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In this paper, we propose a finite-element scheme for solving numerically the equations of a transient two dimensional grade-two fluid non-Newtonian Rivlin-Ericksen fluid model. This system of equations is considered an appropriate model for the motion of a water solution of polymers. As expected, the difficulties of this problem arise from the transport equation. As one of our aims is to derive unconditional a priori estimates from the discrete analogue of the transport equation, we stabilize our scheme by adding a consistent stabilizing term. We use the IP 2 -IP 1 Taylor-Hood finite-element scheme for the velocity v and the pressure p, and the discontinuous IP 1 finite element for an auxiliary variable z. The error is of the order of h 3/2 + k, considering that the discretization of the transport equation loses inevitably a factor h 1/2 .

Introduction

This article is devoted to the numerical solution of the equation of a grade two fluid non-Newtonian Rivlin-Ericksen fluid ( [START_REF] Rilvin | Stress-deformation relations for isotropic materials[END_REF]) :

∂ ∂t (u -α∆u) -ν∆u + curl(u -α∆u) × u + ∇p = f in ]0, T [×Ω, (1) 
with the incompressibility condition :

div u = 0 in ]0, T [×Ω, (2) 
where the velocity u = (u 1 , u 2 , 0),

div u = ∂u 1 ∂x 1 + ∂u 2 ∂x 2 , curl u = (0, 0, curlu), curl u = ∂u 2 ∂x 1 - ∂u 1 ∂x 2 ,
here f denotes an external force, ν the viscosity and α is a constant normal stress modulus.

This model is considered an appropriate one for the motion of water solutions of polymers ( [START_REF] Dunn | Rajagopal Fluid of differential type: Critical review and thermodynamic analysis[END_REF]).

The case α = 0 represents the transient Navier-Stokes problem. Here, p is not the pressure, but the formula which gives the pressure from u and p is complex. To simplify, we refer to p as the "pressure" in the sequel. According to Dunn and Fosdick's work [START_REF] Dunn | Fosdic Thermodinamics, stability, and boundness of fluids of complexity two and fluids of second grade[END_REF], in order to be consistent with thermodynamics, a grade-two fluid must satisfy α ≥ 0 and ν ≥ 0. The reader can refer to [START_REF] Dunn | Rajagopal Fluid of differential type: Critical review and thermodynamic analysis[END_REF] for a discussion on the sign of α.

The equations of a grade two fluid model have been studied by many authors (Videmann gives in [START_REF]Videmann Mathematical analisys of visco-elastic non Newtonian fluid[END_REF] a very extensive list of references), but the best construction of solutions for the problem, with homogeneous Dirichlet boundary conditions and mildly smooth data, is given by Ouazar [START_REF] Ouazar | 3ème cycle de l'Université Pierre et Marie Curie Paris VI[END_REF] and by Cioranescu and Ouazar [START_REF] Cioranescu | Existence et unicité pour les fluides de second grade[END_REF], [START_REF] Cioranescu | Existence and uniqueness for fluids of second grade, Nonlinear Partial Differential Equations[END_REF]. They prove existence of solutions, with H 3 regularity in space, by looking for a velocity u such that

z = curl(u -α∆u)
has L 2 regularity in space, introducing z as an auxiliary variable and discretizing the equations of motion by Galerkin's method in the basis of the eigenfunctions of the operator curl curl(u -α∆u). This choice allows one to recover estimates from the transport equation in two dimensions

α ∂z ∂t + νz + αu • ∇z = ν curl u + α curl f , (3) 
whenever curl f belongs to L 2 (Ω) 3 . In this case, z = (0, 0, z) with z = curl(u -α∆u). Hence, z is necessarily orthogonal to u.

In this article, we propose finite-element schemes for solving numerically the equation of a two dimensional grade-two fluid model. Defining z as above, the equations of motion becomes :

∂ ∂t (u -α∆u) -ν∆u + z × u + ∇p = f , (4) 
and α ∂z ∂t

+ νz + αu • ∇z = ν curlu + α curlf , (5) 
the Dirichlet boundary condition :

u = 0 on ]0, T [×∂Ω, (6) 
and the initial conditions : u(x, t) = 0, and z(x, t) = 0.

This problem is analyzed by Girault and Saadouni [START_REF] Girault | On a time-dependent grade-two fluid model in two dimensions, Computers and Mathematics with Applications[END_REF]. If we want to derive an unconditional a priori estimate for the discrete analogue of (3), we add to the left-hand side of this last equation a stabilizing, consistent term, so it becomes

α ∂z ∂t + νz + αu • ∇z + α 2 (div u)z = ν curl u + α curl f . (8) 
In this work, we propose to discretize this last equation, as Girault and Scott did in [START_REF] Girault | Upwind discretizations of a steady grade-two fluid model in tow dimensions[END_REF], by an upwind scheme based on the discontinuous Galerkin method of degree one introduced by Lesaint and Raviart in [START_REF] Lesaint | On a finite element method for solving the neutron transport equation, Mathematical aspects of finite Elements in Partial Differential Equation[END_REF]. Let X h , M h and Z h be the discrete spaces for the velocity and the pressure. We approximate the velocity and the pressure by the standard IP 2 -IP 1 Taylor-Hood scheme, where IP k denotes the space of polynomials of degree k in two variables. Also, in each element of the triangulation, z n h is a polynomial of degree one, without continuity requirement on interelement boundaries. Our discrete system corresponding to (4) and ( 8) is :

Find u n+1 h ∈ X h , p n+1 h ∈ M h and z n+1 h ∈ Z h such that ∀v h ∈ X h , 1 k (u n+1 h -u n h , v h ) + α k (∇(u n+1 h -u n h ), ∇v h ) + ν(∇u n+1 h , ∇v h ) +(z n h × u n+1 h , v h ) -(p n+1 h , div v h ) = (f n+1 , v h ), (9) 
∀θ h ∈ Z h , α k (z n+1 h -z n h , θ h ) + ν(z n+1 h , θ h ) + c(u n+1 h ; z n+1 h , θ h ) = ν(curlu n+1 h , θ h ) + α(curlf n+1 , θ h ), (10) 
where c(u n+1 h ; z n+1 h , θ h ) is the discrete non-linear part of the transport equation and the functions of X h vanish on ∂Ω. This system is linearized in the sense that in [START_REF] Girault | Raviart Finite element methods for the Navier-Stokes Equations. Theory and Algorithms[END_REF], knowing z n h , we calculate u n+1 h and p n+1 h with a linear equation. Then, we calculate z n+1 h with the second linear equation [START_REF] Girault | On a time-dependent grade-two fluid model in two dimensions, Computers and Mathematics with Applications[END_REF]. For both the velocity and pressure discretizations, the error is of order h 3/2 and k. This is the best that can be achieved, considering that the discretization of the transport equation loses inevitably a factor h 1/2 . Other finite elements can be used, cf. Crouzeix and Raviart [START_REF] Crouzeix | Raviart Conforming and non-conforming finite element methods for solving the stationnary Stokes problem[END_REF], Brezzi and Fortin [START_REF] Brezzi | Mixed and Hybrid finite element methods[END_REF] and Girault and Raviart [START_REF] Girault | Raviart Finite element methods for the Navier-Stokes Equations. Theory and Algorithms[END_REF]. Now, we recall some notation and basic functional results. As usual, for handling time-dependent problems, it is convenient to consider functions defined on a time interval ]a, b[ with values in a functional space, say X (cf. Lions and Magenes [START_REF] Lions | Magenes Problèmes aux limites non homogènes et applications I[END_REF]). More precisely, let . X denote the norm of X; then for any r, 1 ≤ r ≤ ∞, we define

L r (a, b; X) = {f mesurable in ]a, b[; b a f (t) r X dt < ∞} equipped with the norm f L r (a,b;X) = ( b a f (t) r X dt) 1/r , with the usual modifications if r = ∞. It is a Banach space if X is a Banach space. Let (k 1 , k 2 ) denote a pair of non-negative integers, set |k| = k 1 + k 2 and define the partial derivative ∂ k by ∂ k v = ∂ |k| v ∂x k 1 1 ∂x k 2 2 .
We denote by :

W m,r (Ω) = {v ∈ L r (Ω); ∂ k v ∈ L r (Ω) ∀|k| ≤ m},
This space is equipped with the seminorm

|v| W m,r (Ω) = [ |k|=m Ω |∂ k v| r dx] 1/r ,
and is a Banach space for the norm

v W m,r (Ω) = [ 0≤|k|≤m |v| r W k,r (Ω) dx] 1/r .
When r = 2, this space is the Hilbert space H m (Ω). In particular, the scalar product of L 2 (Ω) is denoted by (. , .).

