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ABSTRACT

We are interested in the computing frontier around an egdent
question about compiler construction: having a progfarand a
set M of non parametric compiler optimization modules (called
also phases), is it possible to find a sequenctthese phases such
that the performance (execution time for instance) of thal fijen-
erated progran®’ is “optimal” ? We prove in this article that this
problem is undecidable in two general schemes of optimizorg-
pilation: iterative compilation and library optimizatitgeneration.
Fortunately, we give some simplified cases when this prolidem
comes decidable, and we provide some algorithms (not negess
efficient) that can answer our main question.

Another essential question that we are interested in isnpara
ters space exploration in optimizing compilation (tunimgimizing
compilation parameters). In this case, we assume a fixeceequ
of optimization, but each optimization phase is allowed aweha

parameter. We try to figure out how to compute the best param-

eter values for all program transformations when the coatipih
sequence is given. We also prove that this general problem-is
decidable and we provide some simplified decidable insgnce

Categories and Subject Descriptors
D [3]: 4

General Terms
Algorithms, Performance, Theory.

Keywords

Phase Ordering, Parameters Space Exploration, IterativepCa-
tion, Library Generation, Optimizing Compilation.

1. INTRODUCTION

The notion of an “optimal” program is sometimes ambiguous
in optimizing compilation. Using an absolute definition, @pti-
mal programP* means that there is no other equivalent program
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P faster thanP*, whatever be the input data. This is equivalent
to state that the optimal program should run as fast as thgekin
dependence chain in its trace. This notion of optimalityncdrex-

ist in practice: Schwiegelsholet al showed in [20] that there are
loops with conditional jumps for which no semantically egléent
time-optimal program exists on parallel machines, eveh sjtec-
ulative executioh More precisely, they showed why it is impos-
sible to write a program that is the fastest for any input datais

is because the presence of conditional jumps makes thegmogr
execution paths dependent on the input data, so it is notaguar
teed that a program shown faster for a considered input d#ta s
(i.e,, for a given execution path) remains the fastest for all poss
ble input data. Furthermore, Schwiegelsha#ral convinced us
that “optimal” codes for loops with branches (with arbiramput
data) requires the ability to express and execute a progrismuww-
bounded speculative window. Since any real speculativieifeds
limited in practicé, it is “impossible” to write an optimal code for
some loops with branches on real machines.

In our work, we define the program optimality according to the
input data. So, we say that a progrd?i is optimal if there is not
another equivalent prograf faster thari?* considering the same
input data. Of course, the optimal prograg?i related to the con-
sidered input datd™ must still execute correctly for any other input
data, but not necessarily in the fastest speed of executioother
term, we do not try to build efficient specialized programs,,iwe
should not generate programs that execute only for a cdripirt
data set. Otherwise a simple program that only prints theltes
would be sufficient for fixed input data.

With this notion of optimality, we can ask the general questi
how to build a compiler that generates an optimal progranergiv
an input data set ? Such question is very difficult to answeces
we are not able till now to enumerate all the possible autmmat
program rewriting methods in compilation (some are pregetiie
literature, others have to be set up in the future). So, wedils
dress in this work another similar question: given a finite/s€of
compiler optimization modules, how to build an automatidmoel
to combine them in a finite sequence that produces an optiroal p
gram? We mean by compiler optimization module a progranstran
formation that rewrites the original code. Unless they areapsu-
lated inside code optimization modules, we exclude prograal-
ysis passes since they do not modify the code.

Indeed, the cited paper does not contain a formal detailedfpr
but a persuasive reasoning.

2If the speculation is static, the code size is finite. If spation is
made dynamic, the hardware speculative window is bounded.



This paper provides a formalism for some general questibosta
phase ordering. Our formal writing allows us to give preliaiy
answers from the computer science perspective about deiitgla
(what we can really do by automatic computation) and undecid
ability (what we can never do by automatic computation). Vile w
show that our answers are tightly correlated to the naturthef
models (functions) used to predict or evaluate the progiaentor-
mances. Note that we are not interested in the efficiencycéspé
compilation and code optimization: we know that most of thdec
optimization problems are inherently NP-complete. Consedly,
the proposed algorithms in this paper are not necessafitjesft,
and are written for the purpose of demonstrating the deditdabf
some problems. Proposing efficient algorithms for decielgiobb-
lems is another research aspect outside the current scope.

This paper is organized as follows. Section 2 gives a shemvoew
about some phase ordering studies in the literature, asawslbme
performance prediction modeling. Section 3 defines a fomualel
for the phase ordering problem that allows us to prove sorga-ne
tive decidability results. Next, in Section 4, we show soraaeagal
optimizing compilation scheme in which the phase orderirgpbp
lem becomes decidable. Section 5 explores the problem afgun
optimizing compilation parameters with a compilation semge.
Finally, we present our future work before concluding.

2. BACKGROUND

The problem of phase ordering in optimizing compilationasi€
pled to the problem of performance modeling, since the perfo
mance prediction/estimation may guide the search procése
two following subsections present a quick overview of retatvork.

2.1 Performance Modeling and Prediction

Program performance modeling and estimation on a certain ma
chine is an old (and is still) an important research topiciagmo
guide code optimization. The simplest performance preidor-
mula is the linear function that computes the execution tirhe
sequential program on a simple von-Neumann machine: itnis si
ply a linear function of the number of executed instructiondth
the introduction of memory hierarchy, parallelism at masyel
(instructions, threads, process), branch prediction @eddation,
performance prediction becomes more complex than a siriiple |
ear formula. The exachapeor the nature of such function and the
parameters that it involves are two unknown problems umil.n
However, there exist many articles that try to define appnated
performance prediction functions:

e Statistical Linear Regression Modelste parameters involved
in the linear regression are usually chosen by the authors.
Many program executions or simulation through multipleadat
sets allow to build statistics that compute the coefficierfits
the model [21, 6].

