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Abstract

In this paper, we propose a finite-element scheme for solving numerically the equations of
a transient two dimensional grade-two fluid non-Newtonian Rivlin-Ericksen fluid model. This
system of equations is considered an appropriate model for the motion of a water solution
of polymers. As expected, the difficulties of this problem arise from the transport equation.
As one of our aims is to derive unconditional a priori estimates from the discrete analogue of
the transport equation, we stabilize our scheme by adding a consistent stabilizing term. We
use the IP2 − IP1 Taylor-Hood finite-element scheme for the velocity v and the pressure p,
and the discontinuous IP1 finite element for an auxiliary variable z. The error is of the order
of h3/2 + k, considering that the discretization of the transport equation loses inevitably a
factor h1/2.

Keywords Grade-two fluid, non-linear problem, incompressible flow, time and space dis-
cretizations.

1 Introduction

This article is devoted to the numerical solution of the equation of a grade two fluid non-
Newtonian Rivlin-Ericksen fluid ([16]) :

∂

∂t
(u − α∆u) − ν∆u + curl(u − α∆u) × u + ∇p = f in ]0, T [×Ω, (1)

with the incompressibility condition :

div u = 0 in ]0, T [×Ω, (2)
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where the velocity u = (u1, u2, 0),

divu =
∂u1

∂x1
+

∂u2

∂x2
, curl u = (0, 0, curlu), curl u =

∂u2

∂x1
− ∂u1

∂x2
,

here f denotes an external force, ν the viscosity and α is a constant normal stress modulus.

This model is considered an appropriate one for the motion of water solutions of polymers ([7]).
The case α = 0 represents the transient Navier-Stokes problem. Here, p is not the pressure, but
the formula which gives the pressure from u and p is complex. To simplify, we refer to p as the
“pressure” in the sequel. According to Dunn and Fosdick’s work [8], in order to be consistent
with thermodynamics, a grade-two fluid must satisfy α ≥ 0 and ν ≥ 0. The reader can refer to
[7] for a discussion on the sign of α.

The equations of a grade two fluid model have been studied by many authors (Videmann gives
in [17] a very extensive list of references), but the best construction of solutions for the problem,
with homogeneous Dirichlet boundary conditions and mildly smooth data, is given by Ouazar
[15] and by Cioranescu and Ouazar [3], [4]. They prove existence of solutions, with H3 regularity
in space, by looking for a velocity u such that

z = curl(u − α∆u)

has L2 regularity in space, introducing z as an auxiliary variable and discretizing the equations
of motion by Galerkin’s method in the basis of the eigenfunctions of the operator curl curl(u−
α∆u). This choice allows one to recover estimates from the transport equation in two dimensions

α
∂z

∂t
+ νz + αu · ∇z = ν curl u + α curl f , (3)

whenever curl f belongs to L2(Ω)3. In this case, z = (0, 0, z) with z = curl(u − α∆u). Hence,
z is necessarily orthogonal to u.

In this article, we propose finite-element schemes for solving numerically the equation of a two
dimensional grade-two fluid model. Defining z as above, the equations of motion becomes :

∂

∂t
(u − α∆u) − ν∆u + z × u + ∇p = f , (4)

and

α
∂z

∂t
+ νz + αu · ∇z = ν curlu + α curlf , (5)

the Dirichlet boundary condition :

u = 0 on ]0, T [×∂Ω, (6)

and the initial conditions :
u(x, t) = 0, and z(x, t) = 0. (7)

This problem is analyzed by Girault and Saadouni [10]. If we want to derive an unconditional a
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priori estimate for the discrete analogue of (3), we add to the left-hand side of this last equation
a stabilizing, consistent term, so it becomes

α
∂z

∂t
+ νz + αu · ∇z +

α

2
(divu)z = ν curlu + α curl f . (8)

In this work, we propose to discretize this last equation, as Girault and Scott did in [11], by
an upwind scheme based on the discontinuous Galerkin method of degree one introduced by
Lesaint and Raviart in [12]. Let Xh, Mh and Zh be the discrete spaces for the velocity and the
pressure. We approximate the velocity and the pressure by the standard IP2 − IP1 Taylor-Hood
scheme, where IPk denotes the space of polynomials of degree k in two variables. Also, in each
element of the triangulation, zn

h is a polynomial of degree one, without continuity requirement
on interelement boundaries. Our discrete system corresponding to (4) and (8) is :

Find un+1
h ∈ Xh, pn+1

h ∈ Mh and zn+1
h ∈ Zh such that

∀vh ∈ Xh,
1

k
(un+1

h − un
h,vh) +

α

k
(∇(un+1

h − un
h),∇vh) + ν(∇un+1

h ,∇vh)

+(zn
h × un+1

h ,vh) − (pn+1
h , divvh) = (fn+1,vh),

(9)

∀θh ∈ Zh,
α

k
(zn+1

h − zn
h , θh) + ν(zn+1

h , θh) + c(un+1
h ; zn+1

h , θh)

= ν(curlun+1
h , θh) + α(curlfn+1, θh),

(10)

where c(un+1
h ; zn+1

h , θh) is the discrete non-linear part of the transport equation and the func-
tions of Xh vanish on ∂Ω. This system is linearized in the sense that in (9), knowing zn

h , we
calculate un+1

h and pn+1
h with a linear equation. Then, we calculate zn+1

h with the second linear
equation (10). For both the velocity and pressure discretizations, the error is of order h3/2 and
k. This is the best that can be achieved, considering that the discretization of the transport
equation loses inevitably a factor h1/2. Other finite elements can be used, cf. Crouzeix and
Raviart [6], Brezzi and Fortin [2] and Girault and Raviart [9].

Now, we recall some notation and basic functional results. As usual, for handling time-dependent
problems, it is convenient to consider functions defined on a time interval ]a, b[ with values in
a functional space, say X (cf. Lions and Magenes [13]). More precisely, let ‖ . ‖X denote the
norm of X; then for any r, 1 ≤ r ≤ ∞, we define

Lr(a, b; X) = {f mesurable in ]a, b[;

∫ b

a
‖ f(t) ‖r

X dt < ∞}

equipped with the norm

‖ f ‖Lr(a,b;X)= (

∫ b

a
‖ f(t) ‖r

X dt)1/r,

with the usual modifications if r = ∞. It is a Banach space if X is a Banach space.
Let (k1, k2) denote a pair of non-negative integers, set |k| = k1 + k2 and define the partial
derivative ∂k by

∂kv =
∂|k|v

∂xk1

1 ∂xk2

2

.
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We denote by :
Wm,r(Ω) = {v ∈ Lr(Ω); ∂kv ∈ Lr(Ω) ∀|k| ≤ m},

This space is equipped with the seminorm

|v|W m,r(Ω) = [
∑

|k|=m

∫

Ω
|∂kv|rdx]1/r,

and is a Banach space for the norm

‖ v ‖W m,r(Ω)= [
∑

0≤|k|≤m

|v|rW k,r(Ω)dx]1/r.

When r = 2, this space is the Hilbert space Hm(Ω). In particular, the scalar product of L2(Ω)
is denoted by (. , .).

Similarly, L2(a, b; Hm(Ω)) is a Hilbert space and in particular L2(a, b; L2(Ω)) coincides with
L2(Ω×]a, b[). The definitions of these spaces are extended straightforwardly to vectors, with the
same notation, but with the following modification for the norms in the non-Hilbert case. Let
u = (u1, u2); then we set

‖ u ‖Lr(Ω)= [

∫

Ω
‖ u(x) ‖r dx]1/r,

where ‖ . ‖ denotes the Euclidean vector norm.

For functions that vanish on the boundary, we define for any r ≥ 1

W
1,r
0 (Ω) = {v ∈ W 1,r(Ω); v|∂Ω = 0}

and recall Sobolev’s imbeddings in two dimensions: for each r ∈ [2,∞[, there exits a constant
Sr such that

∀v ∈ H1
0 (Ω) , ‖ v ‖Lr(Ω)≤ Sr|v|H1(Ω), (11)

where
|v|H1(Ω) =‖ ∇v ‖L2(Ω) . (12)

When r = 2, (11) reduces to Poincaré’s inequality and S2 is Poincaré’s constant.