Similarly, L 2 (a, b; H m (Ω)) is a Hilbert space and in particular L 2 (a, b; L 2 (Ω)) coincides with L 2 (Ω×]a, b[).
The definitions of these spaces are extended straightforwardly to vectors, with the same notation, but with the following modification for the norms in the non-Hilbert case. Let u = (u 1 , u 2 ); then we set

u L r (Ω) = [ Ω u(x) r dx] 1/r ,
where . denotes the Euclidean vector norm.

For functions that vanish on the boundary, we define for any r ≥ 1

W 1,r 0 (Ω) = {v ∈ W 1,r ( 
Ω); v| ∂Ω = 0} and recall Sobolev's imbeddings in two dimensions: for each r ∈ [2, ∞[, there exits a constant S r such that ∀v ∈

H 1 0 (Ω) , v L r (Ω) ≤ S r |v| H 1 (Ω) , (11) 
where

|v| H 1 (Ω) = ∇v L 2 (Ω) . (12) 
When r = 2, (11) reduces to Poincaré's inequality and S 2 is Poincaré's constant.

The case r = ∞ is excluded and is replaced by: for any r > 2, there exists a constant M r such that

∀v ∈ W 1,r 0 (Ω), v L ∞ (Ω) ≤ M r |v| W 1,r (Ω) . (13) 
We have also in dimension 2,

||g|| L 4 (Ω) ≤ 2 1/4 g 1/2 L 2 (Ω) ∇g 1/2 L 2 (Ω) . (14) 
Owing to Poincaré's inequality, the seminorm |.| H 1 (Ω) is a norm on H 1 0 (Ω) and we use it to define the dual norm:

f H -1 (Ω) = sup v∈H 1 0 (Ω) f, v |v| H 1 (Ω) ,
where ., . denotes the duality pairing between H -1 (Ω) and H 1 0 (Ω). Also, we introduce the space:

L 2 0 (Ω) = {q ∈ L 2 (Ω); Ω q dx = 0},

The exact problem

Let Ω be a bounded polygon in two dimensions with boundary ∂Ω and let ]0, T [ be a given time-interval. We want to find a vector velocity u, a scalar pressure p and an auxiliary scalar function z solution of

∂ ∂t (u -α∆u) -ν∆u + z × u + ∇p = f in ]0, T [×Ω, (15) 
α ∂z ∂t + νz + αu • ∇z = ν curlu + α curlf in ]0, T [×Ω, (16) 
u = 0 on ]0, T [×∂Ω, (17) 
u(x, t) = 0 and z(x, t) = 0,

where z × u = (-zu 2 , zu 1 ). Here ν > 0 and α > 0 are given constants.

A straightforward formulation of ( 15)-( 18) is :

Find (u(t), p(t), z(t)) ∈ L ∞ (0, T ; H 1 0 (Ω) 2 )×L 2 (0, T ; L 2 0 (Ω))×L ∞ (0, T ; L 2 (Ω)), u ′ ∈ L 2 (0, T ; H 1 0 (Ω) 2 ) such that ∀v ∈ H 1 0 (Ω), (u ′ (t), v) + α(∇u ′ (t), ∇v) + ν(∇u(t), ∇v) +(z(t) × u(t), v) -(p(t), div v) = (f (t), v) in Ω×]0, T ], (19) 
∀q ∈ L 2 0 (Ω), (q(t), div u(t)) = 0, (20) 
α ∂z ∂t + νz + αu • ∇z = ν curlu + α curlf in ]0, T [×Ω, (21) 
u(0) = 0 and z(0) = 0 in Ω. ( 22 
)
The following theorem is established in [START_REF] Girault | On a time-dependent grade-two fluid model in two dimensions, Computers and Mathematics with Applications[END_REF]:

Theorem 2.1.
Let Ω be a lipschitz polygon. For all ν > 0 and f ∈ L 2 (0, T ; L 2 (Ω) 2 ) such that curl f ∈ L 2 (0, T ; L 2 (Ω)), ( 15)-( 18) has at least one solution (u, z, p) that satisfies the following estimates :

||z|| L ∞ (0,T ;L 2 (Ω)) ≤ √ 2 S 2 ν ||f || L 2 (0,T ;L 2 (Ω) 2 ) + |α| ν || curl f || L 2 (0,T ;L 2 (Ω)) , ||u|| L ∞ (0,T ;H 1 (Ω) 2 ) ≤ S 2 ν ||f || L 2 (0,T ;L 2 (Ω) 2 ) , ||p|| L 2 (0,T ;L 2 (Ω)) ≤ 1 β (S 2 ||f || L 2 (0,T ;L 2 (Ω) 2 ) + S 2 4 ||u|| L ∞ (0,T ;H 1 (Ω) 2 ) ||z|| L ∞ (0,T ;L 2 (Ω)) ).

A discontinuous upwind scheme

Let h > 0 be a discretization parameter and let T h be a regular family of triangulation of Ω, consisting of triangles κ with maximum mesh size h: There exists a constant σ 0 , independent of h, such that ∀κ ∈ T h , h κ ρ κ ≤ σ 0 , where h κ is the diameter and ρ κ is the diameter of the ball inscribed in κ. We introduce ρ min = min κ ρ k . As usual, the triangulation is such that any two triangles are either disjoint or share a vertex or a complete side. We first recall how upwinding can be achieved by the discontinuous Galerkin approximation introduced in [START_REF] Lesaint | On a finite element method for solving the neutron transport equation, Mathematical aspects of finite Elements in Partial Differential Equation[END_REF]. Let Z h be the discontinuous finite-element space :

Z h = {θ h ∈ L 2 (Ω); ∀κ ∈ T h , θ h | κ ∈ IP 1 }.
There exists an approximation operator, [START_REF] Clément | Approximation by finite element functions using local regularization[END_REF], R h ∈ L(W 1,p (Ω); Z h ∩ C 0 (Ω)) such that for any p ≥ 1, for m = 0, 1 and 0

≤ l ≤ 1 ∀z ∈ W l+1,p (Ω), |R h (z) -z| W m,p (Ω) ≤ Ch l+1-m |z| W l+1,p (Ω) .
Let u h be a discrete velocity in H 1 0 (Ω) 2 , and for each triangle κ, let

∂κ -= {x ∈ ∂κ; αu h • n < 0},
where n denotes the unit exterior normal to ∂k. Note that, for all triangles κ of T h , ∂κ -only involves interior segments of T h because u h = 0 on ∂Ω. Then, the non-linear term α[(u

• ∇z, θ) + 1 2 (div u z, θ)] is approximated by c(u n+1 h ; z n+1 h , θ n+1 h ) = α 2 Ω div u n+1 h z n+1 h θ n+1 h dx + κ∈T h κ α(u n+1 h • ∇z n+1 h )θ n+1 h dx + ∂κ - |αu n+1 h • n|(z n+1 h,int -z n+1 h,ext )θ n+1 h,int ds .
The subscript int (resp. ext) refers to the trace on the segment ∂κ of the function taken inside (resp. outside) κ. Note that in the above sum, the boundary integrations act in fact over complete interior segments.