Static Algorithmic Models:usually, such models are algo-
rithmic analysis methods that try to predict a program per-
formance [4, 16, 25, 23]. For instance, the algorithm counts
the instructions of a certain type, or makes a guess of the
local instruction schedule, or analyzes data dependetwies
predict the longest execution path, etc.

Comparison Modelsinstead of predicting a precise perfor-
mance metric, some studies provide models that compare
two code versions and try to predict the fastest one [11, 24].

Of course, the best and the most accurate performance poedis
the Turing machine itself, since it executes the programterte

we can directly measure the performance. This is what isllysua
used in iterative compilation and library generation fastamce.

The main problem with performance prediction models isrthei
aptitude to reflect the real performance on the real machie.
well explained by Rai Jain [18], the common mistake in stiatb
modeling is to trust a model simply because it plossrailar curve
compared to the real plot (a proof by eyes !). Indeed, this cor
experimental validation is not correct from the statidtiseience
theory, and there exist formal statistical methods [18} tieeck if
a model fits the reality. Until now, we have not found any study
that validates a program performance prediction modelgusirch
formal statistical methods.

2.2 Some Attempts in Phase Ordering

Finding the best order in optimizing compilation is an oladipr
lem. The most common case is the dependence between register
location and instruction scheduling in instruction levatglelism
processors as shown in [7]. Many other cases of inter-phgysed
dencies exist, but it is hard to analyze all the possibleraatéons
[26].

Click and Cooper in [3] present a formal method that combines
two compiler modules to build supermodule that produces better
(faster) programs than if we apply each module separatebyv-H
ever, they do not succeed to generalize their framework afuteo
combination, since they prove it for only two special casesch
are constant propagation and dead code elimination.

In [12], the authors use exhaustive enumeration of possite-
pilation sequences (restricted to a limited sequence.siz@y try
to find if any “best” compilation sequence emerges. The exper
mental results show that, unfortunately, there is not a imgoeom-
pilation sequence. We think that this is because such catigil
sequence depends not only on the compiled program, but also o
the input data and the underlying executing machine.

In [22], the authors target a similar objective as in [3]. ¥he
succeed to producgupermodules that guarantee performance op-
timization. However, they combine two analysis passe®\fiad
by a unique program rewriting phase. In our work, we try to find
the best combination of code optimization modules, exclygiro-
gram analysis passes (unless they belong to the code traragfon
modules).

In [15], the authors evaluate by using a performance modgl th
different optimization sequences to apply to a given progrdhe
model determines the profit of optimization sequences aaugr
to register resource and cache behavior. Optimizationsiden
only scalars and the same optimizations are applied whabvevibe
values of the inputs. In our article, we assume on the contheat
the optimization sequence should depend on the value ohths i
(in order to be able to speak about the optimality of a program

Finally, there is the whole field of iterative compilatiom this
research activity, looking for a good compilation sequengtgiires
to compile the program multiple times iteratively, and atled-
eration, a new code optimization sequence is used [5, 24] unt
a “good” solution is reached. In such frameworks, any kind of
code optimization can be sequenced, the program perfoemaag
be predicted or accurately computed via execution or sitiula
There exist other attempts that try to combine a sequencéhbf h
level loop transformations [1, 13]. As mentioned, such rodth
are devoted to regular high performance codes and only wuge lo
transformation in the polyhedral model.



In this paper, we give a general formalism for the phase arder
problem and its multiple variants that incorporate the wprk-
sented in this section.

3. TOWARDS A THEORETICAL MODEL
FOR PHASE ORDERING PROBLEM

In this section, we give our theoretical framework aboutthase
ordering problem. LetM be a finite set of program transforma-
tions. We would like to construct an algorithp that has three
inputs: a progranP, an input data and a desired execution time
T for the transformed program. For each input program anais i
put data set, the algorithtd must compute a finite sequenge=
My 0 Mp_10---0mo, m; €M™ of optimization modules The
same transformation can appear multiple times in the segas
it occurs already in real compilers (for constant propamstiead
code elimination for instance). ¥fis applied taP, it must generate
an optimal transformed prograf@* according to the input data
Each optimization module:; € M has a unique input which is
the program to be rewritten, and has an outft= m;(P). So,
the final generated progra®* is (m, o mp—1 0 - -0 mg)(P).

We must have a clear concept and definition of a program trans-
formation module. Nowadays, many optimization techniqaies
complex toolboxes with many parameters. For instance, loep
rolling and loop blocking require a parameter which is thgrde
of unrolling or blocking. Until Section 5, we do not considrrch
parameters in our formal problem. We handle them by consider
ing, for each program transformation, a finite set of paramesl-
ues, which is the case in practice. Therefore loop unroNiriidp
an unrolling degree of 4 and loop unrolling with a degree ofé a
considered as two different optimizations. Given suchdisit of
parameter values per program transformation, we can defireava
compilation module for each pair of program transformatior
parameter value. So, for the remainder of the text (untitised),

a program transformation can be considered as a module wtitho
any parameter except the program to be optimized.

In order to check that the execution time has reached soroe val
T, we assume that there is a performance evaluation functioat
allows to precisely evaluate or predict the execution tioreother
performance metrics) of a prograf according to the input data
I. Lett(P,I) be the predicted execution time. Thus;an pre-
dict the execution time of any transformed progrd&h = m(P)
when applying a program transformationif we apply a sequence
of program transformations, is assumed to be able to predict the
execution time of the final transformed prograine,, t(P’, I)
t((mn © Mpn_1 0---0mg)(P),I). t can be either the measure
of performance on the real machine, obtained through ei@tof
the program with its inputs, a simulator or a performance eholh
this article, we do not make the distinction between thegluases
and assume thdtis an arbitrary computable function. Next, we
give a formal description of the phase ordering problem itirojz-
ing compilation.

