
HAL Id: hal-00141063
https://hal.science/hal-00141063

Submitted on 28 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Decidability of Phase Ordering Problem in
Optimizing Compilation

Denis Barthou, Sid Touati

To cite this version:
Denis Barthou, Sid Touati. On the Decidability of Phase Ordering Problem in Optimizing Compila-
tion. ACM International Conference on Computing Frontiers, May 2006, Ischia, Italy. pp.147-156,
�10.1145/1128022.1128042�. �hal-00141063�

https://hal.science/hal-00141063
https://hal.archives-ouvertes.fr


On the Decidability of Phase Ordering Problem
in Optimizing Compilation

Sid-Ahmed-Ali Touati
sid-ahmed.touati@prism.uvsq.fr

Denis Barthou
denis.barthou@prism.uvsq.fr

University of Versailles
PRiSM Laboratory

45 avenue des Etats Unis
78035 Versailles cedex, France

ABSTRACT
We are interested in the computing frontier around an essential
question about compiler construction: having a programP and a
setM of non parametric compiler optimization modules (called
also phases), is it possible to find a sequences of these phases such
that the performance (execution time for instance) of the final gen-
erated programP ′ is “optimal” ? We prove in this article that this
problem is undecidable in two general schemes of optimizingcom-
pilation: iterative compilation and library optimization/generation.
Fortunately, we give some simplified cases when this problembe-
comes decidable, and we provide some algorithms (not necessary
efficient) that can answer our main question.

Another essential question that we are interested in is parame-
ters space exploration in optimizing compilation (tuning optimizing
compilation parameters). In this case, we assume a fixed sequence
of optimization, but each optimization phase is allowed to have a
parameter. We try to figure out how to compute the best param-
eter values for all program transformations when the compilation
sequence is given. We also prove that this general problem isun-
decidable and we provide some simplified decidable instances.

Categories and Subject Descriptors
D [3]: 4

General Terms
Algorithms, Performance, Theory.

Keywords
Phase Ordering, Parameters Space Exploration, Iterative Compila-
tion, Library Generation, Optimizing Compilation.

1. INTRODUCTION
The notion of an “optimal” program is sometimes ambiguous

in optimizing compilation. Using an absolute definition, anopti-
mal programP∗ means that there is no other equivalent program
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P faster thanP∗, whatever be the input data. This is equivalent
to state that the optimal program should run as fast as the longest
dependence chain in its trace. This notion of optimality cannot ex-
ist in practice: Schwiegelshohnet al showed in [20] that there are
loops with conditional jumps for which no semantically equivalent
time-optimal program exists on parallel machines, even with spec-
ulative execution1. More precisely, they showed why it is impos-
sible to write a program that is the fastest for any input data. This
is because the presence of conditional jumps makes the program
execution paths dependent on the input data, so it is not guaran-
teed that a program shown faster for a considered input data set
(i.e., for a given execution path) remains the fastest for all possi-
ble input data. Furthermore, Schwiegelshohnet al convinced us
that “optimal” codes for loops with branches (with arbitrary input
data) requires the ability to express and execute a program with un-
bounded speculative window. Since any real speculative feature is
limited in practice2, it is “impossible” to write an optimal code for
some loops with branches on real machines.

In our work, we define the program optimality according to the
input data. So, we say that a programP∗ is optimal if there is not
another equivalent programP faster thanP∗ considering the same
input data. Of course, the optimal programP∗ related to the con-
sidered input dataI∗ must still execute correctly for any other input
data, but not necessarily in the fastest speed of execution.In other
term, we do not try to build efficient specialized programs, i.e., we
should not generate programs that execute only for a certaininput
data set. Otherwise a simple program that only prints the results
would be sufficient for fixed input data.

With this notion of optimality, we can ask the general question:
how to build a compiler that generates an optimal program given
an input data set ? Such question is very difficult to answer, since
we are not able till now to enumerate all the possible automatic
program rewriting methods in compilation (some are presentin the
literature, others have to be set up in the future). So, we first ad-
dress in this work another similar question: given a finite setM of
compiler optimization modules, how to build an automatic method
to combine them in a finite sequence that produces an optimal pro-
gram? We mean by compiler optimization module a program trans-
formation that rewrites the original code. Unless they are encapsu-
lated inside code optimization modules, we exclude programanal-
ysis passes since they do not modify the code.

1Indeed, the cited paper does not contain a formal detailed proof,
but a persuasive reasoning.
2If the speculation is static, the code size is finite. If speculation is
made dynamic, the hardware speculative window is bounded.



This paper provides a formalism for some general questions about
phase ordering. Our formal writing allows us to give preliminary
answers from the computer science perspective about decidability
(what we can really do by automatic computation) and undecid-
ability (what we can never do by automatic computation). We will
show that our answers are tightly correlated to the nature ofthe
models (functions) used to predict or evaluate the programsperfor-
mances. Note that we are not interested in the efficiency aspects of
compilation and code optimization: we know that most of the code
optimization problems are inherently NP-complete. Consequently,
the proposed algorithms in this paper are not necessarily efficient,
and are written for the purpose of demonstrating the decidability of
some problems. Proposing efficient algorithms for decidable prob-
lems is another research aspect outside the current scope.

This paper is organized as follows. Section 2 gives a short overview
about some phase ordering studies in the literature, as wellas some
performance prediction modeling. Section 3 defines a formalmodel
for the phase ordering problem that allows us to prove some nega-
tive decidability results. Next, in Section 4, we show some general
optimizing compilation scheme in which the phase ordering prob-
lem becomes decidable. Section 5 explores the problem of tuning
optimizing compilation parameters with a compilation sequence.
Finally, we present our future work before concluding.

2. BACKGROUND
The problem of phase ordering in optimizing compilation is cou-

pled to the problem of performance modeling, since the perfor-
mance prediction/estimation may guide the search process.The
two following subsections present a quick overview of related work.