On the other hand, let us recall the standard Taylor-Hood discretization of the velocity and pressure. The discrete space of the pressure is :

M h = {q h ∈ H 1 (Ω) ∩ L 2 0 (Ω); ∀κ ∈ T h , q h ∈ IP 1 }. There exists an operator r h ∈ L(L 2 0 (Ω); M h ) such that for 0 ≤ l ≤ 2, ∀q ∈ H l (Ω) ∩ L 2 0 (Ω), ||r h (q) -q|| L 2 (Ω) ≤ Ch l ||q|| H l (Ω) .
The discrete velocity space is :

X h = {v h ∈ C 0 (Ω); ∀κ ∈ T h , v h | κ ∈ IP 2 , v h | ∂Ω = 0},
and let V h = {v h ∈ X h ; (q h , div v h ) = 0 ∀q ∈ M h }.
There exists an operator P h ∈ L(H 1 0 (Ω) 2 ; X h ), such that

                 ∀v ∈ H 1 0 (Ω) 2 , ∀κ ∈ T h , ∀q h ∈ M h , κ q h div(P h (v) -v)dx = 0, for all number p ≥ 2; ∀v ∈ H 1 0 (Ω) 2 , ||P h (v) -v|| L p (Ω) ≤ Ch 2/p |v| H 1 (Ω) , for all number p ≥ 2, 1 ≤ s ≤ 3, m = 0 or 1, ∀v ∈ [W s,p (Ω) ∩ H 1 0 (Ω)] 2 , ||P h (v) -v|| W m,p (Ω) ≤ Ch s-m |v| W s,p (Ω) . (23) We take f n+1 (x) = 1 k t n+1
t n f (t, x)dt. Then the discrete system corresponding to the formulation ( 19)-( 22) is :

Given (u 0 h , z 0 h ) = (0, 0) and z n h ∈ Z h , find (u n+1 h , p n+1 h ) ∈ X h × M h such that : ∀v h ∈ X h , 1 k (u n+1 h -u n h , v h ) + α k (∇(u n+1 h -u n h ), ∇v h ) + ν(∇u n+1 h , ∇v h ) + (z n h × u n+1 h , v h ) -(p n+1 h , div v h ) = (f n+1 , v h ), ( 24 
)
∀q h ∈ M h , (q h , div u n+1 h ) = 0. ( 25 
)
Once we have u n+1 h , we compute z n+1 h by solving the system :

∀θ h ∈ Z h , 1 k (z n+1 h -z n h , θ h ) + ν(z n+1 h , θ h ) + c(u n+1 h ; z n+1 h , θ h ) = ν(curlu n+1 h , θ h ) + α(curlf n+1 , θ h ). (26) 
In order to prove the existence of solutions of ( 24)-( 26), let us recall the following identity established by Lesaint and Raviart [START_REF] Lesaint | On a finite element method for solving the neutron transport equation, Mathematical aspects of finite Elements in Partial Differential Equation[END_REF] :

Lemma 3.1. For all v n h ∈ X h , z n h and θ n h in Z h , we have c(v n h ; z n h , θ n h ) = κ∈T h - κ α(v n h • ∇θ n h )z n h dx + ∂κ - α|v n h • n|z n h,ext (θ n h,ext -θ n h,int )ds - α 2 Ω (div v n h )θ n h z n h dx. For θ n h ∈ H 1 (Ω), we have c(v n h ; z n h , θ n h ) = - Ω α(v n h • ∇θ n h )z n h dx - α 2 Ω (div v n h )θ n h z n h dx. For θ n h = z n h ∈ Z h we have c(v n h ; z n h , z n h ) = 1 2 κ∈T h ∂κ - |αv n h • n|(z n h,ext -z n h,int ) 2 ds. Theorem 3.2. Given f n+1 ∈ L 2 (Ω) 2 with curl f n+1 ∈ L 2 (Ω), for all (u n h , z n h ) ∈ X h × Z h , there exists a unique solution (u n+1 h , p n+1 h , z n+1 h ) of problem (24)-(26) that belongs to X h × M h × Z h .
Proof. On the one hand, for z n h ∈ Z h , it is clear that problem (24)-( 25) has a unique solution (u n+1 h , p n+1 h ) as a consequence of the coerciveness of the corresponding bilinear form on X h ×X h . On the other hand, the last lemma proves that the bilinear form corresponding to the equation ( 26) is also coercive on Z h × Z h . Then (26) has a unique solution.

Theorem 3.3. We assume that f ∈ L 2 (0, T ; L 2 (Ω) 2 ) with curl f ∈ L 2 (0, T ; L 2 (Ω)).
The solution of the problem (24)-( 26) satisfies :

||u h || L ∞ (0,T ;H 1 (Ω) 2 ) ≤ C 1 ||f || L 2 (0,T ;L 2 (Ω) 2 ) , ||z h || 2 L ∞ (0,T ;L 2 (Ω)) ≤ C 2 ||f || 2 L 2 (0,T ;L 2 (Ω) 2 ) + C 3 || curl f || 2 L 2 (0,T ;L 2 (Ω)) , ||p h || 2 L 2 (0,T ;L 2 (Ω)) ≤ C 4 ||f || 2 L 2 (0,T ;L 2 (Ω) 2 ) + C 5 ||u h || 2 L ∞ (0,T ;H 1 (Ω) 2 ) + C 6 ||z h || 2 L ∞ (0,T ;L 2 (Ω)) ||u h || 2 L ∞ (0,T ;H 1 (Ω) 2 ) ,
where C i , i = 1, . . . , 6 are positive constants that depend on Ω and T .

Proof. On the one hand, we take v h = u n+1 h in (24) and we obtain :

1 2 ||u n+1 h || 2 L 2 (Ω) - 1 2 ||u n h || 2 L 2 (Ω) + α 2 |u n+1 h | 2 H 1 (Ω) - α 2 |u n h | 2 H 1 (Ω) + νk|u n+1 h | 2 H 1 (Ω) ≤ kε 2 ||f n+1 || 2 L 2 (Ω) + kS 2 2 2ε |u n+1 h | 2 H 1 (Ω) . We choose ε = S 2 2 2ν
and sum over n = 0, . . . i. We obtain :

1 2 ||u i h || 2 L 2 (Ω) + α 2 |u i h | 2 H 1 (Ω) ≤ i n=1 kS 2 2 4ν ||f n || 2 L 2 (Ω) ≤ N n=1 kS 2 2 4ν ||f n || 2 L 2 (Ω) .
This implies the first estimate :

||u h || 2 L ∞ (0,T ;H 1 (Ω) 2 ) = sup 0≤i≤N |u i h | 2 H 1 (Ω) ≤ S 2 2 2να ||f || 2 L 2 (0,T ;L 2 (Ω) 2 ) .
On the other hand, we choose θ h = z n+1 h in (26), use the third relation in Lemma 3.1 and we obtain :

α 2 ||z n+1 h || 2 L 2 (Ω) - α 2 ||z n h || 2 L 2 (Ω) + νk||z n+1 h || 2 L 2 (Ω) ≤ kν 2ε 1 || curl u n+1 h || 2 L 2 (Ω) + kνε 1 2 ||z n+1 h || 2 L 2 (Ω) + kα 2ε 2 || curl f n+1 || 2 L 2 (Ω) + kαε 2 2 ||z n+1 h || 2 L 2 (Ω) , taking ε 1 = 1, ε 2 = ν α
and summing over n = 0, . . . , i, this becomes :