The case r = ∞ is excluded and is replaced by: for any r > 2, there exists a constant Mr such
that

∀v ∈ W
1,r
0 (Ω), ‖ v ‖L∞(Ω)≤ Mr|v|W 1,r(Ω). (13)

We have also in dimension 2,

||g||L4(Ω) ≤ 21/4 ‖ g ‖1/2
L2(Ω)

‖ ∇g ‖1/2
L2(Ω)

. (14)

Owing to Poincaré’s inequality, the seminorm |.|H1(Ω) is a norm on H1
0 (Ω) and we use it to define

the dual norm:

‖ f ‖H−1(Ω)= sup
v∈H1

0
(Ω)

〈f, v〉
|v|H1(Ω)

,

where 〈., .〉 denotes the duality pairing between H−1(Ω) and H1
0 (Ω).

Also, we introduce the space:

L2
0(Ω) = {q ∈ L2(Ω);

∫

Ω
q dx = 0},
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2 The exact problem

Let Ω be a bounded polygon in two dimensions with boundary ∂Ω and let ]0, T [ be a given
time-interval. We want to find a vector velocity u, a scalar pressure p and an auxiliary scalar
function z solution of

∂

∂t
(u − α∆u) − ν∆u + z × u + ∇p = f in ]0, T [×Ω, (15)

α
∂z

∂t
+ νz + αu · ∇z = ν curlu + α curlf in ]0, T [×Ω, (16)

u = 0 on ]0, T [×∂Ω, (17)

u(x, t) = 0 and z(x, t) = 0, (18)

where z × u = (−zu2, zu1). Here ν > 0 and α > 0 are given constants.

A straightforward formulation of (15)–(18) is :
Find (u(t), p(t), z(t)) ∈ L∞(0, T ; H1

0 (Ω)2)×L2(0, T ;L2
0(Ω))×L∞(0, T ;L2(Ω)), u′ ∈ L2(0, T ;H1

0 (Ω)2)
such that

∀v ∈ H1
0 (Ω), (u′(t),v) + α(∇u′(t),∇v) + ν(∇u(t),∇v)

+(z(t) × u(t),v) − (p(t), div v) = (f(t),v) in Ω×]0, T ],
(19)

∀q ∈ L2
0(Ω), (q(t), divu(t)) = 0, (20)

α
∂z

∂t
+ νz + αu · ∇z = ν curlu + α curlf in ]0, T [×Ω, (21)

u(0) = 0 and z(0) = 0 in Ω. (22)

The following theorem is established in [10]:

Theorem 2.1. Let Ω be a lipschitz polygon. For all ν > 0 and f ∈ L2(0, T ; L2(Ω)2) such that

curl f ∈ L2(0, T ; L2(Ω)), (15)–(18) has at least one solution (u, z, p) that satisfies the following

estimates :

||z||L∞(0,T ;L2(Ω)) ≤
√

2
S2

ν
||f ||L2(0,T ;L2(Ω)2) +

|α|
ν
|| curl f ||L2(0,T ;L2(Ω)),

||u||L∞(0,T ;H1(Ω)2) ≤
S2

ν
||f ||L2(0,T ;L2(Ω)2),

||p||L2(0,T ;L2(Ω)) ≤
1

β
(S2||f ||L2(0,T ;L2(Ω)2) + S2

4 ||u||L∞(0,T ;H1(Ω)2)||z||L∞(0,T ;L2(Ω))).

3 A discontinuous upwind scheme

Let h > 0 be a discretization parameter and let Th be a regular family of triangulation of Ω,
consisting of triangles κ with maximum mesh size h: There exists a constant σ0, independent
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of h, such that ∀κ ∈ Th,
hκ

ρκ
≤ σ0, where hκ is the diameter and ρκ is the diameter of the ball

inscribed in κ. We introduce ρmin = min
κ

ρk. As usual, the triangulation is such that any two

triangles are either disjoint or share a vertex or a complete side.
We first recall how upwinding can be achieved by the discontinuous Galerkin approximation
introduced in [12]. Let Zh be the discontinuous finite-element space :

Zh = {θh ∈ L2(Ω);∀κ ∈ Th, θh|κ ∈ IP1}.

There exists an approximation operator, [5], Rh ∈ L(W 1,p(Ω);Zh ∩ C0(Ω)) such that for any
p ≥ 1, for m = 0, 1 and 0 ≤ l ≤ 1

∀z ∈ W l+1,p(Ω), |Rh(z) − z|W m,p(Ω) ≤ Chl+1−m|z|W l+1,p(Ω).

Let uh be a discrete velocity in H1
0 (Ω)2, and for each triangle κ, let

∂κ− = {x ∈ ∂κ; αuh · n < 0},

where n denotes the unit exterior normal to ∂k. Note that, for all triangles κ of Th, ∂κ− only
involves interior segments of Th because uh = 0 on ∂Ω. Then, the non-linear term α[(u ·∇z, θ)+
1

2
(div u z, θ)] is approximated by

c(un+1
h ; zn+1

h , θn+1
h ) =

α

2

∫

Ω
divun+1

h zn+1
h θn+1

h dx +
∑

κ∈Th

(

∫

κ
α(un+1

h · ∇zn+1
h )θn+1

h dx

+

∫

∂κ−

|αun+1
h · n|(zn+1

h,int − zn+1
h,ext)θ

n+1
h,intds

)

.

The subscript int (resp. ext) refers to the trace on the segment ∂κ of the function taken inside
(resp. outside) κ. Note that in the above sum, the boundary integrations act in fact over com-
plete interior segments.

On the other hand, let us recall the standard Taylor-Hood discretization of the velocity and
pressure. The discrete space of the pressure is :

Mh = {qh ∈ H1(Ω) ∩ L2
0(Ω); ∀κ ∈ Th, qh ∈ IP1}.

There exists an operator rh ∈ L(L2
0(Ω);Mh) such that for 0 ≤ l ≤ 2,

∀q ∈ H l(Ω) ∩ L2
0(Ω), ||rh(q) − q||L2(Ω) ≤ Chl||q||Hl(Ω).

The discrete velocity space is :

Xh = {vh ∈ C0(Ω); ∀κ ∈ Th,vh|κ ∈ IP2,vh|∂Ω = 0},

and let
Vh = {vh ∈ Xh; (qh, divvh) = 0 ∀q ∈ Mh}.
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There exists an operator Ph ∈ L(H1
0 (Ω)2; Xh), such that



































∀v ∈ H1
0 (Ω)2, ∀κ ∈ Th, ∀qh ∈ Mh,

∫

κ
qh div(Ph(v) − v)dx = 0,

for all number p ≥ 2; ∀v ∈ H1
0 (Ω)2, ||Ph(v) − v||Lp(Ω) ≤ Ch2/p|v|H1(Ω),

for all number p ≥ 2, 1 ≤ s ≤ 3,m = 0 or 1, ∀v ∈ [W s,p(Ω) ∩ H1
0 (Ω)]2,

||Ph(v) − v||W m,p(Ω) ≤ Chs−m|v|W s,p(Ω).

(23)

We take fn+1(x) =
1

k

∫ tn+1

tn
f(t,x)dt. Then the discrete system corresponding to the formulation

(19)–(22) is :

Given (u0
h, z0

h) = (0, 0) and zn
h ∈ Zh, find (un+1

h , pn+1
h ) ∈ Xh × Mh such that :

∀vh ∈ Xh,
1

k
(un+1

h − un
h,vh) +

α

k
(∇(un+1

h − un
h),∇vh) + ν(∇un+1

h ,∇vh)

+ (zn
h × un+1

h ,vh) − (pn+1
h , divvh) = (fn+1,vh),

(24)

∀qh ∈ Mh, (qh,div un+1
h ) = 0. (25)

Once we have un+1
h , we compute zn+1

h by solving the system :

∀θh ∈ Zh,
1

k
(zn+1

h − zn
h , θh) + ν(zn+1

h , θh) + c(un+1
h ; zn+1

h , θh)

= ν(curlun+1
h , θh) + α(curlfn+1, θh).

(26)

In order to prove the existence of solutions of (24)–(26), let us recall the following identity
established by Lesaint and Raviart [12] :

Lemma 3.1. For all vn
h ∈ Xh, zn

h and θn
h in Zh, we have

c(vn
h ; zn

h , θn
h) =

∑

κ∈Th

(

−
∫

κ
α(vn

h · ∇θn
h)zn

hdx +

∫

∂κ−

α|vn
h · n|zn

h,ext(θ
n
h,ext − θn

h,int
)ds

)

−α

2

∫

Ω
(divvn

h)θn
hzn

hdx.

