Poisson decomposition for the CB only, and we refer to
Theorem for the decomposition of the exploration process. Conditionally on the extinction
time 7y equal to m, we can represent the process Y as the sum of the descendants of the
ancestors of the last individual alive. More precisely, let N7 (dl, dt) = Z O(,4)(dl, dt) be a

el
Poisson point measure with intensity

1[07m)(t) e—Zc(m—t) &T(dg)dt,
and

(6) Fmax (dt) = > €36y, (dt) + 281 1) (£)dlt.

el

Let N¢(dY') denote the law of (Y (s —t),s > t) under N and Z d(t,,ys) be, conditionally
jeJ
on N, a Poisson point measure with intensity

Kmax (AN [dY, 17y <y

where Ny[dY, 1¢, <p,3] denotes the restriction of the measure Ny to the event {7y < m}.
The next result is a direct consequence of Theorem B.3.

Proposition 1.1. The process ZjEJ Y7 is distributed as Y under N, conditionally on {ry =

Let 7yo = inf{t > 0;Y; = 0} be the extinction time of the Eve-population. In the
particular case where the branching mechanism of the Eve-population is given by a shift of

P
(7) Yive(r) = (0 + ) — ¥(0),

for some 6 > 0 and 3 = 0, the pruning procedure developed in [l gives that the nodes of
width ¢; correspond to a mutation with probability 1 —e~%. As § = 0 there is no mutation
on the skeleton of the CRT outside the nodes. In particular, we see simultaneous extinction
of the whole population and the Eve-population if there is no mutation on the nodes in
the ancestral lineage of the last individual alive. This happens, conditionally on Kpax, with
probability

e_e Zie] £ .
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Integrating w.r.t. the law of A/ gives that the probability of simultaneous extinction, condi-
tionally on {7y = m}, is under N, given by

Nlryo = m|ry = m] = exp — / Ljo,m) (1) e~fem=t) pr(de)dt [1 — e_%}
— exp— /0 "W (clm — £) + 0) — @ (c(m — )] dt
— exp— /0 " el d,

where ¢ = g — ¥. Now, using that the distribution of (Y°,Y) is infinitely divisible
with canonical measure N, standard computations for Poisson measure yield that P, (7yo =
m|ty = m) = N[ryo = m|ry = m] that is

P.(1y0 = m|ry =m) = exp — /Om &' (c(t)) dt.

Notice that this formula is also valid for the quadratic branching mechanism (¢ (u) = agu +
Bu?, B> 0, ag > 0), see Remark 5.3 in [J].

In fact this formula is true in a general framework. Following [B], we consider the branching
mechanisms of the total population and Eve-population are given by

P(N) = agh + BA? + /(0 ) m(d0)[e™ =1 4 M),

wEve()\) - aEve)\ + 5)\2 + / WEve(dE) [e_M -1+ )\E],
(0,00)
and the immigration function
o) = () V) =+ [ a1 o),
0,00

where opmm = QEve — Q0 — f(o 00) lv(dl) > 0 and m = Tgye + v, where Ty and v are
Radon measures on (0, 00) with f(o 00) lv(dl) < oo. Notice the condition f(o 00) lv(dl) < oo is
stronger than the usual condition on the immigration measure, [ © OO)(l A0) v(dl) < oo, but
is implied by the requirement that f(l 00) v(dl) < f(l 00) Ir(dl) < oo.

Inspired by Theorem B.3, we consider N(d/,dt,dz) = Z‘S(&vtmzi)(d& dt,dz) a Poisson

1€l

point measure with intensity
(8) Lig,0m) (1) €D £ [ (d0) 0o (d2) + v(d0)6 (dz))] dt.

Intuitively, the mark z; indicates if the ancestor (of the last individual alive) alive at time ¢;
had a new mutation (z; = 1) or not (z; = 0). Note however that if 5 > 0 we have to take
into account mutation on the skeleton. More precisely, let T} = min{t;, z; = 1} be the first
mutation on the nodes in the ancestral lineage of the last individual alive and let T3 be an
exponential random time with parameter apn, independent of A/. The time T, corresponds
to the first mutation on the skeleton for the ancestral lineage of the last individual alive. We
set

(9) Ty = min(Tl, Tg) if min(Tl, TQ) <m,
Ty =+ otherwise.

In particular there is simultaneous extinction if and only if Ty = +o0.
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For ¢ > 0, let us denote by Ny(dY?,dY’) the joint law of ((Y°(s —t),Y (s —1t)),s > t) under
N. Recall Kpyayx given by (ff). Conditionally on N and Ty, let Zé(tj7y0,j7yj) be a Poisson

Jj€J
point measure, with intensity
Fmax (AN [(dY?,dY), 1y <imy].
We set
(10) Vv =3 (% v+ 3 (0, YY)

t;<Tp t;>To
We write Q, for the law of (Y'°,Y”) computed for a given value of m.