2.1 Performance Modeling and Prediction
Program performance modeling and estimation on a certain ma-

chine is an old (and is still) an important research topic aiming to
guide code optimization. The simplest performance prediction for-
mula is the linear function that computes the execution timeof a
sequential program on a simple von-Neumann machine: it is sim-
ply a linear function of the number of executed instructions. With
the introduction of memory hierarchy, parallelism at many level
(instructions, threads, process), branch prediction and speculation,
performance prediction becomes more complex than a simple lin-
ear formula. The exactshapeor the nature of such function and the
parameters that it involves are two unknown problems until now.
However, there exist many articles that try to define approximated
performance prediction functions:

• Statistical Linear Regression Models:the parameters involved
in the linear regression are usually chosen by the authors.
Many program executions or simulation through multiple data
sets allow to build statistics that compute the coefficientsof
the model [21, 6].

• Static Algorithmic Models:usually, such models are algo-
rithmic analysis methods that try to predict a program per-
formance [4, 16, 25, 23]. For instance, the algorithm counts
the instructions of a certain type, or makes a guess of the
local instruction schedule, or analyzes data dependenciesto
predict the longest execution path, etc.

• Comparison Models:instead of predicting a precise perfor-
mance metric, some studies provide models that compare
two code versions and try to predict the fastest one [11, 24].

Of course, the best and the most accurate performance prediction is
the Turing machine itself, since it executes the program andhence

we can directly measure the performance. This is what is usually
used in iterative compilation and library generation for instance.

The main problem with performance prediction models is their
aptitude to reflect the real performance on the real machine.As
well explained by Rai Jain [18], the common mistake in statistical
modeling is to trust a model simply because it plots asimilar curve
compared to the real plot (a proof by eyes !). Indeed, this sort of
experimental validation is not correct from the statistical science
theory, and there exist formal statistical methods [18] that check if
a model fits the reality. Until now, we have not found any study
that validates a program performance prediction model using such
formal statistical methods.

2.2 Some Attempts in Phase Ordering
Finding the best order in optimizing compilation is an old prob-

lem. The most common case is the dependence between registeral-
location and instruction scheduling in instruction level parallelism
processors as shown in [7]. Many other cases of inter-phase depen-
dencies exist, but it is hard to analyze all the possible interactions
[26].

Click and Cooper in [3] present a formal method that combines
two compiler modules to build asuper-module that produces better
(faster) programs than if we apply each module separately. How-
ever, they do not succeed to generalize their framework of module
combination, since they prove it for only two special cases,which
are constant propagation and dead code elimination.

In [12], the authors use exhaustive enumeration of possiblecom-
pilation sequences (restricted to a limited sequence size). They try
to find if any “best” compilation sequence emerges. The experi-
mental results show that, unfortunately, there is not a winning com-
pilation sequence. We think that this is because such compilation
sequence depends not only on the compiled program, but also on
the input data and the underlying executing machine.

In [22], the authors target a similar objective as in [3]. They
succeed to producesuper-modules that guarantee performance op-
timization. However, they combine two analysis passes followed
by a unique program rewriting phase. In our work, we try to find
the best combination of code optimization modules, excluding pro-
gram analysis passes (unless they belong to the code transformation
modules).

In [15], the authors evaluate by using a performance model the
different optimization sequences to apply to a given program. The
model determines the profit of optimization sequences according
to register resource and cache behavior. Optimizations consider
only scalars and the same optimizations are applied whatever be the
values of the inputs. In our article, we assume on the contrary that
the optimization sequence should depend on the value of the input
(in order to be able to speak about the optimality of a program).

Finally, there is the whole field of iterative compilation. In this
research activity, looking for a good compilation sequencerequires
to compile the program multiple times iteratively, and at each it-
eration, a new code optimization sequence is used [5, 24] until
a “good” solution is reached. In such frameworks, any kind of
code optimization can be sequenced, the program performance may
be predicted or accurately computed via execution or simulation.
There exist other attempts that try to combine a sequence of high
level loop transformations [1, 13]. As mentioned, such methods
are devoted to regular high performance codes and only use loop
transformation in the polyhedral model.



In this paper, we give a general formalism for the phase ordering
problem and its multiple variants that incorporate the workpre-
sented in this section.

3. TOWARDS A THEORETICAL MODEL
FOR PHASE ORDERING PROBLEM

In this section, we give our theoretical framework about thephase
ordering problem. LetM be a finite set of program transforma-
tions. We would like to construct an algorithmA that has three
inputs: a programP , an input dataI and a desired execution time
T for the transformed program. For each input program and its in-
put data set, the algorithmA must compute a finite sequences =
mn ◦mn−1 ◦ · · · ◦m0, mi ∈M

∗ of optimization modules3. The
same transformation can appear multiple times in the sequence, as
it occurs already in real compilers (for constant propagation/dead
code elimination for instance). Ifs is applied toP , it must generate
an optimal transformed programP∗ according to the input dataI .
Each optimization modulemi ∈ M has a unique input which is
the program to be rewritten, and has an outputP ′ = mi(P). So,
the final generated programP∗ is (mn ◦mn−1 ◦ · · · ◦m0)(P).

We must have a clear concept and definition of a program trans-
formation module. Nowadays, many optimization techniquesare
complex toolboxes with many parameters. For instance, loopun-
rolling and loop blocking require a parameter which is the degree
of unrolling or blocking. Until Section 5, we do not considersuch
parameters in our formal problem. We handle them by consider-
ing, for each program transformation, a finite set of parameter val-
ues, which is the case in practice. Therefore loop unrollingwith
an unrolling degree of 4 and loop unrolling with a degree of 8 are
considered as two different optimizations. Given such finite set of
parameter values per program transformation, we can define anew
compilation module for each pair of program transformationand
parameter value. So, for the remainder of the text (until Section 5),
a program transformation can be considered as a module without
any parameter except the program to be optimized.