PB.1 (PHASE-ORDERING). Lettbe an arbitrary performance
evaluation function. LetM be a finite set of program transforma-
tions. V1" € N an execution time (in processor clock cyclésy, a
program, V1 input data, does there exist a sequerce M™ such
thatt(s(P),I) < T? In other words, if we define the set:

St m(P,I,T) = {s € M |t(s(P),I) < T}
is the setSy, m(P, I,T) empty?

%o denotes the symbol of function combination (concatenjtion

Textually, the phase ordering problem tries to determimeefich
program and input whether there exists or not a compilaten s
guences which results in an execution time lower than a bound
T.

If there is an algorithm that decides the phase orderinglpnop
then there is an algorithm that computes one sequersteh that
t(s(P),I) < T, provided thatt always terminates. Indeed, enu-
merating the code optimization sequences in lexicograptder
always finds an admissible solution to Problem 1. Decidirg th
phase ordering problem is therefore the key for finding thet bp-
timization sequence.

3.1 Decidability Results

In our problem formulation, we assume the following chagact
istics:

1. t is a computable functiont(P, I') terminates wherP ter-
minates on the inpuf. This definition is compatible with
the fact thatt can be the measured execution time on a real
machine;

. each program transformation € M is computable, always
terminates and preserves the program semantics;

. programpP always terminates;

. the final transformed prograf®’ = s(P) executes at least
one instructionj.e,, the final execution time is strictly posi-
tive.

The phase ordering problem corresponds to what occurs in a
compiler: whatever the program and input be given by the user
(if the compiler resorts to profiling), the compiler has todfia se-
guence of optimizations reaching some (not very well defiped-
formance threshold. Answering the question of the phasermgl
problem as defined in Problem 1 depends on the performanee pre
diction modelt. Since the function (or its class)is not defined,
Problem 1 cannot be answered as it is, and requires to hatleesino
formulation that slightly changes its nature. We considehis pa-
per a modified version, where the functioms not known by the
optimizer. The adequation between this assumption andedle r
optimizing problem is discussed after the problem statémen

PB.2 (MODIFIED PHASE-ORDERING). Let M be afinite set
of program transformations. For any performance evaluafienc-
tiont, VT' € N an execution time (in processor clock cyclé&y, a
program,V1 input data, does there exist a sequerce M™ such
thatt(s(P),I) < T? In other words, if we define the set:

Sm(t, P, I,T)={s € M*|t(s(P),I) < T},
is the setSy (¢, P, I, T) empty?

This problem corresponds to the case wheignot anapprox-
imatesmodel but is the real executing machine (the most precise
model). Let us present the intuition behind this statemardom-
piler always has an architecture model of the target macfime
source constraints, instruction set, general architectatencies of
caches,...). This model is assumed to be correct (meanadghté
real machine conforms according to the model) but does ket ta
into account all mechanisms of the hardware. Thus in theory,
infinite number of different machines fit into the model, and w
must assume the real machine is any of them. As the architec-
ture model is incomplete and performance also dependslysumal
non-modeled features (conflict misses, data alignment;atipa
bypasses,...), the performance evaluation model of thepitems



incorrect. This suggests that the performance evaluatioction of
the real machine can be any performance evaluation funatien

if there is a partial architectural description of this maeh Con-
sequently, Problem 2 corresponds to the case of the phaserayd
problem whert is the most precise performance model which is
the real executing machine (or simulator): the real machiea-
sures the performance of its own executing program (foaimse,

by using its internal clock or its hardware performance ¢ers).

In the following lemma, we assume an additional hypothesis:
there exists a program that can be optimized into an infinitra-n
ber of different programs. This necessarily requires thate is
an infinite number of different optimization sequences. Big
is not sufficient. As sequences of optimizationshih are consid-
ered as words made of letters from the alphabétthe set of se-
guences is always infinite, even with only one optimizatioo.
For instance, fusion and loop distribution can be used iy
to build sequences as long as desired. However, this inBeitef
sequences will only generate a finite number of differeninoized
codes (ranging from all fusioned loops, to all distributedgs). If
the total number of possible generated programs is bouried,
it may be possible to fully generate them in a bounded compila
tion time: it is therefore easy to check the performance @gv
generated program and to keep the best one. In our hypothesis
assume that the set of all possible generated programsrégede
using the distinct compilation sequences belonging0) is in-
finite. One simple optimization such as strip-mine, appheahy
times to a loop with parametric bounds, generates as mafeyetit
programs. Likewise, unrolling a loop with parametric bosiran
be performed an infinite number of times. Note that the déduwlitya
of Problem 2 when the cardinality o¥1™ is infinite while the set
of distinct generated programs is finite remains an openl@nob

LEMMA 1. Modified Phase-Ordering is an undecidable prob-
lem if there exists a program that can be optimized into amiitefi
number of different programs.

PROOF The intuition of the proof is the following: at least one
programP, can be optimized into an infinite number of different
programs. Assume it is possible to enumerate these diff@ren
grams, and number them with an integer. For this progfynwe
therefore simplify the problem: instead of looking for artiopza-
tion sequence, we are looking now for an integer, that matkes t
value oft lower than some given bound (we replace the program
parameter ot with the integer). A< is an input of the problem
and is any computable function (terminating on any inputyles
cidability of this subproblem is a classical result in cortgtion
theory.