Theorem 1.2. Under Q,,, (Y'°,Y") is distributed as (Y°,Y) under N[-|ry = m] , or equiv-
alently, under f0+°O | (m)|Q (-)dm, (Y'°,Y") is distributed as (Y°,Y) under N.

Let us remark that this Theorem is very close to Theorem B.3 but only deals with CB and
does not specify the underlying genealogical structure. This is the purpose of a forthcoming
paper [f] where the genealogy of multi-type CB is described.

Intuitively, conditionally on the last individual alive being at time m, until the first mu-
tation in the ancestral lineage (that is for t; < Tp) , its ancestors give birth to a population
with initial Eve type which has to die before time m, and after the first mutation on the
ancestral lineage (that is for ¢t; > Tp), there is no Eve-population in the descendants which
still have to die before time m.

Now, using that the distribution of (YY) is infinitely divisible with canonical measure
N, standard computations for Poisson measure yield that P,(ry0 = m|my = m) = N[ryo =
m|ry = m|. As

N[Tyo = m|7’y = m] = Qm(T(] = —I—OO)
= Qu(Th = +00)Qu(T2 > m)
—e f(;m dt f(O,oo) e~ telm=1) Lv(de) e “Imm™m
— e Joat ¢'(c(®))

we deduce the following Corollary.

Corollary 1.3 (Probability of simultaneous extinction). We have for almost every m > 0

P, (ryo = mlry = m) = exp— /0 " W) dr,

where c is the unique (non-negative) solution of ().

The paper is organized as follows. In Section [, we recall some facts on the genealogy
of the CRT associated with a Lévy process. We prove a Williams’ decomposition for the
exploration process associated with the CRT in Section [ We prove Theorem [[.3 in Section
. Notice that Proposition [[.1] is a direct consequence of Theorem [L[.3.

2. NOTATIONS

We recall here the construction of the Lévy continuum random tree (CRT) introduced
in [[3, [ and developed later in [[f. We will emphasize on the height process and the
exploration process which are the key tools to handle this tree. The results of this section
are mainly extracted from [[.
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2.1. The underlying Lévy process. We consider a R-valued Lévy process (X;, ¢ > 0) with
Laplace exponent ¢ (for A > 0 E [e7*Xt] = e¥(V) satisfying ([]) and (f). Let I = (I;,t > 0)
be the infimum process of X, I; = info<s<¢ X, and let S = (S, ¢t > 0) be the supremum
process, S; = SuUpg<y<; Xs. We will also consider for every 0 < s < ¢ the infimum of X over
[s,t]: o

I} = inf X,.

s<r<t

The point 0 is regular for the Markov process X — I, and —1 is the local time of X — I at
0 (see [{], chap. VII). Let N be the associated excursion measure of the process X — I away
from 0, and o = inf{t > 0; X; — I; = 0} the length of the excursion of X — I under N. We
will assume that under N, Xy = Iy = 0.

Since X is of infinite variation, 0 is also regular for the Markov process S — X. The local
time, L = (Ly,t > 0), of S — X at 0 will be normalized so that

E[e_ﬁngl] = o WB)/B
where L;7! = inf{s > 0; L, >t} (see also [[J] Theorem VII.4 (ii)).

2.2. The height process and the Lévy CRT. For each t > 0, we consider the reversed
process at time ¢, X(t) = (th),O < s<t) by:

Xs(t):Xt—X(t_S)_ if 0<s<t,

and Xt(t) = X;. The two processes (Xg(t),O < s <t)and (X;,0 < s <t) have the same law.
Let S® be the supremum process of X and L® be the local time at 0 of S® — X® with
the same normalization as L.

Definition 2.1 ([fj], Definition 1.2.1 and Theorem 1.4.3). There exists a process H = (Hy,t >

0), called the height process, such that for allt > 0, a.s. Hy = ﬁy), and Hy = 0. Because of
hypothesis (@), the height process H is continuous.

The height process (Hy,t € [0,0]) under N codes a continuous genealogical structure, the
Lévy CRT, via the following procedure.

(i) To each t € [0, 0] corresponds a vertex at generation H;.
(ii) Vertex ¢ is an ancestor of vertex ¢’ if H; = Hj y), where

(11) Hy = inf{H,,u e[t At tVI]}

In general H; ;) is the generation of the last common ancestor to ¢ and t'.
(iii) We put d(t,t") = H; + Hy — 2H ) and identify ¢ and ' (t ~ t') if d(t,t") = 0.