α||z i h || 2 L 2 (Ω) ≤ νT ||u h || 2 L ∞ (0,T ;H 1 (Ω) 2 ) + α 2 ν || curl f || 2 L 2 (0,T ;L 2 (Ω)) .
Then we obtain the second estimate :

||z h || 2 L ∞ (0,T ;L 2 (Ω)) ≤ νT α ||u h || 2 L ∞ (0,T ;H 1 (Ω) 2 ) + α ν || curl f || 2 L 2 (0,T ;L 2 (Ω)) .
The third estimate is obtained in two steps: First, we take the function test

v n+1 h = u n+1 h -u n h k in (24). We obtain : 1 k 2 ||u n+1 h -u n h || 2 L 2 (Ω) + α k 2 |u n+1 h -u n h | 2 H 1 (Ω) + ν 2 |u n+1 h | 2 H 1 (Ω) + ν 2k 2 |u n+1 h -u n h | 2 H 1 (Ω) ≤ 1 2ε 1 ||f n+1 || 2 L 2 (Ω) + ε 1 2k 2 ||u n+1 h -u n h || 2 L 2 (Ω) + 1 2ε 2 ||z n h || 2 L 2 (Ω) ||u n+1 h || 2 L 4 (Ω) + S 2 4 ε 2 2k 2 |u n+1 h -u n h | 2 H 1 (Ω) .
Then by choosing ε 1 = 2 and

ε 2 = α 2S 2 4
we obtain :

| u n+1 h -u n h k | 2 H 1 (Ω) ≤ 1 2α ||f n+1 || 2 L 2 (Ω) + 2S 2 4 α 2 ||z n h || 2 L 2 (Ω) ||u n+1 h || 2 L 4 (Ω) + 2ν 2 α 2 |u n+1 h | 2 H 1 (Ω) .
Next, owing that the pair (X h , M h ) satisfies a uniform discrete inf-sup condition, we associate with

p n+1 h ∈ M h the function v h ∈ X h defined by        ∀w h ∈ V h , (∇v h , ∇w h ) = 0, ∀q h ∈ M h , (div v h , q h ) = (p n+1 h , q h ), |v h | H 1 (Ω) ≤ 1 β ||p n+1 h || L 2 (Ω) , (27) 
we substitute this v h into (24) and we obtain :

||p n+1 h || 2 L 2 (Ω) ≤ P + α 2ε 1 | u n+1 h -u n h k | 2 H 1 (Ω) + P + α 2β 2 ε 1 ||p n+1 h || 2 L 2 (Ω)) + ν 2ε 2 |u n+1 h | 2 H 1 (Ω) + νε 2 2β 2 ||p n+1 h || 2 L 2 (Ω)) + 1 2ε 3 ||z n h || 2 L 2 (Ω) ||u n+1 h || 2 L 4 (Ω) + S 2 4 ε 3 2β 2 ||p n+1 h || 2 L 2 (Ω)) + 1 2ε 4 ||f n+1 || 2 L 2 (Ω) + P 2 ε 4 2β 2 ||p n+1 h || 2 L 2 (Ω)
.

By choosing ε 1 = β 2 4(P + α) , ε 2 = β 2 4ν , ε 3 = β 2 4S 2 4
and ε 4 = β 2 4P 2 and summing over n from 0 to N -1, we obtain the third estimate.

Error estimates

Theorem 4.1. Under the assumptions u ∈ L ∞ (0, T ; W 1,4 (Ω) 2 )∩L 2 (0, T ; H 3 (Ω) 2 ), u ′ ∈ L 2 (0, T ; H 3 (Ω) 2 ), p ∈ L 2 (0, T ; H 2 (Ω)), z ∈ L ∞ (0, T ; L 2 (Ω)) and z ′ ∈ L 2 (0, T ; L 2 (Ω))
, there exist positive constants C and C ′ that depend on u, z, Ω and T such that :

1 2 ||u N h -u(t N )|| 2 L 2 (Ω) + α 2 ||∇u N h -∇u(t N )|| 2 L 2 (Ω) + ν 2 N -1 n=0 k|u n+1 h -u(t n+1 )| 2 H 1 (Ω) ≤ C(h 4 + k 2 ) + C ′ N -1 n=0 k||z n+1 h -z(t n+1 )|| 2 L 2 (Ω) . (28) 
Proof. We consider (19), choose the function test

v n+1 h = u n+1 h -P h u(t n+1
), integrate from t n to t n+1 and take the difference between this and (24) multiplied by k. We obtain :

(u n+1 h -u(t n+1 )) -(u n h -u(t n )), v n+1 h + α ∇(u n+1 h -u(t n+1 )) -∇(u n h -u(t n )), ∇v n+1 h +ν k∇u n+1 h - t n+1 t n ∇u(t)dt, ∇v n+1 h -kp n+1 h - t n+1 t n p(t)dt, div v n+1 h + kz n h × u n+1 h - t n+1 t n z(t) × u(t)dt, v n+1 h = 0.
Let us treat the terms in the left-hand side of this equation that we denote (a i ), i = 1, ..., 5.

For the first term, we insert P h u(t n+1 ) and P h u(t n ) and we split (a 1 ) into two terms that we treat separately. The first part is as follows :

(a 1,1 ) = 1 2 ||v n+1 h || 2 L 2 (Ω) - 1 2 ||v n h || 2 L 2 (Ω) + 1 2 ||v n+1 h -v n h || 2 L 2 (Ω) ,
and the second part is as follows :

|(a 1,2 )| = t n+1 t n (P h u ′ (τ ) -u ′ (τ ))dτ, v n+1 h ≤ 1 2ε 1 Ch 4 ||u ′ || 2 L 2 (t n ,t n+1 ;H 2 (Ω) 2 ) + S 2 ε 1 2 k|v n+1 h | 2 H 1 (Ω) .
We treat the second term (a 2 ) as the first one and we obtain :

(a 2,1 ) = α 2 |v n+1 h | 2 H 1 (Ω) - α 2 |v n h | 2 H 1 (Ω) + α 2 |v n+1 h -v n h | 2 H 1 (Ω) , and 
|(a 2,2 )| ≤ Cα 2ε 2 h 4 ||u ′ || 2 L 2 (t n ,t n+1 ;H 3 (Ω) 2 ) + ε 2 α 2 k|v n+1 h | 2 H 1 (Ω) .
For the third term (a 3 ), we insert ∇P h u(t n+1 ) and ∇P h u(t) and we split it into three parts that are treated successively as follows :

(a 3,1 ) = νk|u n+1 h -P h u(t n+1 )| 2 H 1 (Ω) , |(a 3,2 )| = ν t n+1 t n ∇P h (u(t n+1 ) -u(t))dt, ∇v n+1 h = ν t n+1 t n ∇P h u ′ (τ )(τ -t n )dτ, ∇v n+1 h ≤ νε 3 2 √ 3 k|v n+1 h | 2 H 1 (Ω) + νC 2 k 2 2ε 3 √ 3 ||u ′ || 2 L 2 (t n ,t n+1 ;H 2 (Ω) 2 ) , and 
|(a 3,3 )| = ν ∇ t n+1 t n (P h u(t) -u(t))dt, ∇v n+1 h ≤ νC 2 2ε 4 h 4 ||u|| 2 L 2 (t n ,t n+1 ,H 3 (Ω) 2 ) + νε 4 2 k|v n+1 h | 2 H 1 (Ω) .
To study the fourth term, we use the fact that

Ω p n+1 h div(P h u(t n+1 ) -u(t n+1 )) = 0, div u(t n+1 ) = 0 and Ω p n+1 h div u n+1 h
= 0 and we obtain :

|(a 4 )| = t n+1 t n (r h p(t) -p(t))dt, div v n+1 h ≤ C 1 2ε 5 h 4 ||p|| 2 L 2 (t n ,t n+1 ;H 2 (Ω)) + ε 5 2 k|v n+1 h | 2 H 1 (Ω) .
Finally, for the last term (a 5 ), we have (

z n h × u n+1 h , v n+1 h ) = (z n h × P h u(t n+1 ), v n+1 h ), because (a × b, b) = 0. But z n h × P h u(t n+1 ) -z(t) × u(t) = (z n h -z(t n )) × P h u(t n+1 ) + z(t n ) × P h (u(t n+1 ) -u(t)) +z(t n ) × (P h u(t) -u(t)) + (z(t n ) -z(t)) × (u(t) -u(t n )) + (z(t n ) -z(t)) × u(t n ),
than (a 5 ) is split into five parts that we treat successively.