The detailed proof works by reduction of the following preiul:
Problem (Empty Set) Given L a recursive enumerable language,
is L empty ?

This problem is known undecidable by application of Ricetieen

[9].

t'(m,I) = t(am,p,(m),I) for all integersm, I. t' is a com-
putable function that always terminate. This defines a tijec
mapping between evaluation functions and terminating edaige
functions with two parameters. Only one of these paramétels
is not an input of the problem. We introduce one more in ordéet
able to perform the reduction: as there exists a bijectivetion i
mapping any pair of integers to an integer, we define a mapgpeng
tween evaluation functions and terminating computabletions
with three parameters!’ (m, n, I) = t(am,p, (h(m,n)),I). The
Modified Phase-ordering problem is equivalent to decidihgtiier
the set:

S' (", 1,T) = {(m,n)|t"(m,n,I) < T}

is empty or not, where”” is any computable function that always
terminate.

Now, we build the reduction. Consider a recursive enumerabl
languageL. There exists a computable functignin {0, 1} such
thatm € L < g(m) = 1. We build the following functiort,, r,
based ory:

e Input: m, n and’
e Perform at most: steps of the computation g{m).

e If the computation has finished adm) = 1 then return
T-1

e Else returnl” + 1.

This functiont,,r always terminates and is computable. Moreover,
there exists: such that, r(m,n,I) < T iff g(m) = 1.
Now, given some integef’ and an inputl:

o If S'(ty,7,I,T) is not empty, then there exist andn such
thatg(m) stops beforex computation steps ang(m) = 1.
ThereforeL is not empty.

o If S'(ty,1,I,T) is empty, then for all integer values and
n, tg,r(m,n,I) > T. According to the definition of, r, it
means that for alin andn, eitherg does not stop before
steps of computation, @rstops andj(m) = 0. Thatimplies
that for allm integer,m ¢ L: L = (.

This shows that there is a reduction from the problem Empty Se
to the Modified Phase Ordering problem. As the problem Empty
Set is undecidable, the modified phase ordering problemsis al
undecidable. [

We provide here a variation on the modified phase ordering-pro
lem that corresponds to the library optimization issuegpam and
(possibly) inputs are known at compile-time, but the optienihas
to adapt its sequence of optimization to the underlying itgch
ture/compiler. This is what happens in Spiral [14] and FFT8V [

We first reformulate the phase-ordering problem as a problem If the input is also part of the unknowns, the problem has #mes

on computable functions instead of a problem on optimizasie-
quences and evaluation functions. Sequence$ optimizations

in M are considered as words made of letters from the alphabet

M. There exists a program®, such that optimization sequences
applied toP, generate an infinite number of different programs.
Thus, there exists an algorithaw,», that, given an integet,
enumerates optimization sequences in lexicographicarpfihds
the firsti sequences; that generate different optimized programs
and outputss; (Po). anm,p, (i) = si(Po). This function is a bi-
jective mapping between integers and optimized version®of
Now, we can define, for any evaluation functiona functiont’:

difficulty.

PB.3 (PHASE ORDERING FORLIBRARY OPTIMIZATION). Let
M be a finite set of program transformatioriB, the program of
a library function, I some input andl” an execution time. For
any performance evaluation functiondoes there exist a sequence
s € M”* such thatt(s(P),I) < T? In other words, if we define
the set:

Sprmr(t) ={s € M*|t(s(P),I) < T}

is the setSp, 1, m,7(t) empty?



The decidability results of Problem 3 are stronger thanetafs
Problem 2: here the compiler knows the program, its inputs, t
optimizations to play with and the performance bound to leac
However, there is still no algorithm to find out the best ojiziation
sequence, if the optimizations may generate a infinite nurobe
different program versions.

LEMMA 2. Phase Ordering for library optimization is undecid-
able if optimizations can generate an infinite number ofedéffit
programs for the library functions.

PrROOF The proof is the same as the previous one, as the proof
does not depend neither on the ingutor on the bound™. [

The next section gives other formulations of the Phase-@rgle
problem that do not alter the decidability results provethis sec-
tion.

3.2 Another formulation of Phase Ordering
Problem

Instead of having a function that predicts the executiorefim
we can consider a functiog that predicts the performance gain
or speedup.g would be a function with three inputs: the input
program?P, the input data/ and a transformation module. €
M. The performance prediction function(P, I, m) computes
the performance gain if we transform the progrénto m(P)
and by considering the same input ddta For a sequence =
(mp 0o mp—1---0mg) € M"* we define the gaig(P, I, s)
9(P,1,mo)xg(mo(P),1,m1)x- xg((mn-10--0omo)(P), I, mn).
Note that, since the gains (and speedups) are fractionsylibée
gain of the final generated program is the product of the glarti
intermediate gains. The ordering problem in this case besom
the problem of computing a compilation sequence that resnlt
a maximal speedup, formally written as follows. This problor-
mulation is equivalent to the initial one that tries to ogtimthe
execution time instead of speedup.

PB.4 (MODIFIED PHASE-ORDERING WITHPERF. GAIN). Let
M be a finite set of program transformations. For any perfor-
mance gain functiory, Yk € N a performance gainyP a pro-
gram,VI input data, does there exist a sequenee M* such that
g(P,1,s) > k? In other words, if we define the set:

Srmlg, P, 1,k) = {s € M"[g(P,I,s) >k},
is the setSx(g, P, I, k) empty?
We can easily see that Problem 2 is equivalent to Problem & Th

is becausg andt are dependent each other by the following usual
equation of performance gain:

t(P,I)—t(m(P),I)
t(P,1)

g(P,I,m) =

4. EXAMPLES OF DECIDABLE SIMPLI-
FIED CASES

In this section we give some decidable instances of the phase
ordering problem. As a first case, we define another formnati
of the problem that introduces a monotonic cost function.isTh
formulation models the real existing compilation apprazchAs a
second case, we model generative compilation and showlthatp
ordering is decidable in this case.