The Lévy CRT coded by H is then the quotient set [0,0]/ ~, equipped with the distance d
and the genealogical relation specified in (ii).

Let (75, s > 0) be the right continuous inverse of —I: 74 = inf{t > 0; —I; > s}. Recall that
—1I is the local time of X — I at 0. Let L denote the local time at level a of H until time ¢,
see Section 1.3 in [{].

Theorem 2.2 ([ff], Theorem 1.4.1). The process (L% ,a > 0) is under P (resp. N) defined
as Y under P, (resp. N).

In what follows, we will use the notation N instead of N for the excursion measure to stress
that we consider the genealogical structure of the branching process.
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2.3. The exploration process. The height process is not Markov. But it is a simple
function of a measure-valued Markov process, the so-called exploration process.

If E is a Polish space, let B(E) (resp. B4 (E)) be the set of real-valued measurable (resp.
and non-negative) functions defined on E endowed with its Borel o-field, and let M(E) (resp.
My (E)) be the set of o-finite (resp. finite) measures on E, endowed with the topology of
vague (resp. weak) convergence. For any measure u € M(E) and f € BL(E), we write

o f) = / £(z) p(da).

The exploration process p = (pi,t > 0) is a M (R )-valued process defined as follows: for
every f € BL(Ry),

o) = | gz,
[0,¢]
or equivalently

(12) peldr) =Y (I} = Xo)8u,(dr) + Bl p,) (r)dr.
0<s<t
X, <If
In particular, the total mass of p; is (p¢, 1) = Xy — 1.
For p € M(Ry), we set

(13) H () = sup Supp p,
where Supp p is the closed support of i, with the convention H(0) = 0. We have

Proposition 2.3 ([m], Lemma 1.2.2). Almost surely, for everyt >0,
L H(pt) = Ht}
e p, =0 if and only if H; =0,
e if pt # 0, then Supp p; = [0, Hy].

In the definition of the exploration process, as X starts from 0, we have py = 0 a.s. To state
the Markov property of p, we must first define the process p started at any initial measure
pe Mp(Ry).

For a € [0, (i, 1)], we define the erased measure k,u by

kap([0,7]) = p((0,7]) A ({p, 1) —a),  for r = 0.
If a > (u,1), we set ko = 0. In other words, the measure k,u is the measure u erased by a
mass a from the top of [0, H(u)].

For v,u € Ms(R,), and p with compact support, we define the concatenation [u,v] €
M(Ry) of the two measures by:

([ v), £y = (o f) + (v, f(H(p) +4)),  f € Bi(Ry).

Finally, we set for every p € My(R;) and every t > 0 p}' = [k_p,u, pr]. We say that
(p}';t > 0) is the process p started at pfj = p, and write P, for its law. Unless there is an
ambiguity, we shall write p; for p}'.

Proposition 2.4 ([ff], Proposition 1.2.3). The process (p;,t > 0) is a cad-lag strong Markov
process in Mg(R,).

Notice that N is also the excursion measure of the process p away from 0, and that o, the
length of the excursion, is N-a.e. equal to inf{t > 0; p; = 0}.
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2.4. The dual process and representation formula. We shall need the M ¢(R )-valued
process n = (ng,t > 0) defined by

m(dr) = " (Xy = I})opg, (dr) + Bl g, (r)dr.
0<s<t
Xs_<I}

The process n is the dual process of p under N thanks to the following time reversal property:
recall o denotes the length of the excursion under N.

Proposition 2.5 ([[]], Corollary 3.1.6). The processes ((ps,1s); s > 0) and ((Ng—s)—; P(o—s)—);
s > 0) have the same distribution under N.

It also enjoys the snake property: for all t > 0,s > 0
(pt7 Tlt)[(],H[t’S]) = (psu T]S)[O,H[t’s]ﬁ

that is the measures p and 1 between two instants coincide up to the minimum of the height
process between those two instants.

We recall the Poisson representation of (p,n) under N. Let N, (dz d¢ du) be a Poisson point
measure on [0, +00)3 with intensity

dz b (dl) 1o 1) (u)du.

For every a > 0, let us denote by M, the law of the pair (ugq,v,) of finite measures on R
defined by: for f € B4 (R4)

rarf) = [ Nl dt )1y (a)ut o),

(Va, ) = /N*(da: dl du)1yg g (2)0(1 — u) f(z).

We finally set Ml = f0+oo da e~ M,.

Proposition 2.6 ([[{], Proposition 3.1.3). For every non-negative measurable function F on

My(Ry)?, .
8| [ G | = [ vatauan ),
where o = inf{s > 0; ps = 0} (()ienotes the length of the excursion.
We can then deduce the following Proposition.