For θn
h ∈ H1(Ω), we have

c(vn
h ; zn

h , θn
h) = −

∫

Ω
α(vn

h · ∇θn
h)zn

hdx − α

2

∫

Ω
(div vn

h)θn
hzn

hdx.

For θn
h = zn

h ∈ Zh we have

c(vn
h ; zn

h , zn
h) =

1

2

∑

κ∈Th

∫

∂κ−

|αvn
h · n|(zn

h,ext − zn
h,int

)2ds.

Theorem 3.2. Given fn+1 ∈ L2(Ω)2 with curl fn+1 ∈ L2(Ω), for all (un
h, zn

h) ∈ Xh ×Zh, there

exists a unique solution (un+1
h , pn+1

h , zn+1
h ) of problem (24)–(26) that belongs to Xh × Mh × Zh.

7



Proof. On the one hand, for zn
h ∈ Zh, it is clear that problem (24)–(25) has a unique solution

(un+1
h , pn+1

h ) as a consequence of the coerciveness of the corresponding bilinear form on Xh×Xh.
On the other hand, the last lemma proves that the bilinear form corresponding to the equation
(26) is also coercive on Zh × Zh. Then (26) has a unique solution.

Theorem 3.3. We assume that f ∈ L2(0, T ; L2(Ω)2) with curl f ∈ L2(0, T ; L2(Ω)). The solu-

tion of the problem (24)–(26) satisfies :

||uh||L∞(0,T ;H1(Ω)2) ≤ C1||f ||L2(0,T ;L2(Ω)2),

||zh||2L∞(0,T ;L2(Ω)) ≤ C2||f ||2L2(0,T ;L2(Ω)2) + C3|| curl f ||2L2(0,T ;L2(Ω)),

||ph||2L2(0,T ;L2(Ω)) ≤ C4||f ||2L2(0,T ;L2(Ω)2) + C5||uh||2L∞(0,T ;H1(Ω)2) + C6||zh||2L∞(0,T ;L2(Ω))||uh||2L∞(0,T ;H1(Ω)2),

where Ci, i = 1, . . . , 6 are positive constants that depend on Ω and T .

Proof. On the one hand, we take vh = un+1
h in (24) and we obtain :

1

2
||un+1

h ||2L2(Ω) −
1

2
||un

h||2L2(Ω) +
α

2
|un+1

h |2H1(Ω) −
α

2
|un

h|2H1(Ω) + νk|un+1
h |2H1(Ω)

≤ kε

2
||fn+1||2L2(Ω) +

kS2
2

2ε
|un+1

h |2H1(Ω).

We choose ε =
S2

2

2ν
and sum over n = 0, . . . i. We obtain :

1

2
||ui

h||2L2(Ω) +
α

2
|ui

h|2H1(Ω) ≤
i

∑

n=1

kS2
2

4ν
||fn||2L2(Ω) ≤

N
∑

n=1

kS2
2

4ν
||fn||2L2(Ω).

This implies the first estimate :

||uh||2L∞(0,T ;H1(Ω)2) = sup
0≤i≤N

|ui
h|2H1(Ω) ≤

S2
2

2να
||f ||2L2(0,T ;L2(Ω)2).

On the other hand, we choose θh = zn+1
h in (26), use the third relation in Lemma 3.1 and we

obtain :

α

2
||zn+1

h ||2L2(Ω) −
α

2
||zn

h ||2L2(Ω) + νk||zn+1
h ||2L2(Ω) ≤

kν

2ε1
|| curl un+1

h ||2L2(Ω)

+
kνε1

2
||zn+1

h ||2L2(Ω) +
kα

2ε2
|| curl fn+1||2L2(Ω) +

kαε2

2
||zn+1

h ||2L2(Ω),

taking ε1 = 1, ε2 =
ν

α
and summing over n = 0, . . . , i, this becomes :

α||zi
h||2L2(Ω) ≤ νT ||uh||2L∞(0,T ;H1(Ω)2) +

α2

ν
|| curl f ||2L2(0,T ;L2(Ω)).

Then we obtain the second estimate :

||zh||2L∞(0,T ;L2(Ω)) ≤
νT

α
||uh||2L∞(0,T ;H1(Ω)2) +

α

ν
|| curl f ||2L2(0,T ;L2(Ω)).
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The third estimate is obtained in two steps: First, we take the function test vn+1
h =

un+1
h − un

h

k
in (24). We obtain :

1

k2
||un+1

h − un
h||2L2(Ω) +

α

k2
|un+1

h − un
h|2H1(Ω) +

ν

2
|un+1

h |2H1(Ω) +
ν

2k2
|un+1

h − un
h|2H1(Ω)

≤ 1

2ε1
||fn+1||2L2(Ω) +

ε1

2k2
||un+1

h − un
h||2L2(Ω) +

1

2ε2
||zn

h ||2L2(Ω)||un+1
h ||2L4(Ω) +

S2
4ε2

2k2
|un+1

h − un
h|2H1(Ω).

Then by choosing ε1 = 2 and ε2 =
α

2S2
4

we obtain :

|u
n+1
h − un

h

k
|2H1(Ω) ≤

1

2α
||fn+1||2L2(Ω) +

2S2
4

α2
||zn

h ||2L2(Ω)||un+1
h ||2L4(Ω) +

2ν2

α2
|un+1

h |2H1(Ω).

Next, owing that the pair (Xh,Mh) satisfies a uniform discrete inf-sup condition, we associate
with pn+1

h ∈ Mh the function vh ∈ Xh defined by















∀wh ∈ Vh, (∇vh,∇wh) = 0,

∀qh ∈ Mh, (divvh, qh) = (pn+1
h , qh),

|vh|H1(Ω) ≤
1

β
||pn+1

h ||L2(Ω),

(27)

we substitute this vh into (24) and we obtain :

||pn+1
h ||2L2(Ω) ≤

P + α

2ε1
|u

n+1
h − un

h

k
|2H1(Ω) +

P + α

2β2
ε1||pn+1

h ||2L2(Ω)) +
ν

2ε2
|un+1

h |2H1(Ω)

+
νε2

2β2
||pn+1

h ||2L2(Ω)) +
1

2ε3
||zn

h ||2L2(Ω)||un+1
h ||2L4(Ω)

+
S2

4ε3

2β2
||pn+1

h ||2L2(Ω)) +
1

2ε4
||fn+1||2L2(Ω) +

P2ε4

2β2
||pn+1

h ||2L2(Ω).

By choosing ε1 =
β2

4(P + α)
, ε2 =

β2

4ν
, ε3 =

β2

4S2
4

and ε4 =
β2

4P2
and summing over n from 0 to

N − 1, we obtain the third estimate.

4 Error estimates

Theorem 4.1. Under the assumptions u ∈ L∞(0, T ;W 1,4(Ω)2)∩L2(0, T ; H3(Ω)2), u′ ∈ L2(0, T ; H3(Ω)2),
p ∈ L2(0, T ; H2(Ω)), z ∈ L∞(0, T ;L2(Ω)) and z′ ∈ L2(0, T ;L2(Ω)), there exist positive constants

C and C ′ that depend on u, z,Ω and T such that :

1

2
||uN

h − u(tN )||2L2(Ω) +
α

2
||∇uN

h −∇u(tN )||2L2(Ω) +
ν

2

N−1
∑

n=0

k|un+1
h − u(tn+1)|2H1(Ω)

≤ C(h4 + k2) + C ′
N−1
∑

n=0

k||zn+1
h − z(tn+1)||2L2(Ω).

(28)
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Proof. We consider (19), choose the function test vn+1
h = un+1

h − Phu(tn+1), integrate from tn

to tn+1 and take the difference between this and (24) multiplied by k. We obtain :

(

(un+1
h − u(tn+1)) − (un

h − u(tn)),vn+1
h

)

+ α
(

∇(un+1
h − u(tn+1)) −∇(un

h − u(tn)),∇vn+1
h

)

+ν
(

k∇un+1
h −

∫ tn+1

tn
∇u(t)dt,∇vn+1

h

)

−
(

kpn+1
h −

∫ tn+1

tn
p(t)dt,div vn+1

h

)

+
(

kzn
h × un+1

h −
∫ tn+1

tn
z(t) × u(t)dt,vn+1

h

)

= 0.