In order to check that the execution time has reached some value
T , we assume that there is a performance evaluation functiont that
allows to precisely evaluate or predict the execution time (or other
performance metrics) of a programP according to the input data
I . Let t(P , I) be the predicted execution time. Thus,t can pre-
dict the execution time of any transformed programP ′ = m(P)
when applying a program transformationc. If we apply a sequence
of program transformations,t is assumed to be able to predict the
execution time of the final transformed program,i.e., t(P ′, I) =
t((mn ◦ mn−1 ◦ · · · ◦ m0)(P), I). t can be either the measure
of performance on the real machine, obtained through execution of
the program with its inputs, a simulator or a performance model. In
this article, we do not make the distinction between the three cases
and assume thatt is an arbitrary computable function. Next, we
give a formal description of the phase ordering problem in optimiz-
ing compilation.

PB. 1 (PHASE-ORDERING). Lett be an arbitrary performance
evaluation function. LetM be a finite set of program transforma-
tions.∀T ∈ N an execution time (in processor clock cycles),∀P a
program,∀I input data, does there exist a sequences ∈ M∗ such
that t(s(P), I) < T? In other words, if we define the set:

St,M(P , I, T ) = {s ∈ M∗|t(s(P), I) < T}

is the setSt,M(P , I, T ) empty?

3◦ denotes the symbol of function combination (concatenation).

Textually, the phase ordering problem tries to determine for each
program and input whether there exists or not a compilation se-
quences which results in an execution time lower than a bound
T .

If there is an algorithm that decides the phase ordering problem,
then there is an algorithm that computes one sequences such that
t(s(P), I) < T , provided thatt always terminates. Indeed, enu-
merating the code optimization sequences in lexicographicorder
always finds an admissible solution to Problem 1. Deciding the
phase ordering problem is therefore the key for finding the best op-
timization sequence.

3.1 Decidability Results
In our problem formulation, we assume the following character-

istics:

1. t is a computable function.t(P , I) terminates whenP ter-
minates on the inputI . This definition is compatible with
the fact thatt can be the measured execution time on a real
machine;

2. each program transformationm ∈ M is computable, always
terminates and preserves the program semantics;

3. programP always terminates;

4. the final transformed programP ′ = s(P) executes at least
one instruction,i.e., the final execution time is strictly posi-
tive.

The phase ordering problem corresponds to what occurs in a
compiler: whatever the program and input be given by the user
(if the compiler resorts to profiling), the compiler has to find a se-
quence of optimizations reaching some (not very well defined) per-
formance threshold. Answering the question of the phase ordering
problem as defined in Problem 1 depends on the performance pre-
diction modelt. Since the function (or its class)t is not defined,
Problem 1 cannot be answered as it is, and requires to have another
formulation that slightly changes its nature. We consider in this pa-
per a modified version, where the functiont is not known by the
optimizer. The adequation between this assumption and the real
optimizing problem is discussed after the problem statement.

PB. 2 (MODIFIED PHASE-ORDERING). LetM be a finite set
of program transformations. For any performance evaluation func-
tion t, ∀T ∈ N an execution time (in processor clock cycles),∀P a
program,∀I input data, does there exist a sequences ∈ M∗ such
that t(s(P), I) < T? In other words, if we define the set:

SM(t,P , I, T ) = {s ∈M∗|t(s(P), I) < T},

is the setSM(t,P , I, T ) empty?

This problem corresponds to the case wheret is not anapprox-
imatesmodel but is the real executing machine (the most precise
model). Let us present the intuition behind this statement:a com-
piler always has an architecture model of the target machine(re-
source constraints, instruction set, general architecture, latencies of
caches,. . . ). This model is assumed to be correct (meaning that the
real machine conforms according to the model) but does not take
into account all mechanisms of the hardware. Thus in theory,an
infinite number of different machines fit into the model, and we
must assume the real machine is any of them. As the architec-
ture model is incomplete and performance also depends usually on
non-modeled features (conflict misses, data alignment, operation
bypasses,...), the performance evaluation model of the compiler is



incorrect. This suggests that the performance evaluation function of
the real machine can be any performance evaluation function, even
if there is a partial architectural description of this machine. Con-
sequently, Problem 2 corresponds to the case of the phase ordering
problem whent is the most precise performance model which is
the real executing machine (or simulator): the real machinemea-
sures the performance of its own executing program (for instance,
by using its internal clock or its hardware performance counters).

In the following lemma, we assume an additional hypothesis:
there exists a program that can be optimized into an infinite num-
ber of different programs. This necessarily requires that there is
an infinite number of different optimization sequences. Butthis
is not sufficient. As sequences of optimizations inM are consid-
ered as words made of letters from the alphabetM, the set of se-
quences is always infinite, even with only one optimization inM.
For instance, fusion and loop distribution can be used repetitively
to build sequences as long as desired. However, this infiniteset of
sequences will only generate a finite number of different optimized
codes (ranging from all fusioned loops, to all distributed loops). If
the total number of possible generated programs is bounded,then
it may be possible to fully generate them in a bounded compila-
tion time: it is therefore easy to check the performance of every
generated program and to keep the best one. In our hypothesis, we
assume that the set of all possible generated programs (generated
using the distinct compilation sequences belonging toM∗) is in-
finite. One simple optimization such as strip-mine, appliedmany
times to a loop with parametric bounds, generates as many different
programs. Likewise, unrolling a loop with parametric bounds can
be performed an infinite number of times. Note that the decidability
of Problem 2 when the cardinality ofM∗ is infinite while the set
of distinct generated programs is finite remains an open problem.