Proposition 2.7. For every non-negative measurable function F on ./\/lf(R+)2,

| [ dzg] = [1a(dnan)p),
0
where o = inf{s > 0; ps = 0} denotes the length of the excursion.

3. WILLIAMS’ DECOMPOSITION

We work under the excursion measure. As the height process is continuous, its supremum
Hpox = sup{H,;r € [0,0]} is attained. Let Tyax = inf{s > 0; Hy = Hpax }-

For every m > 0, we set T,,,(p) = inf{s > 0, Hs(p) = m} the first hitting time of m for the
height process. When there is no need to stress the dependence in p, we shall write T}, for
Tm(p). Recall the function ¢ defined by (f]) is equal to

(14) c(m) = N[T,, < 00] = N[Hpax < m].
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We set pg = (PTmaxts: 8 = 0) and pg = (p(T,0x—s)+> 5 = 0), where ;. = max(z,0).
For every finite measure with compact support u, we write I, for the law of the exploration
process p starting at p and killed when it first reaches 0. We also set

Pr = lim P, (| H (1) < Huaxe < H(p) + ).

We now describe the probability measure I@’Z via a Poisson decomposition. Let (o, 5;), i € T

be the excursion intervals of the process X — I away from 0 (well defined under P}, or under

I@’Z) For every i € I, we define h; = H,,. and the measure-valued process p' by the formula

(pl, f) = / f(@ = hi)p(a, 4008, (dT).
(hiy+o0)
We then have the following result.

Lemma 3.1. Under the probability ]f”,’:, the point measure Zé(hhpi) is a Poisson point
measure with intensity w(dr)N[-, Hyep < m —7]. <

Proof. We know (cf Lemma 4.2.4 of [[f]) that the point measure Z(S(hi7pi) is under P}, a
Poisson point measure with intensity p(dr)N(dp). The result follows tilelén easily from standard
results on Poisson point measures. O

Remark 3.2. Lemma B.]] gives also that, for every finite measure with compact support pu, if
we write uq = p(- N0, al),

P* = lim P* (| Hyax < H(y)).
b= dim o (1)

Theorem 3.3 (Williams’ Decomposition).

(i) The law of Hpay is characterized by N[H a0 < m] = ¢(m), where ¢ is the unique
non-negative solution of (fj).
(ii) Conditionally on Hpep = m, the law of (pT,,,.s MT,a,) 1S under N the law of

<§:1Hn5n4—51mm4@ﬁﬁ7§:(1—'%)ﬁ5n4—51mmq@ﬁﬁ>,

iel i€l
where ) 5(1,1.77,1.7”) 18 a Poisson measure with intensity
10,1) (V)10 ) () €7D v (dr) dt.

(i) Under N, conditionally on Hpay = m, and (pT,.00 Mimas)s (Pds Pg) are independent and
pa (resp. pg) is distributed as p (resp. n) under Py (resp. Py ).

NTmaz

Notice (i) is a consequence of ([4). Point (ii) is reminiscent of Theorem 4.6.2 in [[f] which
gives the description of the exploration process at a first hitting time of the Lévy snake.

The end of this section is devoted to the proof of (ii) and (iii) of this Theorem.

Let m > a > 0 be fixed. Let ¢ > 0. Recall T}, = inf{t > 0; H; = m} is the first hitting
time of m for the height process, and set L,, = sup{t < o; H; = m} for the last hitting time
of m, with the convention that inf() = +o0o and sup® = +oco. We consider the minimum of
H between Ty, and Ly,: Hir,, 1,,] = min{Hy;t € [T, L]}
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We set p@ = (pr,, 0415t > 0), with
Tmax,a - inf{t > TmaX7 Hs - CL},

the path of the exploration process on the right of Ty, after the hitting time of a, and
pl9) = (P(Lmax.a—t)—t = 0), With Linax e = sup{t < Tiax; H; = a}, the returned path of the
exploration process on the left of T},,x before its last hitting time of a. Let us note that, by
time reversal (see Proposition P.J), the process pl9 is of the same type as 1. This remark
will be used later.