Let us treat the terms in the left-hand side of this equation that we denote (ai), i = 1, ..., 5.

For the first term, we insert Phu(tn+1) and Phu(tn) and we split (a1) into two terms that
we treat separately. The first part is as follows :

(a1,1) =
1

2
||vn+1

h ||2L2(Ω) −
1

2
||vn

h ||2L2(Ω) +
1

2
||vn+1

h − vn
h ||2L2(Ω),

and the second part is as follows :

|(a1,2)| =
∣

∣

∣

(

∫ tn+1

tn
(Phu

′(τ) − u′(τ))dτ,vn+1
h

)
∣

∣

∣

≤ 1

2ε1
Ch4||u′||2L2(tn,tn+1;H2(Ω)2) +

S2ε1

2
k|vn+1

h |2H1(Ω).

We treat the second term (a2) as the first one and we obtain :

(a2,1) =
α

2
|vn+1

h |2H1(Ω) −
α

2
|vn

h |2H1(Ω) +
α

2
|vn+1

h − vn
h |2H1(Ω),

and

|(a2,2)| ≤
Cα

2ε2
h4||u′||2L2(tn,tn+1;H3(Ω)2) +

ε2α

2
k|vn+1

h |2H1(Ω).

For the third term (a3), we insert ∇Phu(tn+1) and ∇Phu(t) and we split it into three parts that
are treated successively as follows :

(a3,1) = νk|un+1
h − Phu(tn+1)|2H1(Ω),

|(a3,2)| = ν
∣

∣

∣

(

∫ tn+1

tn
∇Ph(u(tn+1) − u(t))dt,∇vn+1

h

)
∣

∣

∣
= ν

∣

∣

∣

(

∫ tn+1

tn
∇Phu

′(τ)(τ − tn)dτ,∇vn+1
h

)
∣

∣

∣

≤ νε3

2
√

3
k|vn+1

h |2H1(Ω) +
νC2k2

2ε3

√
3
||u′||2L2(tn,tn+1;H2(Ω)2),

and

|(a3,3)| = ν
∣

∣

∣

(

∇
∫ tn+1

tn
(Phu(t) − u(t))dt,∇vn+1

h

)∣

∣

∣

≤ νC2

2ε4
h4||u||2L2(tn,tn+1,H3(Ω)2) +

νε4

2
k|vn+1

h |2H1(Ω).

To study the fourth term, we use the fact that

∫

Ω
pn+1

h div(Phu(tn+1) − u(tn+1)) = 0,
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divu(tn+1) = 0 and

∫

Ω
pn+1

h divun+1
h = 0 and we obtain :

|(a4)| =
∣

∣

∣

(

∫ tn+1

tn
(rhp(t) − p(t))dt,divvn+1

h

)∣

∣

∣

≤ C1

2ε5
h4||p||2L2(tn,tn+1;H2(Ω)) +

ε5

2
k|vn+1

h |2H1(Ω).

Finally, for the last term (a5), we have (zn
h × un+1

h ,vn+1
h ) = (zn

h × Phu(tn+1),vn+1
h ), because

(a × b, b) = 0. But

zn
h × Phu(tn+1) − z(t) × u(t) = (zn

h − z(tn)) × Phu(tn+1) + z(tn) × Ph(u(tn+1) − u(t))

+z(tn) × (Phu(t) − u(t)) + (z(tn) − z(t)) × (u(t) − u(tn)) + (z(tn) − z(t)) × u(tn),

than (a5) is split into five parts that we treat successively.

The first part is as follows :

|(a5,1)| =
∣

∣

∣

∫ tn+1

tn
((zn

h − z(tn)) × Phu(tn+1),vn+1
h )dt

∣

∣

∣

≤ S2
4ε6

2
||Phu||2L∞(0,T ;H1(Ω)2) k||zn

h − z(tn)||2L2 +
S2

4

2ε6
k|vn+1

h |2H1(Ω).

≤ S2
4ε6

2
||u||2L∞(0,T ;W 1,4(Ω)2) k||zn

h − z(tn)||2L2 +
S2

4

2ε6
k|vn+1

h |2H1(Ω).

The second part is as follows :

|(a5,2)| =
∣

∣

∣
(z(tn) ×

∫ tn+1

tn
(Phu(tn+1) − Phu(t))dt,vn+1

h )
∣

∣

∣

=
∣

∣

∣
(z(tn) ×

∫ tn+1

tn
Phu

′(τ)(τ − tn)dτ,vn+1
h )

∣

∣

∣

≤ S2
4

2
√

3

(C ′′′

ε7
||z||2L∞(0,T ;L2(Ω))||u′||2L2(tn,tn+1;H2(Ω)2)k

2 + kε7|vn+1
h |2H1(Ω)

)

.

For the third part, we have

|(a5,3)| =
∣

∣

∣

∫ tn+1

tn
(z(tn) × (Phu(t) − u(t)),vn+1

h )dt
∣

∣

∣

≤ S2
4 ||z(tn)||L2(Ω)|vn+1

h |H1(Ω)

∫ tn+1

tn
|Phu(t) − u(t)|H1(Ω)dt

≤ C2S
2
4

2ε8
||z||2L∞(0,T ;L2(Ω))||u||2L2(tn,tn+1;H3(Ω)2)h

4 +
C2S

2
4ε8

2
k|vn+1

h |2H1(Ω).
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The fourth part is treated as follows :

|(a5,4)| =
∣

∣

∣

(

∫ tn+1

tn
(z(tn) − z(t)) × (u(t) − u(tn)),vn+1

h

)

dt
∣

∣

∣

=
∣

∣

∣

∫ tn+1

tn

(

(

∫ t

tn
z′(τ)dτ

)

×
(

∫ t

tn
u′(τ)dτ

)

,vn+1
h

)

dt
∣

∣

∣

≤ S2
4ε9

2
√

2
k |vn+1

h |2H1(Ω) +
S2

4 k3

2
√

2ε9

||u′||2L2(0,T ;H1(Ω)2)||z′||2L2(0,T ;L2(Ω)).

Finally, for the last part, we have

|(a5,5)| =
∣

∣

∣

(

∫ tn+1

tn
(z(tn) − z(t)) × u(tn),vn+1

h

)

dt
∣

∣

∣

=
∣

∣

∣

(

(

∫ tn+1

tn
z′(t)(t − tn+1)dt

)

× u(tn),vn+1
h

)
∣

∣

∣

≤ S2
4ε10

2
√

3
k|vn+1

h |2H1(Ω) +
S2

4

2
√

3ε10

k2||z′||2L2(tn,tn+1;L2(Ω))||u||2L∞(0,T ;H1(Ω)2)

At the end, (28) follows easily after the decomposition

(a1,1) + (a2,1) + (a3,1) ≤ |(a1,2)| + |(a2,2)| + |(a3,2)| + |(a3,3)| + |(a4)| + |(a5)|,

the sum over n = 1, . . . , N − 1, a suitable choice of εi, i = 1, . . . , 10 and by using the properties
of Ph in :

|un+1
h − u(tn+1)|H1(Ω) ≤ |un+1

h − Phu(tn+1)|H1(Ω) + |Phu(tn+1) − u(tn+1)|H1(Ω).

We define ρh as the L2 projection of z onto IP1 in each triangle κ : for z ∈ L2(Ω),

∀q ∈ IP1,

∫

κ
(ρh(z) − z)qdx = 0.

This operator has locally the same accuracy as Rh.