LEMMA 1. Modified Phase-Ordering is an undecidable prob-
lem if there exists a program that can be optimized into an infinite
number of different programs.

PROOF. The intuition of the proof is the following: at least one
programP0 can be optimized into an infinite number of different
programs. Assume it is possible to enumerate these different pro-
grams, and number them with an integer. For this programP0, we
therefore simplify the problem: instead of looking for an optimiza-
tion sequence, we are looking now for an integer, that makes the
value oft lower than some given bound (we replace the program
parameter oft with the integer). Ast is an input of the problem
and is any computable function (terminating on any input), unde-
cidability of this subproblem is a classical result in computation
theory.

The detailed proof works by reduction of the following problem:
Problem (Empty Set)Given L a recursive enumerable language,
is L empty ?
This problem is known undecidable by application of Rice theorem
[9].

We first reformulate the phase-ordering problem as a problem
on computable functions instead of a problem on optimization se-
quences and evaluation functions. Sequencess of optimizations
in M are considered as words made of letters from the alphabet
M. There exists a programP0 such that optimization sequences
applied toP0 generate an infinite number of different programs.
Thus, there exists an algorithmaM,P0

that, given an integeri,
enumerates optimization sequences in lexicographical order, finds
the firsti sequencessi that generate different optimized programs
and outputssi(P0). aM,P0

(i) = si(P0). This function is a bi-
jective mapping between integers and optimized versions ofP0.
Now, we can define, for any evaluation functiont, a functiont′:

t′(m, I) = t(aM,P0
(m), I) for all integersm, I . t′ is a com-

putable function that always terminate. This defines a bijective
mapping between evaluation functions and terminating computable
functions with two parameters. Only one of these parameters(m)
is not an input of the problem. We introduce one more in order to be
able to perform the reduction: as there exists a bijective functionh

mapping any pair of integers to an integer, we define a mappingbe-
tween evaluation functions and terminating computable functions
with three parameters:t′′(m, n, I) = t(aM,P0

(h(m, n)), I). The
Modified Phase-ordering problem is equivalent to deciding whether
the set:

S
′(t′′, I, T ) = {(m, n)|t′′(m, n, I) < T}

is empty or not, wheret′′ is any computable function that always
terminate.

Now, we build the reduction. Consider a recursive enumerable
languageL. There exists a computable functiong in {0, 1} such
thatm ∈ L ⇔ g(m) = 1. We build the following functiontg,T ,
based ong:

• Input: m, n andI

• Perform at mostn steps of the computation ofg(m).

• If the computation has finished andg(m) = 1 then return
T − 1

• Else returnT + 1.

This functiontg,T always terminates and is computable. Moreover,
there existsn such thattg,T (m,n, I) < T iff g(m) = 1.

Now, given some integerT and an inputI :

• If S′(tg,T , I, T ) is not empty, then there existm andn such
thatg(m) stops beforen computation steps andg(m) = 1.
ThereforeL is not empty.

• If S′(tg,T , I, T ) is empty, then for all integer valuesm and
n, tg,T (m, n, I) ≥ T . According to the definition oftg,T , it
means that for allm andn, eitherg does not stop beforen
steps of computation, org stops andg(m) = 0. That implies
that for allm integer,m 6∈ L: L = ∅.

This shows that there is a reduction from the problem Empty Set
to the Modified Phase Ordering problem. As the problem Empty
Set is undecidable, the modified phase ordering problem is also
undecidable.

We provide here a variation on the modified phase ordering prob-
lem that corresponds to the library optimization issue: program and
(possibly) inputs are known at compile-time, but the optimizer has
to adapt its sequence of optimization to the underlying architec-
ture/compiler. This is what happens in Spiral [14] and FFTW [8].
If the input is also part of the unknowns, the problem has the same
difficulty.

PB. 3 (PHASE ORDERING FORL IBRARY OPTIMIZATION ). Let
M be a finite set of program transformations,P the program of
a library function, I some input andT an execution time. For
any performance evaluation functiont, does there exist a sequence
s ∈ M∗ such thatt(s(P), I) < T? In other words, if we define
the set:

SP,I,M,T (t) = {s ∈ M∗|t(s(P), I) < T}

is the setSP,I,M,T (t) empty?



The decidability results of Problem 3 are stronger than those of
Problem 2: here the compiler knows the program, its inputs, the
optimizations to play with and the performance bound to reach.
However, there is still no algorithm to find out the best optimization
sequence, if the optimizations may generate a infinite number of
different program versions.

LEMMA 2. Phase Ordering for library optimization is undecid-
able if optimizations can generate an infinite number of different
programs for the library functions.

PROOF. The proof is the same as the previous one, as the proof
does not depend neither on the inputI nor on the boundT .

The next section gives other formulations of the Phase-Ordering
problem that do not alter the decidability results proved inthis sec-
tion.

3.2 Another formulation of Phase Ordering
Problem

Instead of having a function that predicts the execution time,
we can consider a functiong that predicts the performance gain
or speedup.g would be a function with three inputs: the input
programP , the input dataI and a transformation modulem ∈
M. The performance prediction functiong(P , I, m) computes
the performance gain if we transform the programP to m(P)
and by considering the same input dataI . For a sequences =
(mn ◦ mn−1 · · · ◦ m0) ∈ M

∗ we define the gaing(P , I, s) =
g(P , I, m0)×g(m0(P), I,m1)×· · ·×g((mn−1◦· · ·◦m0)(P), I, mn).
Note that, since the gains (and speedups) are fractions, thewhole
gain of the final generated program is the product of the partial
intermediate gains. The ordering problem in this case becomes
the problem of computing a compilation sequence that results in
a maximal speedup, formally written as follows. This problem for-
mulation is equivalent to the initial one that tries to optimize the
execution time instead of speedup.