To prove the Theorem, we shall compute

AO = N |:F1 (p(g))F2 (p(d))F3 (meax|[0,[l])F4 (nTmaxHo,a})l{mSHmax<m+€}i|

and let € go down to 0. We shall see in Lemma B.4}, that adding 1, Hr,, poy>a} in the integrand
does not change the asymptotic behavior as € goes down to 0. Intuitively, if the maximum of
the height process is between m and m + ¢, outside a set of small measure, the height process
does not reach level a between the first and last hitting time of m. So that we shall compute
first

(15)  A=N |:F1(p(g))F2(p(d))F3(meax‘[07(],})F4(77Tmax|[O,a])1{H[Tm7Lm]>a,mSHmax<m+€}:| :
Notice that on {H|r,, 1,,] > a}, we have Taxa = T, = inf{s > Ty, Hs(p) = a} and,
from the snake property, PTiax|[0,a] = PTm|[0,a] B MTimax[[0,a] = T |[0,0]> SO that
A=N [Fl (P P (Pt t > 0))F3(me|[0,a])F4(77Tm\[O,a})1{H[Tm’Lm]>a,m§HmaX<m+€}] :
Let us remark that, we have
Ly, 1 >6m<Hnax<m+e} = L{m<sup{Hu,0<u<Tin o} <m+e} L{sup{ Hy,u>Tom o <m} -

By using the strong Markov property of the exploration process at time T, ,, we get

A=N |:F1 (P(g))F4 (TITm |[0,a])1{m§sup{Hu,OSuSTmya}<m+e}F3 (meHOﬂ})E:Tm 1[0,a] [F2 (p)l{Hmax<m}H

and so, by conditioning, we get

A = N |:F1 (p(g))F4(nT7rL‘[07a})G2(me|[0,a])1{H[Tm,Lm]>aym§Hmax<m+E}:| ’

where Go(u) = F3(u)E;[Fo(p)|Hmax < m]. Using time reversibility (see Proposition P.5)
and the strong Markov property at time 7}, , again, we have

A=N |:F1 (p(d))F4(me\[O,a})G2(nTm\[0@})l{H[Tm,Lm]>aym§HmaX<m+5}]
=N {Gl (PTonj0,0)) G2 (013, \[ova})1{H[Tm,Lm1>aymSHmax<m+€}] ’

where G1(u) = Fu()E, [F1(p) | Hmax < m].

Now, we use ideas from the proof of Theorem 4.6.2 of [[J]. Let us recall the excursion decom-
T

dU]-{HuSa} > S}.
0
Let & be the o-field generated by the process (ps, s > 0) := (pre, s > 0). We also set
ﬁs = Nra.

position of the exploration process above level a. We set 75 = inf {r,



WILLIAMS’ DECOMPOSITION 11

Let (s, 5;), @ € I be the excursion intervals of H above level a. For every i € I we define
the measure-valued process p* by setting
<pi7 (10> = f(a,—i—oo) pari-s(dr)cp(r - CL) if0<s< ﬁl — Oy,
ps =0 ifs=0ors>pf —a,

and the process 1’ similarly. We also define the local time at the beginning of excursion p’
by ¢; = L, . Then, under N, conditionally on &, the point measure

el
is a Poisson measure with intensity 1jg zq)(¢)d¢N[dp dn].
In particular, we have

A=N D T 15 00)= 1001 G1(Pas) G2 (M0 L i< Hon () <te}
Vel ji

Let us denote by (7/,£ > 0) the right-continuous inverse of (L¢,s > 0). Palm formula for
Poisson point measures yields

A=NN Z H 1{Tm(Pj):+00}G1(Pa¢)G2 (nai)l{mSHmaX(pi)<m+€} ‘ Ea
i€l j#i
- L
=N déGl(pT;)G2(nTg)N[m < Hpax <m + €]N H l{Tm(pj)=+oo} ‘ &,
0 .

L jerl
A time-change then gives
(16) A=v(m—a,e)N |:/ dL2G1(ps)Ga(ns) e—c(m—a)Lg:| ’

0

where v(z,e) = c¢(z) — c(zr + &) = N[z < Hypax < x + €]. We have

A=v(m—a,e)N [ / ALIG (ps)Ga(ns) e~ Cm—a)LE g=elm—a)(Ls - Lg)}
0

=v(m —a,e)N [/ LG (ps)Ga(ns) e~ =t e—<Pst[l—eC(ma)L§'D} 7
0

where we used for the last equality that the predictable projection of e *&s—L%) ig given by

plly
e—(ps.N[1—e™ o )
we have

. Notice that by using the excursion decomposition above level 0 < r < m,

¢(m) =N[T,, < o] =N[1 — e—c(m—r)L;]‘

In particular, we get

A= om0, | [ 412G ()Gt om0 oot
0

Using time reversibility, we have

A=v(m—a,e)N [/ dLG1(ns)Ga(ps) e~ cm—a)le—L3) e—(nsﬂ(m—'»} )
0
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Similar computations as those previously done give

A=v(m—a,e)N [/ dL%G1(ns)G2(ps) e—<773+ps,c(m—-)>:|
0

= v(m —a,)N { / dL2G (ps)Ga(ns) e—<ps+nsvc<m—->>] |
0

Using Proposition .7, we get
A=v(m—a,e)e / M (dp dv) G (10)Ga () e~ BHvelm=)

We can give a first consequence of the previous computation.