Theorem 4.2. We suppose that there exists a constant γ > 0 such that k ≤ γh. In addition to

the assumptions of Theorem 4.1, we assume that u ∈ L∞(0, T ;W 1,∞(Ω)2),
z ∈ L∞(0, T ; W 1,4(Ω)) and z′ ∈ L∞(0, T ; L4(Ω)) ∩ L2(0, T ; W 1,4(Ω)). Denoting θn+1

h = zn+1
h −

ρhz(tn+1) we have :

N−1
∑

n=0

∫ tn+1

tn
c(un+1

h ; ρhz(tn+1) − z(t), θn+1
h )dt ≤ L1(h

3 + k2) + L3

N−1
∑

n=0

k||θn+1
h ||2L2(Ω)

+L2

N−1
∑

n=0

k|un+1
h − u(tn+1)|2H1(Ω) +

α

2

∑

κ∈Th

N−1
∑

n=0

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|(θn+1

h,ext − θn+1
h,int

)2dsdt

(29)
where Li are constants that only depend on u, z,Ω, T and arbitrary coefficients εi(i = 1, . . . , 8)
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Proof. Owing to Lemma 3.1 and denoting ξh = ρh(z(tn+1)), we have :

∫ tn+1

tn
c(un+1

h ; ρhz(tn+1) − z(t), θn+1
h )dt = α

∑

κ∈Th

[

−
∫ tn+1

tn

∫

κ
(un+1

h · ∇θn+1
h )(ξh − z(t))dxdt

+

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|(ξh − z(t))ext(θn+1

h,ext − θn+1
h,int)dsdt

]

−α

2

∫ tn+1

tn

∫

Ω
div(un+1

h − u(t))(ξh − z(t))θn+1
h dxdt

In the left-hand side, we denote the terms by (di), i = 1 . . . , 3. as ∇(zh − ρh(z)) is a constant
vector, the first term (d1), for any constant vector c, can be treated as :

∣

∣

∣

∫ tn+1

tn

∫

κ
(un+1

h · ∇θn+1
h )(ξh − z(t))dxdt

∣

∣

∣
≤ α

∣

∣

∣

∫ tn+1

tn

∫

κ
(un+1

h − u(tn+1))∇θn+1
h (ξh − z(t))dxdt

∣

∣

∣

+α
∣

∣

∣

∫ tn+1

tn

∫

κ
(u(tn+1) − c)∇θn+1

h (ξh − z(tn+1))dxdt

+

∫ tn+1

tn

∫

κ
u(tn+1)∇θn+1

h (z(tn+1) − z(t))dxdt
∣

∣

∣
.

With

α
∣

∣

∣

∫ tn+1

tn

∫

κ
(un+1

h − u(tn+1))∇θn+1
h (ξh − z(t))dxdt

∣

∣

∣

≤ αS4

ρk
|un+1

h − u(tn+1)|H1(κ)||θn+1
h ||L2(κ)

{

c1k||ξh − z(tn+1)||L4(κ) +
c2k

2

√
2
||z′||L∞(0,T ;L4(κ))

}

≤ αc3S4

(

σ0||z||L∞(0,T ;W 1,4(κ)) + γ||z′||L∞(0,T ;L4(κ))

)

( k

2ε1
||θn+1

h ||2L2(κ) +
ε1k

2
|un+1

h − u(tn+1)|2H1(κ)

)

,

and

α
∣

∣

∣

∫ tn+1

tn

∫

κ
(u(tn+1) − c)∇θn+1

h (ξh − z(tn+1))dxdt +

∫ tn+1

tn

∫

κ
u(tn+1)∇θn+1

h (z(tn+1) − z(t))dxdt
∣

∣

∣

= α
∣

∣

∣

∫ tn+1

tn

∫

κ
(u(tn+1) − c)∇θn+1

h (ξh − z(tn+1))dxdt −
∫ tn+1

tn

∫

κ
θn+1
h u(tn+1)∇(z(tn+1) − z(t))dxdt

∣

∣

∣

≤ ||θn+1
h ||L2(κ)

{αc3

ρk
kh3/2||z(tn+1)||W 1,4(κ)||u(tn+1) − c||L∞(κ) + ||u||L∞(0,T ;κ)

αk3/2

√
3

||z′||L2(tn,tn+1;H1(κ))

}

≤ αc4

(

σ0kh3/2||θn+1
h ||L2(κ)||u(tn+1)||W 1,∞(κ)||z||L∞(0,T ;W 1,4(κ))

+
k3/2

√
3
||θn+1

h ||L2(κ)||z′||L2(tn,tn+1;H1(κ))||u||L∞(0,T ;κ)

)

≤ αc5||u||L∞(0,T ;W 1,∞(κ)2)

( k

2ε2
||θn+1

h ||2L2(κ) +
ε2

2
(k2||z′||2L2(tn,tn+1;H1(κ)) + kh3||z||2L∞(tn,tn+1;W 1,4(κ)))

)

.
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For the second part (d2), we write :

α

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|(ξh − z(t))ext(θn+1

h,ext − θn+1
h,int)dsdt

≤ α

2

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|(θn+1

h,ext − θn+1
h,int)

2dsdt +
α

2

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|

(

(ξh − z(t))ext
)2

dsdt

We keep the first term in the right-hand side of this inequality. The second term can be written
as follows :

α

2

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|

(

(ξh − z(t))ext
)2

dsdt

≤ α

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|

(

(ξh − z(tn+1))ext
)2

dsdt + α

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|

(

(z(tn+1) − z(t))ext
)2

dsdt

with

∣

∣

∣
α

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|

(

(ξh − z(tn+1))ext
)2

dsdt
∣

∣

∣

≤ αc6k
(

||ξh − z(tn+1)||2L4(∂κ−)||u
n+1
h − u(tn+1)||L2(∂κ−) + ||ξh − z(tn+1)||2L2(∂κ−)||u(tn+1)||L∞(ωk)

)

≤ αc7k
(

h3/2||z(tn+1)||2W 1,4(ωk)||u
n+1
h − u(tn+1)||H1(ωk) + h3||z(tn+1)||2W 1,4(ωk)||u(tn+1)||L∞(ωk)

)

≤ αc̃7h
3k

(

||z||2L∞(0,T ;W 1,4(ωk))||u||L∞(0,T ;ωk) +
1

2ε3
||z||2L∞(0,T ;W 1,4(ωk))

)

+
ε3

2
k||un+1

h − u(tn+1)||2H1(ωk),

where ωk denotes the union of triangles adjacent to κ and

∣

∣

∣
α

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|

(

(z(tn+1) − z(t))ext
)2

dsdt
∣

∣

∣

≤ α

∫

∂κ−

|un+1
h · n|

∫ tn+1

tn

[

(tn+1 − t)
(

∫ tn+1

t
|z′(τ)|2dτ

)ext]

dtds

≤ α

∫

∂κ−

|un+1
h · n|

(

∫ tn+1

tn
|z′(τ)|2dτ

)ext
∫ tn+1

tn
(tn+1 − t)dtds

≤ αk2

2

{

∫

∂κ−

|(un+1
h − u(tn+1)) · n|

(

∫ tn+1

tn
|z′(τ)|2dτ

)ext
ds

+

∫

∂κ−

|u(tn+1) · n|
(

∫ tn+1

tn
|z′(τ)|2dτ

)ext
ds

}

≤ αc8

( k

2ε4
|un+1

h − u(tn+1)|2H1(ωk)) +
ε4k

3

2
||z′||2L2(tn,tn+1;W 1,4(ωk))

+k2||u||L∞(0,T ;H1(ωk)2)||z′||2L2(tn,tn+1;W 1,4(ωk))

)
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For the third part (d3), we insert respectively in the divergence term and the term in z, ±u(tn+1)
and ±z(tn+1). We get four parts that we treat as follow :

|(d3,1)| =
∣

∣

∣

α

2

∫ tn+1

tn

∫

Ω
div(un+1

h − u(tn+1))(ξh − z(tn+1))θn+1
h dxdt

∣

∣

∣

≤ α

2
σ0C9||z||L∞(0,T ;W 1,4(Ω))

( k

2ε5
|un+1

h − u(tn+1)|2H1(Ω) +
ε5

2
k||θn+1

h ||2L2(Ω)

)

,

|(d3,2)| =
∣

∣

∣

α

2

∫ tn+1

tn

∫

Ω
div(u(tn+1) − u(t))(ξh − z(tn+1))θn+1

h dxdt
∣

∣

∣

≤ α

2
C10σ0k

3/2||z||L∞(0,T ;W 1,4(Ω))||θn+1
h ||L2(Ω)||u′||L2(tn,tn+1;H1(Ω)2)

≤ α

2
C10σ0||z||L∞(0,T ;W 1,4(Ω))

( k2

2ε6
||u′||2L2(tn,tn+1;H1(Ω)2) +

ε6

2
k||θn+1

h ||2L2(Ω)

)

,

|(d3,3)| =
∣

∣

∣

α

2

∫ tn+1

tn

∫

Ω
div(u(tn+1) − u(t))(z(tn+1) − z(t))θn+1

h dxdt
∣

∣

∣

≤ α

2
C11

k2

ρmin
||z′||L2(tn,tn+1;L4(Ω))||θn+1

h ||L2(Ω)||u′||L2(tn,tn+1,H1(Ω)2)

≤ α

2
C11σ0γ||u′||L∞(0,T ;H1(Ω)2)

( k2

2ε7
||z′||2L2(tn,tn+1;L4(Ω)) +

ε7

2
k||θn+1

h ||2L2(Ω)

)

,

and

|(d3,4)| =
∣

∣

∣

α

2

∫ tn+1

tn

∫

Ω
div(un+1

h − u(tn+1))(z(tn+1) − z(t))θn+1
h dxdt

∣

∣

∣

≤ α

2
C13

k3/2

ρmin
||θn+1

h ||L2(Ω)|un+1
h − u(tn+1)|H1(Ω)||z′||L2(tn,tn+1;L4(Ω))

≤ α

2
C13γ||z′||L∞(0,T ;L4(Ω))

( k

2ε8
||θn+1

h ||2L2(Ω) +
ε8

2
k|un+1

h − u(tn+1)|2H1(Ω)

)

.