PB. 4 (MODIFIED PHASE-ORDERING WITH PERF. GAIN ). Let
M be a finite set of program transformations. For any perfor-
mance gain functiong, ∀k ∈ N a performance gain,∀P a pro-
gram,∀I input data, does there exist a sequences ∈M∗ such that
g(P , I, s) ≥ k? In other words, if we define the set:

SM(g,P , I, k) = {s ∈M∗|g(P , I, s) ≥ k},

is the setSM(g,P , I, k) empty?

We can easily see that Problem 2 is equivalent to Problem 4. This
is becauseg andt are dependent each other by the following usual
equation of performance gain:

g(P , I, m) =
t(P , I)− t(m(P), I)

t(P , I)

4. EXAMPLES OF DECIDABLE SIMPLI-
FIED CASES

In this section we give some decidable instances of the phase
ordering problem. As a first case, we define another formulation
of the problem that introduces a monotonic cost function. This
formulation models the real existing compilation approaches. As a
second case, we model generative compilation and show that phase
ordering is decidable in this case.

4.1 Models with Compilation Costs
In Section 3, the phase ordering problem is defined using a per-

formance evaluation function. In this section, we add another func-
tion c that models a cost. Such cost may be the compilation time,
the number of distinct compilation passes inside a compilation se-
quence, the length of a compilation sequence, distinct explored
compilation sequences, etc. The cost function has two inputs: the
programP and a transformation passm. Thus,c(P , m) gives the
cost of transforming the programP to P ′ = m(P ). Such cost
does not depend on input dataI . The phase ordering problem in-
cluding the cost function becomes the problem of computing the
best compilation sequence with a bounded cost.

PB. 5 (PHASE-ORDERING WITH DISCRETECOST FUNCTION).
Let t be performance evaluation function that predicts the execu-
tion time of any programP given input dataI . LetM be a fi-
nite set of optimization modules. Letc(P , m) be a function that
computes the cost of transforming the programP to P ′ = m(P ),
m ∈ M. Does there exist an algorithmA that solves the following
problem ?∀T ∈ N an execution time (in processor clock cycles),
∀K ∈ N a compilation cost,∀P a program,∀I input data, com-
puteA(P , I, T ) = s such thats = (mn ◦mn−1 · · · ◦m0) ∈ M

∗

and t(s(P), I) < T with c(P , m0) + c(m0(P), m1) + · · · +
c((mn−1 ◦ · · · ◦m0)(P),mn) ≤ K.

We see in this section that if the cost functionc is a strictly in-
creasing function, then we can provide a recursive algorithm that
solves Problem 5. First, we define the monotonic characteristics of
the functionc. We say thatc is strictly increasing iff

∀m, m
′ ∈ M, c(P , m) < c(s(P), m′)

That is, applying a program transformation sequencemn◦mn−1 · · ·◦
m0 ∈ M

∗ to a programP has always a higher integer cost than
applyingmn−1 · · · ◦ m0 ∈ M

∗. Such assumption is true for the
case of function costs such as compilation time4, number of com-
pilation passes, etc. Each practical compiler uses an implicit cost
function.

Building an algorithm that computes the best compiler optimiza-
tion sequence given a strictly increasing cost function is an easy
problem because we can use an exhaustive search of all possible
compilation sequences with bounded cost. Algorithm 1 provides a
trivial recursive method: it first looks for all possible compilation
sequences under the considered cost, then it iterates over all these
compilation sequences to check whether we could generate a pro-
gram with the bounded execution time. Such process terminates
because we are sure that the cumulative integer costs of the inter-
mediate program transformations will certainly reach the limit K.

As illustration, the work presented in [12] belongs to this fam-
ily of decidable problems. Indeed, the authors compute all pos-
sible compilation phase sequences, but by restricting themselves
to a given number of phases in each sequence. Such number is
modeled in our framework as a cost function defined as follows:
∀P a program,

c(P , s) =



1 + c(P , (mn−1 ◦ · · · ◦m0)) ∀(mn ◦ · · · ◦m0) ∈M
∗

1 ∀m ∈M

Textually it means that we associate to each compilation sequence
the cost which is simply equal to the number of phases inside the
compilation sequence. The authors in [12] limit the number of
4The time on an executing machine is discrete since we have clock
cycles.



Algorithm 1 Computing a Good Compilation Sequence in the
Compilation Cost Model
Require: a programP
Require: a costK ∈ N

Require: an execution timeT ∈ N

Require: 1 a neutral optimization:1(P) = P ∧ c(P , 1) = 0
/* we first compute the SET of all possible compilation se-
quences under the cost limit K */
SET ← {1}
stop← false

while ¬stop do
stop← true

for all s ∈ SET do
visited[s]← false

end for
for all s ∈ SET do

if ¬visited[s] then
for all mi ∈ M do {for each compilation phase}

if c(P , s ◦ mi) ≤ K then {save a new compilation
sequence with a bounded cost if the cost is bounded
by K}

SET ← SET ∪ {s ◦mi}
stop← false

end if
end for

end if
visited[s]← true

end for
end while
/* now, we look for a compilation sequence that produces a pro-
gram with the bounded execution time */
exists solution← false

for all s ∈ SET do
if t(P , s) ≤ T then

exists solution← true

return s

end if
end for
if ¬exists solution then

print “No solution exists to Problem 5”
end if

phases (to 10 or 15 as example). Consequently, the number of pos-
sible combinations becomes bounded which makes the problemof
phase ordering decidable. Algorithm 1 can be used to generate the
best compilation sequence if we consider a cost function as afixed
number of phases.

The next section presents another simplified case in phase order-
ing, which is generative compilation.