4.1 Models with Compilation Costs

In Section 3, the phase ordering problem is defined using-a per
formance evaluation function. In this section, we add agofitinc-
tion ¢ that models a cost. Such cost may be the compilation time,
the number of distinct compilation passes inside a compiiate-
guence, the length of a compilation sequence, distinctoeagl
compilation sequences, etc. The cost function has two $nghe
programP and a transformation pass. Thus,c(P, m) gives the
cost of transforming the program® to P’ = m(P). Such cost
does not depend on input data The phase ordering problem in-
cluding the cost function becomes the problem of computireg t
best compilation sequence with a bounded cost.

PB.5 (PHASE-ORDERING WITHDISCRETECOSTFUNCTION).
Let ¢ be performance evaluation function that predicts the execu
tion time of any progran® given input datal. Let M be a fi-
nite set of optimization modules. L&tP,m) be a function that
computes the cost of transforming the progrénto P’ = m(P),

m € M. Does there exist an algorithtd that solves the following
problem ?VT € N an execution time (in processor clock cycles),
VK € N a compilation costyP a program,¥I input data, com-
pute A(P,I,T) = s such thats = (m,, o m,—1---omg) € M*
and t(s(P),I) < T with ¢(P,mo) + c(mo(P),m1) + --- +
c((mn-10---0omo)(P),mn) < K.

We see in this section that if the cost functieis a strictly in-
creasing function, then we can provide a recursive algarithat
solves Problem 5. First, we define the monotonic charatiesisf
the functionc. We say that is strictly increasing iff

Vm,m' € M, c(P,m) < c(s(P),m’)

Thatis, applying a program transformation sequenge@m,,—1 - - -o
mo € M* to a programP has always a higher integer cost than
applyingmy—1 --- omg € M™. Such assumption is true for the
case of function costs such as compilation firrmmber of com-
pilation passes, etc. Each practical compiler uses an d@ihlbst
function.

Building an algorithm that computes the best compiler oftam
tion sequence given a strictly increasing cost functionnisasy
problem because we can use an exhaustive search of all lgossib
compilation sequences with bounded cost. Algorithm 1 presia
trivial recursive method: it first looks for all possible cpitation
sequences under the considered cost, then it iterates ibtieese
compilation sequences to check whether we could generate-a p
gram with the bounded execution time. Such process tergsnat
because we are sure that the cumulative integer costs oftite i
mediate program transformations will certainly reach thatl K.

As illustration, the work presented in [12] belongs to thasnf
ily of decidable problems. Indeed, the authors compute @gl p
sible compilation phase sequences, but by restricting $keéras
to a given number of phases in each sequence. Such number is
modeled in our framework as a cost function defined as follows

VP a program,
«(P.s) = { T e

Textually it means that we associate to each compilationessze
the cost which is simply equal to the number of phases inside t
compilation sequence. The authors in [12] limit the numbier o

14 ¢(P,(mp—10---0myp))
1

“The time on an executing machine is discrete since we haek clo
cycles.



Algorithm 1 Computing a Good Compilation Sequence in the Algorithm 2 OptimizeNode(n)
Compilation Cost Model Require: an abstract syntax tree with root
Require: a programpP Require: a finite set of program transformationg
Require: acostK € N if n is not leafthen
Require: an execution tim&” € N for all « child of n do
Require: 1 a neutral optimizationi(P) = P A c¢(P,1) =0 Optimize_Node(u)

[* we first compute the SET of all possible compilation se- end for

quences under the cost limit K */ /*Generate all possible codes and choose the best one*/

SET — {1} best — ¢ {best code optimizatign

stop < false time «— oo {best performance

while —stop do forall m € M do

stop «— true if t(n,m) < time then

forall s € SET do best «— m
visited[s] < false time — t(n,m)
end for end if
forall s € SET do end for
if —wisited[s] then apply thebest transformation to the node without changing
for all m; € M do {for each compilation phage any child

if ¢(P,som;) < K then {save a new compilation
sequence with a bounded cost if the cost is bounded
by K}

SET «— SET U{som;}

stop «— false

else{Generate all possible codes and choose the be$t one
best — ¢ {best code optimizatidn
time «— oo {best performance
for all m € M do
if t(n,m) < time then

end if best «— m
end for time «— t(n,m)
end if end if
visited[s] < true end for
end for apply thebest transformation to the node
end while end if

/* now, we look for a compilation sequence that produces a pro
gram with the bounded execution time */
exists_solution «— false
forall s € SET do
if t(P,s) <Tthen
exists_solution < true

program parts in intermediate form. When a native code geioer
for a program part is carried out, there is no way to re-oparguch
program portion, and the process continues for other sedstuntil
finishing the whole tree. Note that the optimization prodessach

Ge.tf“m s sub-tree is applied by a finite set of program transformatiolm
en((ejnforl other words, generative compilers look for local “optindZzeode

instead of a global optimized program.

This program optimization process as described by Algorith
computes the best compilation phase greedily. Adding backt
ing changes complexity but the process still terminatesteMyen-
erally, generative compilers making the assumption thgtiseces
of best optimized codes are best optimized sequences fitiilre o
pass generative compiler description. For example, th&R8PI
project in [14] is a generative compiler. It performs a locg+

if —mexists_solution then
print “No solution exists to Problem 5”
end if

phases (to 10 or 15 as example). Consequently, the numbesef p
sible combinations becomes bounded which makes the pradfiem

phase ordering decidable. Algorithm 1 can be used to genérat
best compilation sequence if we consider a cost functionfeed
number of phases.