We deduce the result after summing over n = 0, . . . , N − 1

Theorem 4.3. With the same assumptions of Theorem 4.2, we have :

N−1
∑

n=1

k||zn+1
h − z(tn+1)||2L2(Ω) ≤ F1(h

3 + k2) + F2

N−1
∑

n=0

k|un+1
h − u(tn+1)|2H1(Ω), (30)

where Fi are constants that only depend on u, z, Ω and T .

Proof. We consider (21), take the test function θh = θn+1
h = zn+1

h − ρhz(tn+1), integrate from tn

15



to tn+1 and subtract (26) multiplied by k. We obtain :

α
(

(zn+1
h − z(tn+1)) − (zn

h − z(tn)), θn+1
h

)

+ ν
(

∫ tn+1

tn
(zn+1

h − z(t))dt, θn+1
h

)

+
{

k c(un+1
h ; zn+1

h , θn+1
h ) − α

∫ tn+1

tn

(

u(t)∇z(t) +
1

2
divu(t)z(t), θn+1

h

)

dt
}

= ν
(

∫ tn+1

tn
(curlun+1

h − curlu(t))dt, θn+1
h

)

(31)

Let us treat each term of this equation that we denote by (bi), i = 1, ..., 4.

For the first term, we follow the same steps as for the term (a1) in the Theorem 4.1. We obtain :

(b1,1) =
α

2
||θn+1

h ||2L2(Ω) −
α

2
||θn

h ||2L2(Ω) +
α

2
||θn+1

h − θn
h ||2L2(Ω),

and

|(b1,2)| = α
∣

∣

∣

(

∫ tn+1

tn
(ρhz′(τ) − z′(τ))dτ, θn+1

h

)∣

∣

∣

≤ Cαh3

2ε9
||z′||2L2(tn,tn+1;W 1,4(Ω)) +

αε9

2
k||θn+1

h ||2L2(Ω).

For the second term (b2), we write :

zn+1
h − z(t) = zn+1

h − ρhz(tn+1) + ρhz(tn+1) − ρhz(t) + ρhz(t) − z(t),

and we obtain three parts that we treat successively.

The first one gives : (b2,1) = νk||θn+1
h ||2L2(Ω).

The second part is bounded as follows :

|(b2,2)| = ν
∣

∣

∣

(

∫ tn+1

tn
(ρhz(tn+1) − ρhz(t))dt, θh

)

∣

∣

∣
= ν

∣

∣

∣

(

∫ tn+1

tn
ρhz′(t)(t − tn)dt, θn+1

h

)

∣

∣

∣

≤ νk2

2
√

3ε10

||z′||2L2(tn,tn+1;H1(Ω)) +
ε10

2
√

3
k||θn+1

h ||2L2(Ω),

and the last part is bounded as follows :

|(b2,3)| = ν
∣

∣

∣

(

∫ tn+1

tn
(ρhz(t) − z(t))dt, θn+1

h

)

∣

∣

∣

≤ νh3

2ε11
||z||2L2(tn,tn+1;W 1,4(Ω)) +

νkε11

2
||θn+1

h ||2L2(Ω).

The third term can be written as follows :

(b3) =

∫ tn+1

tn
c(un+1

h ; zn+1
h , θn+1

h )dt − α

∫ tn+1

tn

(

u(t)∇z(t) +
1

2
div u(t)z(t), θn+1

h

)

dt

=

∫ tn+1

tn
c(un+1

h ; θn+1
h , θn+1

h )dt +

∫ tn+1

tn
c(un+1

h ; ρhz(tn+1) − z(t), θn+1
h )dt

+

∫ tn+1

tn
c(un+1

h ; z(t), θn+1
h )dt − α

∫ tn+1

tn

(

u(t)∇z(t) +
1

2
divu(t)z(t), θn+1

h

)

dt.

16



Owing to Lemma 3.1 and denoting ξh = ρh(z(tn+1)), (b3) becomes :

(b3) =
α

2

∑

κ∈Th

∫ tn+1

tn

∫

∂κ−

|un+1
h · n|(θn+1

h,ext − θn+1
h,int)

2dsdt +

∫ tn+1

tn
c(un+1

h ; ρhz(tn+1) − z(t), θn+1
h )dt

+α

∫ tn+1

tn

∫

Ω
(un+1

h − u(t))∇z(t)θn+1
h dxdt +

α

2

∫ tn+1

tn

∫

Ω
div(un+1

h − u(t))z(t)θn+1
h dxdt.

We divide (b3) into four terms (b3,i), i = 1, . . . , 4. We keep the term (b3,1) in the left-hand side
of (31). The second term (b3,2) is bounded as in the previous theorem.

For the third part (b3,3), we have :

|(b3,3)| =
∣

∣

∣
α

∫ tn+1

tn

∫

Ω
(un+1

h − u(t))∇z(t)θn+1
h dxdt

∣

∣

∣

≤ αC14||z||L∞(0,T ;W 1,4(Ω))

( k

2ε12
|un+1

h − u(tn+1)|2H1(Ω) +
ε12

2
k||θn+1

h ||2L2(Ω)

)

+αC15||z||L∞(0,T ;W 1,4(Ω))

( k2

2ε13
||u′||2L2(tn,tn+1;H1(Ω)2) +

ε13

2
k||θn+1

h ||2L2(Ω)

)

,

and the last part of the third term (b3) is :

|(b3,4)| =
∣

∣

∣

α

2

∫ tn+1

tn

∫

Ω
div(un+1

h − u(t))z(t)θn+1
h dxdt

∣

∣

∣

≤ α

2
C16||z||L∞(0,T ;L∞(Ω))

( k

2ε14
|un+1

h − u(tn+1)|2H1(Ω) +
ε14

2
k||θn+1

h ||2L2(Ω)

)

+
α

2
C17||z||L∞(0,T ;L∞(Ω))

( k2

2ε15
||u′||L2(tn,tn+1;H1(Ω)2) +

ε15

2
k||θn+1

h ||2L2(Ω)

)

.

For the last term (b4), we split it into two parts, as follows : Using || curl uh||2L2(Ω) ≤ 2|uh|2H1(Ω),

we have

|(b4,1)| =
∣

∣

∣
ν
(

∫ tn+1

tn
( curl un+1

h − curl u(tn+1))dt, θn+1
h

)

∣

∣

∣

≤ νk

ε16
|un+1

h − u(tn+1)|2H1(Ω) +
νε16k

2
||zn+1

h − ρhz(tn+1)||2L2(Ω),

and

|(b4,2)| =
∣

∣

∣
ν
(

∫ tn+1

tn
( curl u(tn+1) − curl u(t))dt, θn+1

h

)

∣

∣

∣

≤ νk2

√
3ε17

||u′||2L2(tn,tn+1;H1(Ω)2) +
νε17k√

3
||zn+1

h − ρhz(tn+1)||2L2(Ω).

Collecting all these results, we obtain :

(b1,1) + (b2,1) + (b3,1) ≤ |(b1,2)| + |(b2,2)| + |(b2,3)| + |
4

∑

i=2

(b3,i)| + |(b4)|.

17



Then (30) follows easily after the sum over n = 1, . . . , N −1, a suitable choice of εi, i = 1, . . . , 17
and by applying a triangular inequality to ||zn+1

h − z(tn+1)||L2(Ω) :

||zn+1
h − z(tn+1)||L2(Ω) ≤ ||zn+1

h − ρhz(tn+1)||L2(Ω) + ||ρhz(tn+1) − zn+1
h ||L2(Ω)

and properties of Ph.