4.2 One-Pass Generative Compilers
Generative compilation is a subclass of iterative compilation. In

such simplified classes of compilers, the code of an intermediate
program is optimized and generated in a one pass traversal ofthe
abstract syntax tree. Each program part is treated and translated
to a final code without any possible backtracking in the code op-
timization process. For instance, we can take the case of a pro-
gram given as an abstract syntax tree. A set of compilation phases
treats each program part,i.e. each sub-tree, and generates a na-
tive code for such part. Another code optimization module can no
longer re-optimize the already generated program part, since any
optimization module in generative compilation takes as input only

Algorithm 2 OptimizeNode(n)
Require: an abstract syntax tree with rootn

Require: a finite set of program transformationsM
if n is not leafthen

for all u child of n do
Optimize Node(u)

end for
/*Generate all possible codes and choose the best one*/
best← φ {best code optimization}
time←∞ {best performance}
for all m ∈ M do

if t(n, m) ≤ time then
best← m

time← t(n, m)
end if

end for
apply thebest transformation to the noden without changing
any child

else{Generate all possible codes and choose the best one}
best← φ {best code optimization}
time←∞ {best performance}
for all m ∈ M do

if t(n, m) ≤ time then
best← m

time← t(n, m)
end if

end for
apply thebest transformation to the noden

end if

program parts in intermediate form. When a native code generation
for a program part is carried out, there is no way to re-optimize such
program portion, and the process continues for other sub-trees until
finishing the whole tree. Note that the optimization processfor each
sub-tree is applied by a finite set of program transformations. In
other words, generative compilers look for local “optimized” code
instead of a global optimized program.

This program optimization process as described by Algorithm 2
computes the best compilation phase greedily. Adding backtrack-
ing changes complexity but the process still terminates. More gen-
erally, generative compilers making the assumption that sequences
of best optimized codes are best optimized sequences fit the one-
pass generative compiler description. For example, the SPIRAL
project in [14] is a generative compiler. It performs a localop-
timization to each node. SPIRAL optimizes FFT formulae, from
the formula level, by trying different decomposition of large FFTs.
Instead of a program, SPIRAL starts from a formula, and the op-
timizations considered are decomposition rules. From a formula
tree, SPIRAL recursively applies a set of program transformations
at each node, starting from the leaves, generates C code, executes it
and measures its performance. Using dynamic programming strat-
egy5, composition of best performing formulae are considered as
best performing compositions.

As can be seen, finding a compilation sequence in generative
compilation that produces the fastest program is a decidable prob-
lem (Algorithm 2). Since the size of intermediate representation
forms decreases at each local application of program transforma-
tion, we are sure that the process of program optimization termi-
nates when all intermediate forms have been transformed to native

5The latest version of SPIRAL use more elaborate strategies,but
still does no resort to exhaustive search/test.
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codes. In other terms, the number of possible distinct passes on a
program becomes finite and bounded as shown in Algorithm 2: for
each node of the abstract syntax tree, we apply locally a single code
optimization (we iterate over all possible code optimization mod-
ules and we pick up the one that produces the best performanceac-
cording to the chosen performance model). Furthermore, no code
optimization sequence is searched locally (only a single pass is ap-
plied). Thus, if the total number of nodes in the abstract syntax
tree is equal tõn, then the total number of applied compilation se-
quences does not exceed|M| × ñ.

Of course, the decidability of one-pass generative compilers does
not prevent them from having potentially high complexity: each lo-
cal code optimization may be exponential (if it tackles NP-complete
problem for instance). The decidability result only provesthat, if
we have a high computation power, we know that we can compute
the optimal code after a bounded compilation time (possiblyhigh).

This first part of the article investigates the decidabilityproblem
of phase ordering in optimizing compilation. Figure 1 synthesizes
a whole view of the different classes of the investigated problems
with their decidability results. The largest class of the phase or-
dering problem that we consider, denoted byC1, assumes a finite
set of program transformations with possible optimizationparam-
eters (to explore). If the performance prediction functionis arbi-
trary, typically if it requires program execution or simulation, then
this problem is undecidable. The second class of the phase order-
ing problem, denoted byC2 ⊂ C1, has the same hypothesis as
C1 except that the optimization parameters are fixed. The prob-
lem is undecidable too. However, we have identified two decidable
classes of phase ordering problem which areC3 andC4 explained
as follows. The classC3 ⊂ C2 considers one-pass generative com-
pilation ; the program is taken as an abstract syntax tree (AST), and
code optimization applies a unique local code optimizationmodule
on each node of the AST. The classC4 ⊂ C2 takes the same as-
sumption asC2 plus an additional constraint which is the presence
of a cost model: if the cost model is a discrete increasing function,
and if the cost of the code optimization is bounded, thenC4 is a
class of decidable phase ordering problem.

The next section investigates another essential question in opti-
mizing compilation, which is parameters space exploration.

5. COMPILER OPTIMIZATION PARAME-
TERS SPACE EXPLORATION

Nowadays, many compiler optimization methods are parametrized.
For instance, loop unrolling requires an unrolling degree;loop block-
ing requires a blocking degree as well, etc. Actually, the complex-
ity of phase ordering problem does not allow to explore jointly the
the best sequence of the compilation steps and the best combina-
tions of modules parameters. Usually, the community tries to find
the “best” parameter combination when the compilation sequence
is fixed. This section is devoted to study the decidability ofsuch
problem.

5.1 Towards a Theoretical Model
First, we suppose that we haves ∈ M∗ a given sequence of op-

timizing modules belonging to a finite setM. We assume thats is
composed ofn compilation sequences.

We associate for each optimization modulemi ∈ M a unique
integer parameterki ∈ N. The set of all parameters is grouped
inside a vector

−→
k ∈ N

n, such that theith component of
−→
k is the

parameterki of the mi, the ith module inside the considered se-
quences. If the sequences contains multiple instances of the same
optimization modulem, the parameter of each instance may have
a distinct value from those of the other instances.