The first part is as follows :

|(a 5,1 )| = t n+1 t n ((z n h -z(t n )) × P h u(t n+1 ), v n+1 h )dt ≤ S 2 4 ε 6 2 ||P h u|| 2 L ∞ (0,T ;H 1 (Ω) 2 ) k||z n h -z(t n )|| 2 L 2 + S 2 4 2ε 6 k|v n+1 h | 2 H 1 (Ω) . ≤ S 2 4 ε 6 2 ||u|| 2 L ∞ (0,T ;W 1,4 (Ω) 2 ) k||z n h -z(t n )|| 2 L 2 + S 2 4 2ε 6 k|v n+1 h | 2 H 1 (Ω) .
The second part is as follows :

|(a 5,2 )| = (z(t n ) × t n+1 t n (P h u(t n+1 ) -P h u(t))dt, v n+1 h ) = (z(t n ) × t n+1 t n P h u ′ (τ )(τ -t n )dτ, v n+1 h ) ≤ S 2 4 2 √ 3 C ′′′ ε 7 ||z|| 2 L ∞ (0,T ;L 2 (Ω)) ||u ′ || 2 L 2 (t n ,t n+1 ;H 2 (Ω) 2 ) k 2 + kε 7 |v n+1 h | 2 H 1 (Ω) .
For the third part, we have

|(a 5,3 )| = t n+1 t n (z(t n ) × (P h u(t) -u(t)), v n+1 h )dt ≤ S 2 4 ||z(t n )|| L 2 (Ω) |v n+1 h | H 1 (Ω) t n+1 t n |P h u(t) -u(t)| H 1 (Ω) dt ≤ C 2 S 2 4 2ε 8 ||z|| 2 L ∞ (0,T ;L 2 (Ω)) ||u|| 2 L 2 (t n ,t n+1 ;H 3 (Ω) 2 ) h 4 + C 2 S 2 4 ε 8 2 k|v n+1 h | 2 H 1 (Ω) .
The fourth part is treated as follows :

|(a 5,4 )| = t n+1 t n (z(t n ) -z(t)) × (u(t) -u(t n )), v n+1 h dt = t n+1 t n t t n z ′ (τ )dτ × t t n u ′ (τ )dτ , v n+1 h dt ≤ S 2 4 ε 9 2 √ 2 k |v n+1 h | 2 H 1 (Ω) + S 2 4 k 3 2 √ 2ε 9 ||u ′ || 2 L 2 (0,T ;H 1 (Ω) 2 ) ||z ′ || 2 L 2 (0,T ;L 2 (Ω)) .
Finally, for the last part, we have

|(a 5,5 )| = t n+1 t n (z(t n ) -z(t)) × u(t n ), v n+1 h dt = t n+1 t n z ′ (t)(t -t n+1 )dt × u(t n ), v n+1 h ≤ S 2 4 ε 10 2 √ 3 k|v n+1 h | 2 H 1 (Ω) + S 2 4 2 √ 3ε 10 k 2 ||z ′ || 2 L 2 (t n ,t n+1 ;L 2 (Ω)) ||u|| 2 L ∞ (0,T ;H 1 (Ω) 2 )
At the end, (28) follows easily after the decomposition

(a 1,1 ) + (a 2,1 ) + (a 3,1 ) ≤ |(a 1,2 )| + |(a 2,2 )| + |(a 3,2 )| + |(a 3,3 )| + |(a 4 )| + |(a 5 )|,
the sum over n = 1, . . . , N -1, a suitable choice of ε i , i = 1, . . . , 10 and by using the properties of P h in :

|u n+1 h -u(t n+1 )| H 1 (Ω) ≤ |u n+1 h -P h u(t n+1 )| H 1 (Ω) + |P h u(t n+1 ) -u(t n+1 )| H 1 (Ω) .
We define ρ h as the L 2 projection of z onto IP 1 in each triangle κ : for z ∈ L 2 (Ω),

∀q ∈ IP 1 , κ (ρ h (z) -z)qdx = 0.
This operator has locally the same accuracy as R h .

Theorem 4.2. We suppose that there exists a constant γ > 0 such that k ≤ γh. In addition to the assumptions of Theorem 4.1, we assume that u ∈ L ∞ (0,

T ; W 1,∞ (Ω) 2 ), z ∈ L ∞ (0, T ; W 1,4 (Ω)) and z ′ ∈ L ∞ (0, T ; L 4 (Ω)) ∩ L 2 (0, T ; W 1,4 (Ω)). Denoting θ n+1 h = z n+1 h - ρ h z(t n+1 ) we have : N -1 n=0 t n+1 t n c(u n+1 h ; ρ h z(t n+1 ) -z(t), θ n+1 h )dt ≤ L 1 (h 3 + k 2 ) + L 3 N -1 n=0 k||θ n+1 h || 2 L 2 (Ω) +L 2 N -1 n=0 k|u n+1 h -u(t n+1 )| 2 H 1 (Ω) + α 2 κ∈T h N -1 n=0 t n+1 t n ∂κ - |u n+1 h • n|(θ n+1 h,ext -θ n+1 h,int ) 2 dsdt
(29) where L i are constants that only depend on u, z, Ω, T and arbitrary coefficients ε i (i = 1, . . . , 8)

Proof. Owing to Lemma 3.1 and denoting ξ h = ρ h (z(t n+1 )), we have :

t n+1 t n c(u n+1 h ; ρ h z(t n+1 ) -z(t), θ n+1 h )dt = α κ∈T h - t n+1 t n κ (u n+1 h • ∇θ n+1 h )(ξ h -z(t))dxdt + t n+1 t n ∂κ - |u n+1 h • n|(ξ h -z(t)) ext (θ n+1 h,ext -θ n+1 h,int )dsdt - α 2 t n+1 t n Ω div(u n+1 h -u(t))(ξ h -z(t))θ n+1 h dxdt
In the left-hand side, we denote the terms by (d i ), i = 1 . . . , 3. as ∇(z hρ h (z)) is a constant vector, the first term (d 1 ), for any constant vector c, can be treated as :

t n+1 t n κ (u n+1 h • ∇θ n+1 h )(ξ h -z(t))dxdt ≤ α t n+1 t n κ (u n+1 h -u(t n+1 ))∇θ n+1 h (ξ h -z(t))dxdt +α t n+1 t n κ (u(t n+1 ) -c)∇θ n+1 h (ξ h -z(t n+1 ))dxdt + t n+1 t n κ u(t n+1 )∇θ n+1 h (z(t n+1 ) -z(t))dxdt . With α t n+1 t n κ (u n+1 h -u(t n+1 ))∇θ n+1 h (ξ h -z(t))dxdt ≤ αS 4 ρ k |u n+1 h -u(t n+1 )| H 1 (κ) ||θ n+1 h || L 2 (κ) c 1 k||ξ h -z(t n+1 )|| L 4 (κ) + c 2 k 2 √ 2 ||z ′ || L ∞ (0,T ;L 4 (κ)) ≤ αc 3 S 4 σ 0 ||z|| L ∞ (0,T ;W 1,4 (κ)) + γ||z ′ || L ∞ (0,T ;L 4 (κ)) k 2ε 1 ||θ n+1 h || 2 L 2 (κ) + ε 1 k 2 |u n+1 h -u(t n+1 )| 2 H 1 (κ) , and 
α t n+1 t n κ (u(t n+1 ) -c)∇θ n+1 h (ξ h -z(t n+1 ))dxdt + t n+1 t n κ u(t n+1 )∇θ n+1 h (z(t n+1 ) -z(t))dxdt = α t n+1 t n κ (u(t n+1 ) -c)∇θ n+1 h (ξ h -z(t n+1 ))dxdt - t n+1 t n κ θ n+1 h u(t n+1 )∇(z(t n+1 ) -z(t))dxdt ≤ ||θ n+1 h || L 2 (κ) αc 3 ρ k kh 3/2 ||z(t n+1 )|| W 1,4 (κ) ||u(t n+1 ) -c|| L ∞ (κ) + ||u|| L ∞ (0,T ;κ) αk 3/2 √ 3 ||z ′ || L 2 (t n ,t n+1 ;H 1 (κ)) ≤ αc 4 σ 0 kh 3/2 ||θ n+1 h || L 2 (κ) ||u(t n+1 )|| W 1,∞ (κ) ||z|| L ∞ (0,T ;W 1,4 (κ)) + k 3/2 √ 3 ||θ n+1 h || L 2 (κ) ||z ′ || L 2 (t n ,t n+1 ;H 1 (κ)) ||u|| L ∞ (0,T ;κ) ≤ αc 5 ||u|| L ∞ (0,T ;W 1,∞ (κ) 2 ) k 2ε 2 ||θ n+1 h || 2 L 2 (κ) + ε 2 2 (k 2 ||z ′ || 2 L 2 (t n ,t n+1 ;H 1 (κ)) + kh 3 ||z|| 2 L ∞ (t n ,t n+1 ;W 1,4 (κ)) ) .
For the second part (d 2 ), we write :