Corollary 4.4. Under the assumptions of Theorem 4.1 and Theorem 4.3, and for k sufficiently

small, there exist constants C1, C2 and C3 independent of h and k such that :

N−1
∑

n=0

k|un+1
h − u(tn+1)|2H1(Ω) ≤ C1(h

3 + k2), (32)

N−1
∑

n=0

k||zn+1
h − z(tn+1)||2L2(Ω) ≤ C2(h

3 + k2), (33)

and

sup
n

|un
h − u(tn)|2H1(Ω) ≤ C3(h

3 + k2). (34)

Proof. On one hand, we consider (30). On the other hand, the only difference between this
proof and that of Theorem 4.1 is the upper bound of the term (a5,1). Here, using the inequality

||u||2L4(Ω) ≤ C|u|H1(Ω)||u||L2(Ω),

we have :

|(a5,1)| ≤ S4ε6

2
||Phu||2L∞(0,T ;H1(Ω)2)k||zn

h − z(tn)||2L2(Ω) +
S4

4ε̃6
k||un+1

h − Phu(tn+1)||2L2(Ω)

+
S4

4ε̃6
k|un+1

h − Phu(tn+1)|2H1(Ω).

Then, using this result with (30) and after a suitable choice of εi, i = 1, . . . , 10 and ε̃6, we obtain :

||uN
h − Phu(tN )||2L2(Ω) +

N−1
∑

n=0

||(un+1
h − Ph(u(tn+1))) − (un

h − Ph(u(tn)))||2L2(Ω)

+α|uN
h − Phu(tN )|2H1(Ω) + α

N−1
∑

n=0

|(un+1
h − Phu(tn+1)) − (un

h − Phu(tn))|2H1(Ω)

+ν

N−1
∑

n=0

k|un+1
h − Phu(tn+1)|2H1(Ω) ≤ C(h3 + k2) + C ′

N−1
∑

n=0

k||un+1
h − Phu(tn+1)||2L2(Ω).

Then by applying the discrete Gronwall lemma, we obtain, for k sufficiently small :

||uN
h − u(tN )||2L2(Ω) + ν

N−1
∑

n=0

k|un+1
h − u(tn+1)|2H1(Ω) ≤ CeC′kN (h3 + k2),

and the results follow easily.
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Remark 4.5. If we have, for example,

‖ vm
h ‖2

L2(Ω) +

m−1
∑

n=0

‖ vn+1
h − vn

h ‖2
L2(Ω) +ν

m−1
∑

n=0

k|vn+1
h |2H1(Ω) ≤ C1 + C2

m−1
∑

n=0

k ‖ vn+1
h ‖2

L2(Ω),

by writing,

‖ vm
h ‖L2(Ω)≤‖ vm

h − vm−1
h ‖L2(Ω) + ‖ vm−1

h ‖L2(Ω),

we obtain

C2k ‖ vm
h ‖2

L2(Ω)≤ 2C2k ‖ vm
h − vm−1

h ‖2
L2(Ω) +2C2k ‖ vm−1

h ‖2
L2(Ω) .

By assuming k sufficiently small such that 2C2k ≤ 1, we obtain :

‖ vm
h ‖2

L2(Ω) +

m−2
∑

n=0

‖ vn+1
h − vn

h ‖2
L2(Ω) +ν

m−1
∑

n=0

k|vn+1
h |2H1(Ω) ≤ C1 + 3C2

m−1
∑

n=1

k ‖ vn
h ‖2

L2(Ω),

then we can apply the discrete classic Gronwall lemma.

Theorem 4.6. Under the assumptions of Corollary 4.4, we suppose that p′ ∈ L2(0, T ;L2(Ω)).
Then the pressure satisfies the following estimate :

N−1
∑

n=0

k||pn+1
h − p(tn+1)||2L2(Ω) ≤

1

β⋆

{

C(h3 + k2)

+(α + S2
2)

N−1
∑

n=0

k
∣

∣

(un+1
h − u(tn+1)) − (un

h − u(tn))

k

∣

∣

2

H1(Ω)

}

,

(35)

where the coefficients C and S2 are respectively the inf-sup constant and Poincaré’s constant

and are independent of h and k.

Proof. We consider again the first equation of the proof of Theorem 4.1, insert ±krhp(tn+1) in
the terms of the pression and we get :

∫ tn+1

tn

(

pn+1
h − rhp(tn+1), divvn+1

h

)

dt =
(

(un+1
h − u(tn+1)) − (un

h − u(tn)),vn+1
h

)

+α
(

∇(un+1
h − u(tn+1)) −∇(un

h − u(tn)),∇vn+1
h

)

+ ν
(

∫ tn+1

tn
∇(un+1

h − u(t))dt,∇vn+1
h

)

+

∫ tn+1

tn

(

(zn
h ∧ un+1

h − z(t) ∧ u(t))dt,vn+1
h

)

−
∫ tn+1

tn

(

rhp(tn+1) − p(t), divvn+1
h

)

dt.

Owing to the inf-sup condition, ∀qh ∈ Mh,

∃wh ∈ V ⊥
h ; (divwh, qh) = ||qh||2L2(Ω) and ||∇wh||L2(Ω) ≤ ||qh||L2(Ω),

and summing over n = 0, . . . , N − 1, the left-hand side of this equation becomes
N−1
∑

n=0

k||pn+1
h − rhp(tn+1)||2L2(Ω). Let us treat the terms in the right-hand side of the equation.
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For the first term, we have

∣

∣

∣

N−1
∑

n=0

(

(un+1
h − u(tn+1)) − (un

h − u(tn)),vn+1
h

)
∣

∣

∣

≤ S2

(

N−1
∑

n=0

k
∣

∣

∣

∣

∣

∣

(un+1
h − un

h) − (u(tn+1) − u(tn))

k

∣

∣

∣

∣

∣

∣

2

L2(Ω)

)1/2(
N−1
∑

n=0

k|vn+1
h |2H1(Ω)

)1/2

≤ S2
2

(

N−1
∑

n=0

k
∣

∣

∣

(un+1
h − un

h) − (u(tn+1) − u(tn))

k

∣

∣

∣

2

H1(Ω)

)1/2(
N−1
∑

n=0

k|vn+1
h |2H1(Ω)

)1/2
,

and for the second,

∣

∣

∣
α

N−1
∑

n=0

(

∇((un+1
h − u(tn+1)) − (un

h − u(tn))),∇vn+1
h

)∣

∣

∣

≤ α
(

N−1
∑

n=0

k
∣

∣

∣

(un+1
h − un

h) − (u(tn+1) − u(tn))

k

∣

∣

∣

2

H1(Ω)

)1/2(
N−1
∑

n=0

k|vn+1
h |2H1(Ω)

)1/2
.

For the third term, we have :

ν
∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn

(

∇(un+1
h − u(t)),∇vn+1

h

)

dt
∣

∣

∣

≤ ν

N−1
∑

n=0

∫ tn+1

tn

∣

∣

∣

(

∇(un+1
h − u(tn+1)),∇vn+1

h

)

∣

∣

∣
dt + ν

N−1
∑

n=0

∣

∣

∣

∫ tn+1

tn

(

∫ t

tn+1

∇u′(τ)dτ,∇vn+1
h

)

dt
∣

∣

∣

≤ ν
(

C1(h
3 + k2)1/2 + C2k||u′||L2(0,T ;H1(Ω)2)

)(

N−1
∑

n=0

k|vn+1
h |2H1(Ω)

)1/2
.

The fourth term is treated as the fifth term in the proof of Theorem 4.1 and by using the result
of Theorem 4.3, the result is the following :

∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn

(

(

zn
h ∧ un+1

h − z(t) ∧ u(t)
)

dt,∇vn+1
h

)
∣

∣

∣
≤ C(h3 + k2)1/2

(

N−1
∑

n=0

k|vn+1
h |2H1(Ω)

)1/2
.