The next section presents another simplified case in phase-or

timization to each node. SPIRAL optimizes FFT formulaenfro
the formula level, by trying different decomposition ofdarFFTs.

Instead of a program, SPIRAL starts from a formula, and the op
timizations considered are decomposition rules. From entde

ing, which is generative compilation. tree, SPIRAL recursively applies a set of program transédioms
at each node, starting from the leaves, generates C codrjteget
and measures its performance. Using dynamic programmiag st
egy’, composition of best performing formulae are considered as
best performing compositions.

As can be seen, finding a compilation sequence in generative
compilation that produces the fastest program is a decdatab-
lem (Algorithm 2). Since the size of intermediate repreagoh
forms decreases at each local application of program toamst-
tion, we are sure that the process of program optimizatiomite
nates when all intermediate forms have been transformeedtieen

4.2 One-Pass Generative Compilers

Generative compilation is a subclass of iterative comipitatin
such simplified classes of compilers, the code of an inteiated
program is optimized and generated in a one pass travershéof
abstract syntax tree. Each program part is treated andldtads
to a final code without any possible backtracking in the cople o
timization process. For instance, we can take the case ob-a pr
gram given as an abstract syntax tree. A set of compilati@seh
treats each program paite. each sub-tree, and generates a na-
tive code for such part. Another code optimization module ca
longer re-optimize the already generated program partesany
optimization module in generative compilation takes asifrgnly

5The latest version of SPIRAL use more elaborate stratebigts,
still does no resort to exhaustive search/test.
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Fixed Parameters
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C3 Generative Compilatio
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Compilation with Cost Mode!
Decidable Problem

Ex: reference [5,12

Figure 1: Classes of Phase-Ordering Problems

codes. In other terms, the number of possible distinct pagsea
program becomes finite and bounded as shown in Algorithmr2: fo
each node of the abstract syntax tree, we apply locally desougle
optimization (we iterate over all possible code optimiaatmod-
ules and we pick up the one that produces the best perfornznce
cording to the chosen performance model). Furthermore,ode c
optimization sequence is searched locally (only a sing$s jEmap-
plied). Thus, if the total number of nodes in the abstractayn
tree is equal tay, then the total number of applied compilation se-
guences does not excepl| x 7.

Of course, the decidability of one-pass generative congpilees
not prevent them from having potentially high complexitgch lo-
cal code optimization may be exponential (if it tackles NiPaplete
problem for instance). The decidability result only proveat, if

we have a high computation power, we know that we can compute

the optimal code after a bounded compilation time (possiix).

This first part of the article investigates the decidabifitpblem
of phase ordering in optimizing compilation. Figure 1 syedizes
a whole view of the different classes of the investigatedlems
with their decidability results. The largest class of thexgd or-
dering problem that we consider, denoted®y, assumes a finite
set of program transformations with possible optimizatiamam-
eters (to explore). If the performance prediction functisrarbi-
trary, typically if it requires program execution or simtita, then
this problem is undecidable. The second class of the phaigs-or
ing problem, denoted by’ C C1, has the same hypothesis as
C1 except that the optimization parameters are fixed. The prob-
lem is undecidable too. However, we have identified two ceuliel
classes of phase ordering problem which @eandCy explained
as follows. The clas€'s C C> considers one-pass generative com-
pilation ; the program is taken as an abstract syntax tre@ jAshd
code optimization applies a unique local code optimizatmdule
on each node of the AST. The claSs C C- takes the same as-
sumption ag’> plus an additional constraint which is the presence
of a cost model: if the cost model is a discrete increasingtfan,
and if the cost of the code optimization is bounded, thanis a
class of decidable phase ordering problem.

The next section investigates another essential questiopti-
mizing compilation, which is parameters space exploration

5. COMPILER OPTIMIZATION PARAME-
TERS SPACE EXPLORATION

Nowadays, many compiler optimization methods are paraneetr
For instance, loop unrolling requires an unrolling degteep block-
ing requires a blocking degree as well, etc. Actually, thenplex-
ity of phase ordering problem does not allow to explore jyittie
the best sequence of the compilation steps and the best mambi
tions of modules parameters. Usually, the community tioefnid
the “best” parameter combination when the compilation saeqa
is fixed. This section is devoted to study the decidabilitysath
problem.

5.1 Towards a Theoretical Model

First, we suppose that we haves M™ a given sequence of op-
timizing modules belonging to a finite s&f. We assume thatis
composed ofi compilation sequences.

We associate for each optimization module € M a unique
integer parametek; € N. The set of all parameters is grouped
inside a vector? € N”, such that the” component of? is the
parameterk; of the m;, the'" module inside the considered se-
guences. If the sequence contains multiple instances of the same
optimization modulen, the parameter of each instance may have
a distinct value from those of the other instances.

For a given prograrf®, applying a program transformation mod-
ulem € M requires a parameter value. Then, we write the trans-

formed program a®’ = m(P, ?).

As in the previous sections devoted to the phase orderinig-pro
lem, we assume here the existence of a performance evaluatio
function ¢ that predicts (or evaluates) the execution time of a pro-
gramP having I as input data. We denotéP, I) the predicted
execution time. The formal problem of computing the besapar
eter values of a given set of program transformations in rotole
achieve the best performance can be written as follows.

PB.6 (BESTPARAMETERS). Lett be afunction that predicts
the execution time of any prografhgiven input datal. Let M be
a finite set of program transformations an@ particular optimiza-
tion sequence. Does there exist an algoritin, that solves the
following problem ?vT" € N an execution time (in processor clock

cycles),vP a program,VI input data, A; s(P,I,T) = ¥ such
—
thatt(s(P, k),I) < T.