α t n+1 t n ∂κ - |u n+1 h • n|(ξ h -z(t)) ext (θ n+1 h,ext -θ n+1 h,int )dsdt ≤ α 2 t n+1 t n ∂κ - |u n+1 h • n|(θ n+1 h,ext -θ n+1 h,int ) 2 dsdt + α 2 t n+1 t n ∂κ - |u n+1 h • n| (ξ h -z(t)) ext 2 dsdt
We keep the first term in the right-hand side of this inequality. The second term can be written as follows :

α 2 t n+1 t n ∂κ - |u n+1 h • n| (ξ h -z(t)) ext 2 dsdt ≤ α t n+1 t n ∂κ - |u n+1 h • n| (ξ h -z(t n+1 )) ext 2 dsdt + α t n+1 t n ∂κ - |u n+1 h • n| (z(t n+1 ) -z(t)) ext 2 dsdt with α t n+1 t n ∂κ - |u n+1 h • n| (ξ h -z(t n+1 )) ext 2 dsdt ≤ αc 6 k ||ξ h -z(t n+1 )|| 2 L 4 (∂κ -) ||u n+1 h -u(t n+1 )|| L 2 (∂κ -) + ||ξ h -z(t n+1 )|| 2 L 2 (∂κ -) ||u(t n+1 )|| L ∞ (ω k ) ≤ αc 7 k h 3/2 ||z(t n+1 )|| 2 W 1,4 (ω k ) ||u n+1 h -u(t n+1 )|| H 1 (ω k ) + h 3 ||z(t n+1 )|| 2 W 1,4 (ω k ) ||u(t n+1 )|| L ∞ (ω k ) ≤ αc 7 h 3 k ||z|| 2 L ∞ (0,T ;W 1,4 (ω k )) ||u|| L ∞ (0,T ;ω k ) + 1 2ε 3 ||z|| 2 L ∞ (0,T ;W 1,4 (ω k )) + ε 3 2 k||u n+1 h -u(t n+1 )|| 2 H 1 (ω k ) ,
where ω k denotes the union of triangles adjacent to κ and

α t n+1 t n ∂κ - |u n+1 h • n| (z(t n+1 ) -z(t)) ext 2 dsdt ≤ α ∂κ - |u n+1 h • n| t n+1 t n (t n+1 -t) t n+1 t |z ′ (τ )| 2 dτ ext dtds ≤ α ∂κ - |u n+1 h • n| t n+1 t n |z ′ (τ )| 2 dτ ext t n+1 t n (t n+1 -t)dtds ≤ αk 2 2 ∂κ - |(u n+1 h -u(t n+1 )) • n| t n+1 t n |z ′ (τ )| 2 dτ ext ds + ∂κ - |u(t n+1 ) • n| t n+1 t n |z ′ (τ )| 2 dτ ext ds ≤ αc 8 k 2ε 4 |u n+1 h -u(t n+1 )| 2 H 1 (ω k )) + ε 4 k 3 2 ||z ′ || 2 L 2 (t n ,t n+1 ;W 1,4 (ω k )) +k 2 ||u|| L ∞ (0,T ;H 1 (ω k ) 2 ) ||z ′ || 2 L 2 (t n ,t n+1 ;W 1,4 (ω k ))
For the third part (d 3 ), we insert respectively in the divergence term and the term in z, ±u(t n+1 ) and ±z(t n+1 ). We get four parts that we treat as follow :

|(d 3,1 )| = α 2 t n+1 t n Ω div(u n+1 h -u(t n+1 ))(ξ h -z(t n+1 ))θ n+1 h dxdt ≤ α 2 σ 0 C 9 ||z|| L ∞ (0,T ;W 1,4 (Ω)) k 2ε 5 |u n+1 h -u(t n+1 )| 2 H 1 (Ω) + ε 5 2 k||θ n+1 h || 2 L 2 (Ω) , |(d 3,2 )| = α 2 t n+1 t n Ω div(u(t n+1 ) -u(t))(ξ h -z(t n+1 ))θ n+1 h dxdt ≤ α 2 C 10 σ 0 k 3/2 ||z|| L ∞ (0,T ;W 1,4 (Ω)) ||θ n+1 h || L 2 (Ω) ||u ′ || L 2 (t n ,t n+1 ;H 1 (Ω) 2 ) ≤ α 2 C 10 σ 0 ||z|| L ∞ (0,T ;W 1,4 (Ω)) k 2 2ε 6 ||u ′ || 2 L 2 (t n ,t n+1 ;H 1 (Ω) 2 ) + ε 6 2 k||θ n+1 h || 2 L 2 (Ω) , |(d 3,3 )| = α 2 t n+1 t n Ω div(u(t n+1 ) -u(t))(z(t n+1 ) -z(t))θ n+1 h dxdt ≤ α 2 C 11 k 2 ρ min ||z ′ || L 2 (t n ,t n+1 ;L 4 (Ω)) ||θ n+1 h || L 2 (Ω) ||u ′ || L 2 (t n ,t n+1 ,H 1 (Ω) 2 ) ≤ α 2 C 11 σ 0 γ||u ′ || L ∞ (0,T ;H 1 (Ω) 2 ) k 2 2ε 7 ||z ′ || 2 L 2 (t n ,t n+1 ;L 4 (Ω)) + ε 7 2 k||θ n+1 h || 2 L 2 (Ω) , and 
|(d 3,4 )| = α 2 t n+1 t n Ω div(u n+1 h -u(t n+1 ))(z(t n+1 ) -z(t))θ n+1 h dxdt ≤ α 2 C 13 k 3/2 ρ min ||θ n+1 h || L 2 (Ω) |u n+1 h -u(t n+1 )| H 1 (Ω) ||z ′ || L 2 (t n ,t n+1 ;L 4 (Ω)) ≤ α 2 C 13 γ||z ′ || L ∞ (0,T ;L 4 (Ω)) k 2ε 8 ||θ n+1 h || 2 L 2 (Ω) + ε 8 2 k|u n+1 h -u(t n+1 )| 2 H 1 (Ω) .
We deduce the result after summing over n = 0, . . . , N -1 Theorem 4.3. With the same assumptions of Theorem 4.2, we have :

N -1 n=1 k||z n+1 h -z(t n+1 )|| 2 L 2 (Ω) ≤ F 1 (h 3 + k 2 ) + F 2 N -1 n=0 k|u n+1 h -u(t n+1 )| 2 H 1 (Ω) , (30) 
where F i are constants that only depend on u, z, Ω and T .