For a given programP , applying a program transformation mod-
ule m ∈ M requires a parameter value. Then, we write the trans-
formed program asP ′ = m(P ,

−→
k ).

As in the previous sections devoted to the phase ordering prob-
lem, we assume here the existence of a performance evaluation
function t that predicts (or evaluates) the execution time of a pro-
gramP havingI as input data. We denotet(P , I) the predicted
execution time. The formal problem of computing the best param-
eter values of a given set of program transformations in order to
achieve the best performance can be written as follows.

PB. 6 (BEST-PARAMETERS). Lett be a function that predicts
the execution time of any programP given input dataI . LetM be
a finite set of program transformations ands a particular optimiza-
tion sequence. Does there exist an algorithmAt,s that solves the
following problem ?∀T ∈ N an execution time (in processor clock

cycles),∀P a program,∀I input data,At,s(P , I, T ) =
−→
k such

that t(s(P ,
−→
k ), I) < T .

This general problem cannot be addressed as it is, since the an-
swer depends on the shape of the functiont. In this paper, we
assume that the performance prediction function is built byan al-
gorithm a, taking s andP as parameters. Moreover, we assume
the performance functiont = a(P , s) built by a takes

−→
k andI

as parameters and is a polynomial function. Therefore, the perfor-
mance of a programP with input I and optimization parameters
−→
k is a(P , s)(I,

−→
k ). We discuss about the choice of a polyno-

mial model after the statement of the problem. We want to decide
whether there are some parameters for the optimization modules
that make the desired performance bound reachable:

PB. 7 (MODIFIED BEST-PARAMETERS). LetM be a finite
set of program transformations ands a particular optimization se-
quence ofM∗. Let a be an algorithm that builds a polynomial
performance prediction function, according to a program and an
optimization sequence. For all programsP , for all inputs I and



performance boundT , we define the set of parameters as:

Ps,t(P , I, T ) = {
−→
k |a(P , s)(

−→
k , I) < T}.

Is Ps,t(P , I, T ) empty ?

As noted earlier, choosing an appropriate performance model is
a central decision to define whether Problem 6 is decidable ornot.
For instance, Problem 7 considers polynomial functions, which
are a family of usual performance models (arbitrary linear regres-
sion models for instance). Even a simple static model of complex-
ity counting assignements evaluates usual algorithms withpolyno-
mials (n3 for a straightforward implementation of square matrix-
matrix multiply for instance). With such a simple model, anypoly-
nomial can be generated. It is assumed that a realistic performance
evaluation function would be as least as difficult as a polynomial
function. Unfortunately, the following lemma shows that ift is an
arbitrary polynomial function, then Problem 7 is undecidable.

The following lemma states that Problem 7 is undecidable if
there are at least 9 integer optimization parameters. In ourcon-
text, this requires 9 optimizations in the optimizing sequence. Note
that this number is constant when considering the best parameters,
and is not a parameter itself. This number is fairly low compared
to the number of optimizations found in state-of-the-art compilers
(such asgcc or icc for instance). Now, ift is a polynomial and
there are less than9 parameters (the user has switched off most op-
timizations for instance): if there is only one parameter left, then
the problem is decidable. For a number of parameters between2
and 8, the problem is still open [17] and Matiyasevich conjectured
it as undecidable.

LEMMA 3. The Modified Best-Parameters Problem is undecid-
able if the performance prediction functiont = a(P , s) is an ar-
bitrary polynomial and if there are at least 9 integer optimization
parameters.

PROOF. The proof is based on a result published in 1982: given
an arbitrary polynomialf with nine variables, Jones [10] proved
that there is no recursive function which can determine whetherf
has a non-negative integer zero, in the sense that it finds an explicit
zero or returns null otherwise.

Finding parameter values
−→
k such that, for an arbitrary polyno-

mial t and for some given constant valueI , t(
−→
k , I) < T is equiv-

alent to finding the zeros of an arbitrary polynomial. Given apoly-
nomial t, the polynomialT ∗ t(−→x , I) ∗ t(−→x , I) reaches a value
lower thanT for some−→x only if −→x is a zero oft. This shows that
to find the values for the bound is as difficult as finding the zeros
of a polynomial. Ifa generates arbitrary polynomials, according to
the value ofP , and there are at least 9 optimization parameters (I is
not considered as a variable, as its value is constant), thenModified
Best-Parameters Problem is undecidable.

5.2 Examples of Simplified Decidable Cases
Our formal problem Best-Parameters is the formal writing ofli-

brary optimizations. Indeed, in such area of program optimizations,
the applications are given with a training data set. Then, people try
to find the best parameter values of optimizing modules (inside a
compiler usually with a given compilation sequence) that holds in
the best performance. In this section, we show that some simplified
instances of Best-Parameters problem becomes easily decidable. A
first example is the OCEAN project [2], and a second one is the
ATLAS framework [19].

The OCEAN project [2] optimizes a given program for a given
data set by exploring all combinations of parameter values.Poten-
tially, such value space is infinite. However, OCEAN restricts the
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Decidable Problem
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exploration to finite set of parameter intervals. Consequently, the
number of parameter combinations becomes finite, allowing atriv-
ial exhaustive search of the best parameter values: each optimized
program resulting from a particular value of the optimization pa-
rameters is generated and evaluated. The one performing best is
chosen. Of course, if we use such exhaustive search, the optimizing
compilation time become very high. So, one can provide efficient
heuristics for exploring the bounded space of the parameters [24].
Currently, this is outside the scope of our article.

ATLAS [19] is another simplified case of the Best-Parameter
problem. In the case of ATLAS, the optimization sequence is known,
the programs to optimize are known (BLAS variants), and it isas-
sumed that the performance does not depend on the value of thein-
put (independence w.r.t. the matrix and vector values). Moreover,
there is a performance model for the cache hierarchy (basically, the
size of the cache) that, combined to the dynamic performanceeval-
uation, limits the number of program executions (i.e., performance
evaluation) to do. For one level of cache and for matrix-matrix
multiplication, there are three levels of blocking controlled by three
parameters, bounded by the cache size and a small number of loop
interchanges possible (for locality). Exhaustive enumeration inside
admissible values enable to find the best parameter value.