Lemma 3.4. We have

clm —a)—c(m —a+e¢)

N[H(1,, L] > @M < Hypar < m+ €] =c(m) Zm —a)

Proof. Taking Fy = F, = F3 = Fy =1 in ([1§), we deduce that

N[H 7, L] > @M < Hypax <m + €] = v(m —a,e)N [LZ e_c(m_“)Lg} .

Let ap > 0 and let us compute B(ap,a) = N [LZ e_c(“O)Lg]. Thanks to Theorem .2, notice
that
Oy N[1 — ecla0)¥a)

c(ao) '

B(ag,a) =N [Yae—cwo)Ya} _
On the other hand, we have
cfa + a0) = N[¥aay > 0] = N[1 — By, [Vgy = 0] = N [1 - o~ Voclo0)]

where we used the Markov property of Y at time a under N for the second equality and ([])

/
M. We deduce that

with A going to infinity for the last. Thus, we get B(ag,a) = (o)
0

N[H 7, L] > @M < Hypax < m + €| =v(m —a,e)B(a —m,a)

= d(m)

clm—a)—c(m —a+e¢)
d(m—a)

O

Since Fi, Fy, F3 and Fy are bounded, say by C, we have |[A— Ay| < C4N[H[Tm,Lm] <a,m<
Hpax < m+ ¢]. From Lemma B.4, we deduce that

_ N[ H, >am< Hyy <m+4¢
lim |4 = Aol <t [1 i NHineLn] ma I_g
e—0 N[m < Hpax < m + €] e—0 Nim < Hpax < m + €]
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We deduce that

l‘ N |:F1 (p(g))F2 (p(d))F3 (meaxHO,a])F4 (T,TmaxHo,a})l{mgHmax<m+€}:|
El—% N[m < Hpax < m+ 6]

= M —aoa/ —(u+v,c(m—-))
- ¢ (m) € M (dp dv)Gr(p)Ga(v) e
[ Ma(dp dv)Gi ()G (v) e~ wetm=)

fMa(d,U dl/) e_(lH-I/,c(m_.))
- /M“(d“dy)Gl(M)G2(1/)

= /Ma(du dv) Py(v)E; [Fy (pD) | Hunax < m)F3(1)E; [Fa (p'D) | Hinax < ],

where

w(dt) = Z uilidy; + Bl q) (t)dt

el

v(dt) = (1= u)lidy, + Bligq(t)dt,

1€l
and ), ; O(z;,0:,t;) 1s under M, a Poisson point measure on [0, +00)3 with intensity
1,0y (t)dt L™ ™0 7(d0) 1 (g 1) (u)du.

Standard results on measure decomposition imply there exists a regular version of the
probability measure N[-|H,.x = m] and that, for almost every non-negative m,

N[ |Hpax = m] = lin%N['\m < Hpax < m + €.
e—

This gives (ii) and (iii) of Theorem B.J since F, Fy, F3, Fy are arbitrary continuous functionals
and by Remark B.2.

4. PROOF OF THEOREM

The proof of this Theorem relies on the computation of the Laplace transform for (Y’ 0, Y')
and is given in the next three paragraphs. The next paragraph gives some preliminary
computations.

4.1. Preliminary computations.

4.1.1. Law of Ty. Recall the definition of Q,, as the law of (Y'°,Y”) defined by ([[0) and Tp
defined by (f) as the first mutation undergone by the last individual alive.
For r < m, we have

@m(T() S [7‘,7‘ + d?”],TQ = Tg) = Qm(TQ S [7’,7’ + dT])Qm(Tl > 7’)
= dr agmm e ™" exp — / dt/ e~ te(m—t) Cv(dl)
0 (0,00)

=dr OImm e f(;r ¢/(c(m_t)) dt7
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and, with the notation ¢g(A) = ¢(\) — ArmmA,
Qn(Ty € [ryr+dr],To =T1) = Qu(To > 7)Qu(Th € [ryr +dr])

=dr ¢p(c(m —r)) e *mm” exp — / dt/ e~tem=1 gy, (dp)
0 (0,00)

= dr ¢fy(c(m — 1)) e Jo ' (ctm=t) dt
In particular, we have for r < m
Qum(Ty € [r,r +dr]) = dr ¢'(c(m —r))e” Jo @' (c(m—t)) dt
and

(17) Qu(Tp > 1) = e~ Jo #'(clm=t)) dt

Notice we have Q,,(Ty = 00) = exp — /Om ¢ (c(t)) dt.