Proof. We consider (21), take the test function

θ h = θ n+1 h = z n+1 h -ρ h z(t n+1
), integrate from t n to t n+1 and subtract (26) multiplied by k. We obtain :

α (z n+1 h -z(t n+1 )) -(z n h -z(t n )), θ n+1 h + ν t n+1 t n (z n+1 h -z(t))dt, θ n+1 h + k c(u n+1 h ; z n+1 h , θ n+1 h ) -α t n+1 t n u(t)∇z(t) + 1 2 div u(t)z(t), θ n+1 h dt = ν t n+1 t n (curlu n+1 h -curlu(t))dt, θ n+1 h (31) 
Let us treat each term of this equation that we denote by (b i ), i = 1, ..., 4.

For the first term, we follow the same steps as for the term (a 1 ) in the Theorem 4.1. We obtain :

(b 1,1 ) = α 2 ||θ n+1 h || 2 L 2 (Ω) - α 2 ||θ n h || 2 L 2 (Ω) + α 2 ||θ n+1 h -θ n h || 2 L 2 (Ω) , and 
|(b 1,2 )| = α t n+1 t n (ρ h z ′ (τ ) -z ′ (τ ))dτ, θ n+1 h ≤ Cαh 3 2ε 9 ||z ′ || 2 L 2 (t n ,t n+1 ;W 1,4 (Ω)) + αε 9 2 k||θ n+1 h || 2 L 2 (Ω) .
For the second term (b 2 ), we write :

z n+1 h -z(t) = z n+1 h -ρ h z(t n+1 ) + ρ h z(t n+1 ) -ρ h z(t) + ρ h z(t) -z(t),
and we obtain three parts that we treat successively.

The first one gives : (b 2,1 ) = νk||θ n+1 h || 2 L 2 (Ω) . The second part is bounded as follows :

|(b 2,2 )| = ν t n+1 t n (ρ h z(t n+1 ) -ρ h z(t))dt, θ h = ν t n+1 t n ρ h z ′ (t)(t -t n )dt, θ n+1 h ≤ νk 2 2 √ 3ε 10 ||z ′ || 2 L 2 (t n ,t n+1 ;H 1 (Ω)) + ε 10 2 √ 3 k||θ n+1 h || 2 L 2 (Ω) ,
and the last part is bounded as follows :

|(b 2,3 )| = ν t n+1 t n (ρ h z(t) -z(t))dt, θ n+1 h ≤ νh 3 2ε 11 ||z|| 2 L 2 (t n ,t n+1 ;W 1,4 (Ω)) + νkε 11 2 ||θ n+1 h || 2 L 2 (Ω) .
The third term can be written as follows :

(b 3 ) = t n+1 t n c(u n+1 h ; z n+1 h , θ n+1 h )dt -α t n+1 t n u(t)∇z(t) + 1 2 div u(t)z(t), θ n+1 h dt = t n+1 t n c(u n+1 h ; θ n+1 h , θ n+1 h )dt + t n+1 t n c(u n+1 h ; ρ h z(t n+1 ) -z(t), θ n+1 h )dt + t n+1 t n c(u n+1 h ; z(t), θ n+1 h )dt -α t n+1 t n u(t)∇z(t) + 1 2 div u(t)z(t), θ n+1 h dt.
Owing to Lemma 3.1 and denoting ξ h = ρ h (z(t n+1 )), (b 3 ) becomes :

(b 3 ) = α 2 κ∈T h t n+1 t n ∂κ - |u n+1 h • n|(θ n+1 h,ext -θ n+1 h,int ) 2 dsdt + t n+1 t n c(u n+1 h ; ρ h z(t n+1 ) -z(t), θ n+1 h )dt +α t n+1 t n Ω (u n+1 h -u(t))∇z(t)θ n+1 h dxdt + α 2 t n+1 t n Ω div(u n+1 h -u(t))z(t)θ n+1 h dxdt.
We divide (b 3 ) into four terms (b 3,i ), i = 1, . . . , 4. We keep the term (b 3,1 ) in the left-hand side of (31). The second term (b 3,2 ) is bounded as in the previous theorem.

For the third part (b 3,3 ), we have :

|(b 3,3 )| = α t n+1 t n Ω (u n+1 h -u(t))∇z(t)θ n+1 h dxdt ≤ αC 14 ||z|| L ∞ (0,T ;W 1,4 (Ω)) k 2ε 12 |u n+1 h -u(t n+1 )| 2 H 1 (Ω) + ε 12 2 k||θ n+1 h || 2 L 2 (Ω) +αC 15 ||z|| L ∞ (0,T ;W 1,4 (Ω)) k 2 2ε 13 ||u ′ || 2 L 2 (t n ,t n+1 ;H 1 (Ω) 2 ) + ε 13 2 k||θ n+1 h || 2 L 2 (Ω) ,
and the last part of the third term (b 3 ) is :

|(b 3,4 )| = α 2 t n+1 t n Ω div(u n+1 h -u(t))z(t)θ n+1 h dxdt ≤ α 2 C 16 ||z|| L ∞ (0,T ;L ∞ (Ω)) k 2ε 14 |u n+1 h -u(t n+1 )| 2 H 1 (Ω) + ε 14 2 k||θ n+1 h || 2 L 2 (Ω) + α 2 C 17 ||z|| L ∞ (0,T ;L ∞ (Ω)) k 2 2ε 15 ||u ′ || L 2 (t n ,t n+1 ;H 1 (Ω) 2 ) + ε 15 2 k||θ n+1 h || 2 L 2 (Ω) .
For the last term (b 4 ), we split it into two parts, as follows :

Using || curl u h || 2 L 2 (Ω) ≤ 2|u h | 2 H 1 (Ω) , we have |(b 4,1 )| = ν t n+1 t n ( curl u n+1 h -curl u(t n+1 ))dt, θ n+1 h ≤ νk ε 16 |u n+1 h -u(t n+1 )| 2 H 1 (Ω) + νε 16 k 2 ||z n+1 h -ρ h z(t n+1 )|| 2 L 2 (Ω) , and 
|(b 4,2 )| = ν t n+1 t n ( curl u(t n+1 ) -curl u(t))dt, θ n+1 h ≤ νk 2 √ 3ε 17 ||u ′ || 2 L 2 (t n ,t n+1 ;H 1 (Ω) 2 ) + νε 17 k √ 3 ||z n+1 h -ρ h z(t n+1 )|| 2 L 2 (Ω) .
Collecting all these results, we obtain :

(b 1,1 ) + (b 2,1 ) + (b 3,1 ) ≤ |(b 1,2 )| + |(b 2,2 )| + |(b 2,3 )| + |
Then (30) follows easily after the sum over n = 1, . . . , N -1, a suitable choice of ε i , i = 1, . . . , 17 and by applying a triangular inequality to ||z n+1 h z(t n+1 )|| L 2 (Ω) :

||z n+1 h -z(t n+1 )|| L 2 (Ω) ≤ ||z n+1 h -ρ h z(t n+1 )|| L 2 (Ω) + ||ρ h z(t n+1 ) -z n+1 h || L 2 (Ω)
and properties of P h .