This general problem cannot be addressed as it is, sincenthe a
swer depends on the shape of the functionin this paper, we
assume that the performance prediction function is builabyal-
gorithm a, taking s and P as parameters. Moreover, we assume
the performance function = a(P, s) built by a takes k and I
as parameters and is a polynomial function. Therefore, ¢énfop
mance of a prograr® with input I and optimization parameters
¥ is a(P,s), ?). We discuss about the choice of a polyno-
mial model after the statement of the problem. We want tod#eci
whether there are some parameters for the optimization rasdu
that make the desired performance bound reachable:

PB. 7 (MODIFIED BESTFPARAMETERS). Let M be a finite
set of program transformations arnda particular optimization se-
quence ofM™*. Leta be an algorithm that builds a polynomial
performance prediction function, according to a prograntamn
optimization sequence. For all progran®, for all inputs I and



performance bound’, we define the set of parameters as:
Poo(P,1,T) = {Ka(P,s)(k , 1) < T}.
Is P, +(P,I,T) empty ?

As noted earlier, choosing an appropriate performance hisde
a central decision to define whether Problem 6 is decidabiebr
For instance, Problem 7 considers polynomial functionsictvh
are a family of usual performance models (arbitrary linegres-
sion models for instance). Even a simple static model of derap
ity counting assignements evaluates usual algorithms patyno-
mials (23 for a straightforward implementation of square matrix-
matrix multiply for instance). With such a simple model, groly-
nomial can be generated. It is assumed that a realisticrpesftce
evaluation function would be as least as difficult as a patyiad
function. Unfortunately, the following lemma shows that i an
arbitrary polynomial function, then Problem 7 is undeciéab

The following lemma states that Problem 7 is undecidable if
there are at least 9 integer optimization parameters. Incoar
text, this requires 9 optimizations in the optimizing seage2 Note
that this number is constant when considering the best peteam
and is not a parameter itself. This number is fairly low conspa
to the number of optimizations found in state-of-the-armnpiers
(such asgcc or icc for instance). Now, ift is a polynomial and
there are less thamparameters (the user has switched off most op-
timizations for instance): if there is only one parametdt, finen
the problem is decidable. For a number of parameters bet®een
and 8, the problem is still open [17] and Matiyasevich cotujesd
it as undecidable.

LEMMA 3. The Modified Best-Parameters Problem is undecid-
able if the performance prediction functian= a(P, s) is an ar-
bitrary polynomial and if there are at least 9 integer optaaiion
parameters.

PROOF The proof is based on a result published in 1982: given
an arbitrary polynomialf with nine variables, Jones [10] proved
that there is no recursive function which can determine et
has a non-negative integer zero, in the sense that it findgicie
zero or returns null otherwise.

Finding parameter valueg such that, for an arbitrary polyno-

mial ¢ and for some given constant vallﬂet(?, I) < Tis equiv-
alent to finding the zeros of an arbitrary polynomial. Givepody-
nomial ¢, the polynomialT * t(Z,I) * (', I) reaches a value
lower thanT for somez only if 7 is a zero oft. This shows that
to find the values for the bound is as difficult as finding theoger
of a polynomial. Ifa generates arbitrary polynomials, according to
the value ofP, and there are at least 9 optimization parametéris (
not considered as a variable, as its value is constant) Muoelified
Best-Parameters Problem is undecidablel

5.2 Examples of Simplified Decidable Cases

Our formal problem Best-Parameters is the formal writingdj-of
brary optimizations. Indeed, in such area of program opations,
the applications are given with a training data set. Theapeetry
to find the best parameter values of optimizing modules dmsi
compiler usually with a given compilation sequence) thdtsan
the best performance. In this section, we show that somdi§iealp
instances of Best-Parameters problem becomes easilyathbeicA
first example is the OCEAN project [2], and a second one is the
ATLAS framework [19].

The OCEAN project [2] optimizes a given program for a given
data set by exploring all combinations of parameter val@egen-
tially, such value space is infinite. However, OCEAN resgrithe

Finite Number of Parameters
Infinite Parameters Space

Arbitrary Performance Prediction Model
Undecidable Problem

C1

Arbitrary Polynomial Performance Prediction Model

Undecidable Problem

Fixed Polynomial Performance Mode

Finite Parameters Space
Decidable Problem

Ex: ATLAS [19]

Finite Parameters Space
Decidable Problem

Ex : OCEAN project [2]

Figure 2: Classes of Best-Parameters Problems

exploration to finite set of parameter intervals. Consetjyethe
number of parameter combinations becomes finite, allowitty-a
ial exhaustive search of the best parameter values: eathipgt
program resulting from a particular value of the optimiratipa-
rameters is generated and evaluated. The one performirigsbes
chosen. Of course, if we use such exhaustive search, thraiajotg
compilation time become very high. So, one can provide effici
heuristics for exploring the bounded space of the param¢2dy.
Currently, this is outside the scope of our article.

ATLAS [19] is another simplified case of the Best-Parameter
problem. Inthe case of ATLAS, the optimization sequence ¥,
the programs to optimize are known (BLAS variants), and &ss
sumed that the performance does not depend on the valueiof the
put (independence w.r.t. the matrix and vector values). ddeer,
there is a performance model for the cache hierarchy (biasittee
size of the cache) that, combined to the dynamic performanak
uation, limits the number of program executions.( performance
evaluation) to do. For one level of cache and for matrix-iratr
multiplication, there are three levels of blocking conliedlby three
parameters, bounded by the cache size and a small numberof lo
interchanges possible (for locality). Exhaustive enurti@nanside
admissible values enable to find the best parameter value.