4.1.2. Conditional law of N given Ty. Recall N is under Q,, a Poisson point measure with
intensity given by (§). Conditionally on {Ty = r,Tp = T}, with m > r > 0, NV is under Q,,
a point Poisson measure with intensity
1(0.0) (t) e~ ™) U (d0) S (dz ) dt+
Ly (£) €7D { [0 (d0) 3o (d2) + v(d€)5y (d2)] dt.
Conditionally on {Ty = r, Ty = Ty}, with r < m, N is distributed under Q,, as N+ O(L,r1)
where N is a point Poisson measure with intensity
Ly, (£) €m0 07 ()0 (d2) dt
+ Ly (8) €0 0 [mpe(dE)do (dz) + v(dE)Sy (dz)] dt,

and L is a random variable independent of N with distribution

e=em=") gy (de)
Jo.0y €70 (a0

Conditionally on {Tp = oo}, N is under Q,, a point Poisson measure with intensity

L(0,m) (t) €20 L ()60 (dz)dt.

4.1.3. Formulas. The following two formulas are straightforward: for all x,v > 0,

(18) Plovol@ +7) — Plaa(7) = 262 + /( Lm0l — et
(19) W@+ ) — ¢/ (7) = 262 + / e bm(db)[1 — ¢47],
(0,00)

Finally we deduce from (fl) that ¥(c) = —c, ¥/(c)¢ = —c” and

(20) / W (e) = —log(c).
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4.1.4. Laplace transform. Recall 7y = inf{t > 0;Y; = 0} is the extinction time of Y. Let
UEve and fiota be two finite measures with support a subset of a finite set A = {aq,...,a,}
with 0 =ag < a1 < -+ < ap < apy1 = 00. For m € (0,+00) \ A, we consider

wm(t) — N[l _ e—fYroft PEve(dr)— [ Yr_¢ protal (dr)
wy,, (1)

By noticing that N-a.e. 1. <y = limy oo exp — [ Yoy p*(dr), where p*(dr) = Aoy, (dr),
we deduce from Lemma 3.1 in [ that (wy,,w},) are right continuous and are the unique

1{7’y <m—t}]7

N[l _ e_fert HTotal (dr) 1{-ry<m—t}]‘

non-negative solutions of : for k € {0,...,n}, m € (ak, ags1), t € (—o0, m),
(21) w®+ [ v = [ () + clm - a),
[t,ak} [tvak]
(22) wp(t) + [ }¢Evo(wm(r))dr
t,ak

= / PEve(dr) + / ITotal (dr) + ¢(m — ag) + P(wy, (1))dr.
[t,ax]

[t7ak] [tvak}

We define

(23) apm, = max{ag;ap, < m,k € {0,...,n}}.
Notice that w,,(t) = w},(t) = c¢(m —t) for t € (A, m).

4.2. Proof of Theorem [1.2.

4.2.1. Aim. Theorem [[.9 will be proved as soon as we check that the following equality
w(0) = /OO —d (m)Qu[1 — o= J Y pve(dr)—[ Y Hrotal (97)) gy,
0

holds for all the possible choices of measures pgve and pmota satisfying the assumptions of

Section 1.4, with w = w., defined by (23).
Notice the integrand of the right-hand side is null for m < a;. Let A denote the right-hand
side. We have for 0 < € < ay:

A — /OO dm (_c,(m))(@m [1 — e_fylg :u'Eve(dr)_fle “Total(dr)]
€

=c(e) + /:O dm 1 a¢(m)cd (m)Qn[Z],

with, thanks to the definition (f) of Kmax,

7 = exp— /Oam Fmax (dt) [ntl{t<TO} + nfl{tZTo}]
and
ny = N[(1 — e~ J Yo pmve(dr) = Yo Hroal Y] ] = wn(t) — e(m —t)
np = N[(1— e SVl 1 o ] = wi(t) = e(m — 1),

with (wp,, w},) the non-negative solutions of (BI)) and (PJ). Notice that wy,(t) = wi,(t) =
c¢(m —t) for t € (@, m) and thus n; = nf =0 when t € (G, m).
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We set A = ¢(e +/ 14c(m)(Ay + Ay + Ag) dm with

A1 = (M)Qu[Z|Ty > @m|Qum(To > @),

Ay = c’(m)/ Qm[Z|T0 =rTy= Tl]@m(TO S [r,r + d?"],TO = Tl),
0
Ag = c’(m)/ @m[Z’T() =T, T() = TQ]@m(TQ S [7’,7’ + dT],T() = Tg).
0
We shall assume m ¢ A.