Finally, the last term is treated as follows :

∫ tn+1

tn

(

rhp(tn+1) − p(t),div vn+1
h

)

dt

≤
∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn

(

(rhp(tn+1) − rhp(t))dt,divvn+1
h

)

∣

∣

∣
+

∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn

(

(rhp(t) − p(t))dt,div vn+1
h

)

∣

∣

∣

≤ C

N−1
∑

n=0

∫ tn+1

tn
(τ − tn)||p′(τ)||L2(Ω)|vn+1

h |H1(Ω)dτ + C2

N−1
∑

n=0

h2k1/2||p||L2(tn,tn+1;H2(Ω))|vn+1
h |H1(Ω)

≤
(C1k√

3
||p′||L2(0,T ;L2(Ω)) + C2h

2||p||L2(0,T ;H2(Ω))

)(

N−1
∑

n=0

k|vn+1
h |2H1(Ω)

)1/2
.

Then (35) follows easily from these inequalities.
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We still have to estimate
(

N−1
∑

n=0

k
∣

∣

(un+1
h − u(tn+1)) − (un

h − u(tn))

k

∣

∣

2

H1(Ω)

)1/2
.

We introduce a variant of Stokes projection as follows : ∀(u, p) ∈ V ×L2
0(Ω), Shu ∈ Vh is defined

by

∀vh ∈ Vh, ν(∇(Shu − u),∇vh) = −(p,div vh), (36)

Lemma 4.7. Let (u, p) ∈ V × L2
0(Ω). Then Shu defined by (36) satisfies :

|Shu − u|H1(Ω) ≤ 2|Phu − u|H1(Ω) +
1

ν
||rhp − p||L2(Ω). (37)

If, in addition, Ω is convex, there exists a constant C independent of h such that:

||Shu − u||L2(Ω) ≤ Ch
(

|Shu − u|H1(Ω) + ||rhp − p||L2(Ω)

)

. (38)

Theorem 4.8. Under the assumptions of Theorem 4.6 and assuming p′ ∈ L2(0, T ; H2(Ω)), we

have :
N−1
∑

n=0

k
∣

∣

∣

(un+1
h − u(tn+1)) − (un

h − u(tn))

k

∣

∣

∣

2

H1(Ω)
≤ C(h3 + k2). (39)

Proof. We consider, once more, the first equation in the proof of Theorem 4.6, choose vn+1
h ∈ Vh,

insert rhp(s) and Shu
′ = (Shu)′ and we set en

h = un
h − Shu(tn). We obtain :

(

(un+1
h − Shu(tn+1)) − (un

h − Shu(tn)),vn+1
h

)

−
∫ tn+1

tn

(

u′(s) − Shu
′(s),vn+1

h

)

ds

+α
(

∇(un+1
h − Shu(tn+1)) −∇(un

h − Shu(tn)),∇vn+1
h

)

− α

∫ tn+1

tn

(

∇(u′(s) − Shu
′(s)),∇vn+1

h

)

ds

+ν
(

∫ tn+1

tn
∇(un+1

h − Shu(s))ds,∇vn+1
h

)

+ ν
(

∫ tn+1

tn
∇(Shu(s) − u(s))ds,∇vn+1

h

)

+

∫ tn+1

tn

(

(zn
h ∧ un+1

h − z(s) ∧ u(s))ds,vn+1
h

)

+

∫ tn+1

tn

(

p(s), divvn+1
h

)

ds = 0.

We sum this above equation over n = 0, . . . , N − 1 and we treat the terms denoted again

(ai), i = 1, . . . , 6 in the left-hand side. We take vn+1
h =

en+1
h − en

h

k
.

The first term is composed of two parts as follows :

(a1) =
N−1
∑

n=0

(en+1
h − en

h,vn+1
h ) −

N−1
∑

n=0

∫ tn+1

tn

(

u′(s) − Shu
′(s),vn+1

h

)

ds = (a1,1) + (a1,2),

21



where

(a1,1) =
N−1
∑

n=0

k||e
n+1
h − en

h

k
||2L2(Ω),

|(a1,2)| ≤
N−1
∑

n=0

||u′ − Shu
′||L2(tn,tn+1;L2(Ω)2)

(

k||e
n+1
h − en

h

k
||2L2(Ω)

)1/2

≤ 1

2ε1
||u′ − Shu

′||2L2(0,T ;L2(Ω)2) +
ε1

2

N−1
∑

n=0

k||e
n+1
h − en

h

k
||2L2(Ω)

≤ C

2ε1
h4

(

||u′||2L2(0,T ;H2(Ω)2) + ||p′||2L2(0,T ;H1(Ω))

)

+
ε1

2

N−1
∑

n=0

k||e
n+1
h − en

h

k
||2L2(Ω).

The second term (a2) is treated as the first one. We have :

(a2) = α

N−1
∑

n=0

(∇en+1
h −∇en

h,∇vn+1
h )−α

N−1
∑

n=0

∫ tn+1

tn

(

∇u′(s)−∇Shu
′(s),∇vn+1

h

)

ds = (a2,1)+(a2,2),

with

(a2,1) = α

N−1
∑

n=0

k|e
n+1
h − en

h

k
|2H1(Ω),

|(a2,2)| ≤ Cα

2ε2
h4

(

||u′||2L2(0,T ;H3(Ω)2) + ||p′||2L2(0,T ;H2(Ω))

)

+
αε2

2

N−1
∑

n=0

k||e
n+1
h − en

h

k
||2H1(Ω).

The third term is treated as :

|(a3)| = ν
∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn
(∇(un+1

h − Shu(s)),∇vn+1
h )ds

∣

∣

∣

= ν
∣

∣

∣

N−1
∑

n=0

(∇en+1
h ,∇vn+1

h ) + ν

N−1
∑

n=0

∫ tn+1

tn
(∇Sh(u(tn+1) − u(s)),∇vn+1

h )ds
∣

∣

∣

= |(a3,1) + (a3,2)|.

Using the relation (an+1 − an, an+1) =
1

2
||an+1||2L2(Ω) −

1

2
||an||2L2(Ω) +

1

2
||an+1 − an||2L2(Ω) and by

defining Shu
0 with p = 0, we obtain :

|(a3,1)| =
ν

2

N−1
∑

n=0

k|e
n+1
h − en

h

k
|2H1(Ω) +

ν

2

N−1
∑

n=0

k
(

|e
n+1
h

k
|2H1(Ω) − |e

n
h

k
|2H1(Ω)

)

=
ν

2

N−1
∑

n=0

k|e
n+1
h − en

h

k
|2H1(Ω) +

ν

2
k|e

N
h

k
|2H1(Ω).
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and

|(a3,2)| = ν
∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn
(∇Sh(u(tn+1) − u(s)),∇vn+1

h )ds
∣

∣

∣

= ν
∣

∣

∣

N−1
∑

n=0

∫ tn+1

tn
(∇Shu

′(t)(t − tn),∇vn+1
h )dt

∣

∣

∣

≤ ν

N−1
∑

n=0

|vn+1
h |H1(Ω)

∫ tn+1

tn
(t − tn)|Shu

′(t)|H1(Ω)dt

≤ ν

N−1
∑

n=0

k3/2|vn+1
h |H1(Ω)||Shu

′||L2(tn,tn+1;H1(Ω)2)

≤ ν

2ε3

N−1
∑

n=0

k|e
n+1
h − en

h

k
|2H1(Ω) +

νε3

2
k2||Shu

′||2L2(0,T ;H1(Ω)2).

Using the definition of Sh, we have

(a4) + (a6) = ν
(

∫ tn+1

tn
∇(Shu(s) − u(s))ds,∇vn+1

h

)

+

∫ tn+1

tn

(

p(s), divvn+1
h

)

ds = 0

Finally, the last term (a5) is bounded as previously in Theorem 4.6 :

|(a5)| ≤
Cε4

2
(h3 + k2) +

C

2ε4

N−1
∑

n=0

k|e
n+1
h − en

h

k
|2H1(Ω).

Collecting these results, writing

(a1,1) + (a2,1) + (a3,1) ≤ |(a1,2)| + |(a2,2)| + |(a3,2)| + |(a5)|,

choosing suitably εi, i = 1, . . . , 4 and by applying the following triangular inequality

|un+1
h − u(tn+1)|H1(Ω) ≤ |un+1

h − Shu(tn+1)|H1(Ω) + |Shu(tn+1) − u(tn+1)|H1(Ω),

(39) follows easily.

Theorem 4.9. Under the assumptions of Theorem 4.6, there exists a constant C that does not

depend on h and k such that

N−1
∑

n=0

k||pn+1
h − p(tn+1)||2L2(Ω) ≤ C(h3 + k2). (40)
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