Figure 2 synthesizes a whole view of the different classehef
investigated problems with their decidability results. eTlargest
class of the best parameters exploration problem that weiden
denoted by, assumes a finite set of optimization parameters with
unbounded values (infinite space); The compiler optimirate-
guence is assumed fixed. If the performance prediction imct
is arbitrary, then this problem is undecidable. The secdasisoof
the best parameters exploration problem, denotedby Ci, has
the same hypothesis @3 except that the performance model is
assumed as an arbitrary polynomial function. The problemmis
decidable too. However, a trivial identified decidable slasthe
case of bounded (finite) parameters space. This is the cabe of
tools ATLAS (clas’'s) and OCEAN (clasg’s).



6. FUTURE WORK

The phase ordering problem studied in this article does radem
any assumption about the kind or the family of the consideree
gram transformations. Potentially, we can have an unbalilolet
finite) number of optimizing modules inside a compiler, asj@s
they guarantee us the best performance. Consequentlyizthefs
the compiler can be as large as we require. In a future work, we
want to explore the phase ordering problem with an additioma
striction which is the granted size to a compiler. For thispose,
and thanks to the results presented in [1], we will resthetfamily
of program transformations to the polyhedral ones. Inddedau-
thors in [1] give a matrix coding of all polyhedral transfaations
and their possible combinations: the size of such matrixnigefi
and bounded, while its elements define all possible affinghesl
dral program transformations. This matrix coding has theeffie
for consuming a bounded space and allowing to ease the cémpos
tion of program transformation.

Another future work to this article is to study the phase arug
problem with another kind of restriction. Instead of limiji the
size of the optimizing compiler, we can put a limit on the sife
the final transformed program. Does phase-ordering becawe d
cidable in this case ?

Finally, an important open problem remains the definitioraof
general family of performance prediction functions thakesthe
phase ordering problem decidable. In this paper, we pravatift
such function requires the execution or the simulation efd¢bn-
sidered program, then the phase ordering problem becordss un
cidable. But what if the performance predictor does not ireuei-
ther the execution nor the simulation of the program ? Of seur
if the performance modeling is too trivial or too simple (s®ec-
tion 4), it is highly probable that the phase ordering prablee-
comes decidable, but in this case the model would not fit take re
program performance. So, we require to define a more geraral f
ily of performance prediction functions, that are efficienbugh to
accurately model the real program performance while atgwb
have a decidable phase ordering problem. As a first step, We wi
consider for instance linear regression models.

7. CONCLUSION

As far as we know, our article is the first formalisation of two
known problems: the phase ordering in optimizing compilatnd
the compiler optimization parameters space explorationr. &bti-
cle sets down the formal definition of the phase ordering lgrob
in many compilation schemes such as static compilatioratite
compilation and library generation. Given an input datafeethe
considered program, the defined phase ordering problemfisdo
a sequence of code transformations (taken from a finite seidd
optimizations) that increase the performance up to a fixgebtilke.
Alternatively, we can consider too parametric code optation
modules, and then we can define the formal problem of best pa-
rameters space exploration. However in this case, the datigpi
sequence is fixed, and the searching process looks for thedms
optimization parameters that increase the program pedno® up
to a fixed objective.

We showed that the decidability of both these problems Hliig
correlated to the function used to predict or to evaluatetbgram
performance. If such function is an arbitrary polynomiahdtion,
or if it requires to execute a Turing machine (by simulatiorbg
real execution on the considered underlying hardware)) tiath
these problems are undecidable. This means that we canhreexer

automatic solutions for them. We provided some simplifieskesa
that make these problems decidable: for instance, we shthaed
we include a compilation cost in the model (compilation tjmem-
ber of generated programs, number of compilation sequeate},
then the phase ordering becomes obviously decidable. 3ikat
all actual ad-hoc iterative compilation techniques redltly Also,
we showed that if the parameters space is explicitly constlas
bounded, then the best compiler parameter space exploatid-
lem becomes trivially decidable too.

Our article proves then that the requirement to execute sinte
ulate a program is a major fundamental drawback for itegativm-
pilation and for library generation in general. Indeed,ytiwy to
solve a problem that can never have an automatic solutiom- Co
sequently, it is impossible to bring a formal method thad\a$f to
accurately compare between the actual ad-hoc or practiegh-m
ods of iterative compilation or for library generation[2, 115, 24].
The experiments that can be made to highlight the efficiericy o
a method can never bring a guarantee that such iterativeosheth
would be efficient for other benchmarks. As a corollary, wa ca
safely state that, since it is impossible to mathematicadiypare
between iterative compilation methods (or between libgeyera-
tion tools) then we can consider that any proposed methodfis s
ficiently “good” for only its set of experimented benchmasksd
cannot be generalized as a concept or as a method.

Our article proves too that using iterative or dynamic megho
for compilation is not fundamentally helpful for solvingetigeneral
problem of code optimization. Such dynamic and iterativéhoes
define distinct optimization problems that are unfortuhyates un-
decidable as static code optimizations, even with fixedtidpta.

However, our article does not yet give information aboutdbe
cidability of phase ordering or parameters space explumdfithe
performance prediction function does not require prograeca-
tion. Simply because the answer depends on the nature of such
function. If such function is too simple, then it is highlyoma-
ble that the phase ordering becomes decidable but the exgeri
tal results would be weak (since the performance predictiodel
would be inaccurate). The problem of performance modelient
becomes the essential question. As far as we know, we did not
find any model in the literature that has been formally vaéday
statistical fitting checks as explained in [18].
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