4.2.2. Computation of A;. We have, using formula (f]),

A =c (m)@m(To > G ) Qe Jo " Fmax(dtne |7 S G
(m) e @' (c(m—t))dt
exp {—w / (wm(t) — c(m — 1)) dt — | dt e=m=D g (dO)]1 — e—“wm(t)—c(m—t))]}
0 0

= ¢ {m) e T Clm ) o {— / " At (w0 (1)) — gl — tm}

C,(m) e‘[";nfam d}l(c(t))dt e_ foam dt w]’i}ve (w”” (t))

= (m = Gp) e~ J0 " 4 Vore(wm (®)

)

where we used (RQ) for the last equality to get

(24) o V(O _ o8 O3, — €T~ Tm)
c'(m)

4.2.3. Computation of Ay. Using Section 1.9, we get

QulZ|Ty = 7, Ty = Ti] = e~ 28 Jg (wm()—c(m—1)) dt-25 [ (i, (£)—c(m—t)) dt

exp(— / dt =0 prp  (dO)[1 — e=))
0

exp(— / " dt e tetm=1) (r(de)[1 — e~i])

—t'c(m—r) 0 e—é’n;f
v(de')S
fo @ =y

— exp(— /O At (w0 (£)) — By (cm — 1))
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We deduce from Section

Ay =

c/(m)/o " Qm[Z|T0 =rTy= Tl]@m(TO S [7",7" + d?"],TO = Tl),

d(m) / " dr g () 8 90 e /
0 0

T

am

exp(— [ dt[ (wy, (t)) — ' (c(m —1))])

= () els™ ¥lelm=t) i / ™ B (at ()) e o e ()2 0 w5 )
0

d(m — ) / T @b (i () e o 4 Ve (om (O)= [ d 4, 0),
0

where we used (R4) for the last equality.

4.2.4. Computation of Az. Using Section [L.1.9, we get
QuulZ|Ty = r, Ty = T] = =26 Ji (wn(O)=c(m=0) dt=25 [ (wy, (0)-clm—1)

exp {— / dt =m0 prp o (dO)[1 — e_gnt]}

0

exp {— / K dt e~ =1 o (de)[1 — e_zni]}

=expc—ﬂfdﬂ¢gm«mn@»<—¢@wxdnz—tnb

exp(— [ atlu!(wi, () ¥/ (clm — ).

We deduce from Section

Az

= c’(m) Qm[Z‘TO =nr"Ty = Tg]@m(T() c [7‘,7‘ + dT],TQ = Tg),
0

:c%m»[fmdramMe—ﬁf“dm—md%mp«1érﬁn%m@maw>—¢@wwwn—tnb
emv/mwwmmm—wwm—mb

— /(m) eJo™ ¥/ (clm=1)) di / " e 6= J3 4 Uy (om O)= [ de ! (w5 ()
0

= (m —ap) / " dr O € J0 4 Viove (wm (D)= [ dt ¥/ (W, (8)
0

where we used (R4) for the last equality.

4.2.5. Computation of As + Az. We have

AT+A3:aon_am{/MVW¢%w;v»e—ﬂﬁw54wﬂw—ﬁMﬁwwmw»
0

Differentiating (R1) w.r.t. time and m, we get for t < m

Om (w},)'(t) = Omwy, ()3 (W), (£)) = 0.

17

dt[wﬁlve(wm(t)) - wllﬂve(c(m - t))])
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Notice also that for m >t > a,,, we have 9, w*(t) = ¢/(m — t) and thus
Omw* (@) = (m — ap).

We get
Omwy, (1)

expl— [ dr 1)) = 5
Differentiating () w.r.t. time and m, we get for t < m
Om Wiy (t) = Omwin ()Y e (W (1)) = —Omwn, ()¢ (w, (1))

O (0)
d(m—am)’

We deduce that

AQ + A3 - / " dT@mw;kn (t)(b,(’u)* (’]‘)) e for dt "Z};Evc(wm(t))
0

m

= _/ m dr[amw;n(r) - amwm(T)Q)[)],EVG(wm(r))] o~ fOT dt P (wm (t))
0
- [8mwm('f') e_ fOT dt d}],ilve (w’"l (t)) am
0

= amwm(o) - amwm(dm) e foam dt d}],ilve(w””(t)) .

Notice also that for m > ¢ > a,, one has d,w(t) = ¢/(m — t), in particular Op,w(a,) =
d(m — @,). This implies that

Ag + Az = 0w, (0) — ' (m — Gp,) €™ Jo™ dt ¥ (wm (®)
4.3. Conclusion. Thus, for m ¢ A, we have
Ay + Ag + Ag = 0w, (0),
and
A =c(e) + /oo Om Wi, (0) = ¢(€) + weo (0) — we(0) = w(0).
This ends the proof of the ThZorem.
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