Figure 2 synthesizes a whole view of the different classes ofthe
investigated problems with their decidability results. The largest
class of the best parameters exploration problem that we consider,
denoted byC1, assumes a finite set of optimization parameters with
unbounded values (infinite space); The compiler optimization se-
quence is assumed fixed. If the performance prediction function
is arbitrary, then this problem is undecidable. The second class of
the best parameters exploration problem, denoted byC2 ⊂ C1, has
the same hypothesis asC1 except that the performance model is
assumed as an arbitrary polynomial function. The problem isun-
decidable too. However, a trivial identified decidable class is the
case of bounded (finite) parameters space. This is the case ofthe
tools ATLAS (classC3) and OCEAN (classC4).



6. FUTURE WORK
The phase ordering problem studied in this article does not make

any assumption about the kind or the family of the consideredpro-
gram transformations. Potentially, we can have an unbounded (but
finite) number of optimizing modules inside a compiler, as long as
they guarantee us the best performance. Consequently, the size of
the compiler can be as large as we require. In a future work, we
want to explore the phase ordering problem with an additional re-
striction which is the granted size to a compiler. For this purpose,
and thanks to the results presented in [1], we will restrict the family
of program transformations to the polyhedral ones. Indeed,the au-
thors in [1] give a matrix coding of all polyhedral transformations
and their possible combinations: the size of such matrix is finite
and bounded, while its elements define all possible affine polyhe-
dral program transformations. This matrix coding has the benefit
for consuming a bounded space and allowing to ease the composi-
tion of program transformation.

Another future work to this article is to study the phase ordering
problem with another kind of restriction. Instead of limiting the
size of the optimizing compiler, we can put a limit on the sizeof
the final transformed program. Does phase-ordering become de-
cidable in this case ?

Finally, an important open problem remains the definition ofa
general family of performance prediction functions that makes the
phase ordering problem decidable. In this paper, we proved that if
such function requires the execution or the simulation of the con-
sidered program, then the phase ordering problem becomes unde-
cidable. But what if the performance predictor does not require nei-
ther the execution nor the simulation of the program ? Of course,
if the performance modeling is too trivial or too simple (seeSec-
tion 4), it is highly probable that the phase ordering problem be-
comes decidable, but in this case the model would not fit the real
program performance. So, we require to define a more general fam-
ily of performance prediction functions, that are efficientenough to
accurately model the real program performance while allowing to
have a decidable phase ordering problem. As a first step, we will
consider for instance linear regression models.

7. CONCLUSION
As far as we know, our article is the first formalisation of two

known problems: the phase ordering in optimizing compilation and
the compiler optimization parameters space exploration. Our arti-
cle sets down the formal definition of the phase ordering problem
in many compilation schemes such as static compilation, iterative
compilation and library generation. Given an input data setfor the
considered program, the defined phase ordering problem is tofind
a sequence of code transformations (taken from a finite set ofcode
optimizations) that increase the performance up to a fixed objective.
Alternatively, we can consider too parametric code optimization
modules, and then we can define the formal problem of best pa-
rameters space exploration. However in this case, the compilation
sequence is fixed, and the searching process looks for the best code
optimization parameters that increase the program performance up
to a fixed objective.

We showed that the decidability of both these problems is tightly
correlated to the function used to predict or to evaluate theprogram
performance. If such function is an arbitrary polynomial function,
or if it requires to execute a Turing machine (by simulation or by
real execution on the considered underlying hardware), then both
these problems are undecidable. This means that we can neverhave

automatic solutions for them. We provided some simplified cases
that make these problems decidable: for instance, we showedthat if
we include a compilation cost in the model (compilation time, num-
ber of generated programs, number of compilation sequences, etc.),
then the phase ordering becomes obviously decidable. This is what
all actual ad-hoc iterative compilation techniques reallydo. Also,
we showed that if the parameters space is explicitly considered as
bounded, then the best compiler parameter space exploration prob-
lem becomes trivially decidable too.

Our article proves then that the requirement to execute or tosim-
ulate a program is a major fundamental drawback for iterative com-
pilation and for library generation in general. Indeed, they try to
solve a problem that can never have an automatic solution. Con-
sequently, it is impossible to bring a formal method that allows to
accurately compare between the actual ad-hoc or practical meth-
ods of iterative compilation or for library generation[5, 12, 15, 24].
The experiments that can be made to highlight the efficiency of
a method can never bring a guarantee that such iterative method
would be efficient for other benchmarks. As a corollary, we can
safely state that, since it is impossible to mathematicallycompare
between iterative compilation methods (or between librarygenera-
tion tools) then we can consider that any proposed method is suf-
ficiently “good” for only its set of experimented benchmarksand
cannot be generalized as a concept or as a method.

Our article proves too that using iterative or dynamic methods
for compilation is not fundamentally helpful for solving the general
problem of code optimization. Such dynamic and iterative methods
define distinct optimization problems that are unfortunately as un-
decidable as static code optimizations, even with fixed input data.

However, our article does not yet give information about thede-
cidability of phase ordering or parameters space exploration if the
performance prediction function does not require program execu-
tion. Simply because the answer depends on the nature of such
function. If such function is too simple, then it is highly proba-
ble that the phase ordering becomes decidable but the experimen-
tal results would be weak (since the performance predictionmodel
would be inaccurate). The problem of performance modeling then
becomes the essential question. As far as we know, we did not
find any model in the literature that has been formally validated by
statistical fitting checks as explained in [18].
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