Corollary 4.4. Under the assumptions of Theorem 4.1 and Theorem 4.3, and for k sufficiently small, there exist constants C 1 , C 2 and C 3 independent of h and k such that :

N -1 n=0 k|u n+1 h -u(t n+1 )| 2 H 1 (Ω) ≤ C 1 (h 3 + k 2 ), (32) 
N -1

n=0 k||z n+1 h -z(t n+1 )|| 2 L 2 (Ω) ≤ C 2 (h 3 + k 2 ), ( 33 
)
and sup

n |u n h -u(t n )| 2 H 1 (Ω) ≤ C 3 (h 3 + k 2 ). ( 34 
)
Proof. On one hand, we consider (30). On the other hand, the only difference between this proof and that of Theorem 4.1 is the upper bound of the term (a 5,1 ). Here, using the inequality

||u|| 2 L 4 (Ω) ≤ C|u| H 1 (Ω) ||u|| L 2 (Ω) ,
we have :

|(a 5,1 )| ≤ S 4 ε 6 2 ||P h u|| 2 L ∞ (0,T ;H 1 (Ω) 2 ) k||z n h -z(t n )|| 2 L 2 (Ω) + S 4 4ε 6 k||u n+1 h -P h u(t n+1 )|| 2 L 2 (Ω) + S 4 4ε 6 k|u n+1 h -P h u(t n+1 )| 2 H 1 (Ω) .
Then, using this result with (30) and after a suitable choice of ε i , i = 1, . . . , 10 and ε6 , we obtain :

||u N h -P h u(t N )|| 2 L 2 (Ω) + N -1 n=0 ||(u n+1 h -P h (u(t n+1 ))) -(u n h -P h (u(t n )))|| 2 L 2 (Ω) +α|u N h -P h u(t N )| 2 H 1 (Ω) + α N -1 n=0 |(u n+1 h -P h u(t n+1 )) -(u n h -P h u(t n ))| 2 H 1 (Ω) +ν N -1 n=0 k|u n+1 h -P h u(t n+1 )| 2 H 1 (Ω) ≤ C(h 3 + k 2 ) + C ′ N -1 n=0 k||u n+1 h -P h u(t n+1 )|| 2 L 2 (Ω) .
Then by applying the discrete Gronwall lemma, we obtain, for k sufficiently small :

||u N h -u(t N )|| 2 L 2 (Ω) + ν N -1 n=0 k|u n+1 h -u(t n+1 )| 2 H 1 (Ω) ≤ Ce C ′ kN (h 3 + k 2 ),
and the results follow easily.

Remark 4.5. If we have, for example,

v m h 2 L 2 (Ω) + m-1 n=0 v n+1 h -v n h 2 L 2 (Ω) +ν m-1 n=0 k|v n+1 h | 2 H 1 (Ω) ≤ C 1 + C 2 m-1 n=0 k v n+1 h 2 L 2 (Ω) , by writing, v m h L 2 (Ω) ≤ v m h -v m-1 h L 2 (Ω) + v m-1 h L 2 (Ω) , we obtain C 2 k v m h 2 L 2 (Ω) ≤ 2C 2 k v m h -v m-1 h 2 L 2 (Ω) +2C 2 k v m-1 h 2 L 2 (Ω) .
By assuming k sufficiently small such that 2C 2 k ≤ 1, we obtain :

v m h 2 L 2 (Ω) + m-2 n=0 v n+1 h -v n h 2 L 2 (Ω) +ν m-1 n=0 k|v n+1 h | 2 H 1 (Ω) ≤ C 1 + 3C 2 m-1 n=1 k v n h 2 L 2 (Ω) ,
then we can apply the discrete classic Gronwall lemma.

Theorem 4.6. Under the assumptions of Corollary 4.4, we suppose that p ′ ∈ L 2 (0, T ; L 2 (Ω)).

Then the pressure satisfies the following estimate :

N -1 n=0 k||p n+1 h -p(t n+1 )|| 2 L 2 (Ω) ≤ 1 β ⋆ C(h 3 + k 2 ) +(α + S 2 2 ) N -1 n=0 k (u n+1 h -u(t n+1 )) -(u n h -u(t n )) k 2 H 1 (Ω) , (35) 
where the coefficients C and S 2 are respectively the inf-sup constant and Poincaré's constant and are independent of h and k.

Proof. We consider again the first equation of the proof of Theorem 4.1, insert ±kr h p(t n+1 ) in the terms of the pression and we get :

t n+1 t n p n+1 h -r h p(t n+1 ), div v n+1 h dt = (u n+1 h -u(t n+1 )) -(u n h -u(t n )), v n+1 h +α ∇(u n+1 h -u(t n+1 )) -∇(u n h -u(t n )), ∇v n+1 h + ν t n+1 t n ∇(u n+1 h -u(t))dt, ∇v n+1 h + t n+1 t n (z n h ∧ u n+1 h -z(t) ∧ u(t))dt, v n+1 h - t n+1 t n r h p(t n+1 ) -p(t), div v n+1 h dt.
Owing to the inf-sup condition, ∀q h ∈ M h ,

∃w h ∈ V ⊥ h ; (div w h , q h ) = ||q h || 2 L 2 (Ω) and ||∇w h || L 2 (Ω) ≤ ||q h || L 2 (Ω) ,
and summing over n = 0, . . . , N -1, the left-hand side of this equation becomes

N -1 n=0 k||p n+1 h -r h p(t n+1 )|| 2 L 2 (Ω) .
Let us treat the terms in the right-hand side of the equation.

For the first term, we have

N -1 n=0 (u n+1 h -u(t n+1 )) -(u n h -u(t n )), v n+1 h ≤ S 2 N -1 n=0 k (u n+1 h -u n h ) -(u(t n+1 ) -u(t n )) k 2 L 2 (Ω) 1/2 N -1 n=0 k|v n+1 h | 2 H 1 (Ω) 1/2 ≤ S 2 2 N -1 n=0 k (u n+1 h -u n h ) -(u(t n+1 ) -u(t n )) k 2 H 1 (Ω) 1/2 N -1 n=0 k|v n+1 h | 2 H 1 (Ω) 1/2
, and for the second,

α N -1 n=0 ∇((u n+1 h -u(t n+1 )) -(u n h -u(t n ))), ∇v n+1 h ≤ α N -1 n=0 k (u n+1 h -u n h ) -(u(t n+1 ) -u(t n )) k 2 H 1 (Ω) 1/2 N -1 n=0 k|v n+1 h | 2 H 1 (Ω) 1/2
.

For the third term, we have :

ν N -1 n=0 t n+1 t n ∇(u n+1 h -u(t)), ∇v n+1 h dt ≤ ν N -1 n=0 t n+1 t n ∇(u n+1 h -u(t n+1 )), ∇v n+1 h dt + ν N -1 n=0 t n+1 t n t t n+1 ∇u ′ (τ )dτ, ∇v n+1 h dt ≤ ν C 1 (h 3 + k 2 ) 1/2 + C 2 k||u ′ || L 2 (0,T ;H 1 (Ω) 2 ) N -1 n=0 k|v n+1 h | 2 H 1 (Ω) 1/2
.

The fourth term is treated as the fifth term in the proof of Theorem 4.1 and by using the result of Theorem 4.3, the result is the following :

N -1 n=0 t n+1 t n z n h ∧ u n+1 h -z(t) ∧ u(t) dt, ∇v n+1 h ≤ C(h 3 + k 2 ) 1/2 N -1 n=0 k|v n+1 h | 2 H 1 (Ω) 1/2 .
Finally, the last term is treated as follows :

t n+1 t n r h p(t n+1 ) -p(t), div v n+1 h dt ≤ N -1 n=0 t n+1 t n (r h p(t n+1 ) -r h p(t))dt, div v n+1 h + N -1 n=0 t n+1 t n (r h p(t) -p(t))dt, div v n+1 h ≤ C N -1 n=0 t n+1 t n (τ -t n )||p ′ (τ )|| L 2 (Ω) |v n+1 h | H 1 (Ω) dτ + C 2 N -1 n=0 h 2 k 1/2 ||p|| L 2 (t n ,t n+1 ;H 2 (Ω)) |v n+1 h | H 1 (Ω) ≤ C 1 k √ 3 ||p ′ || L 2 (0,T ;L 2 (Ω)) + C 2 h 2 ||p|| L 2 (0,T ;H 2 (Ω)) N -1 n=0 k|v n+1 h | 2 H 1 (Ω) 1/2 .
Then (35) follows easily from these inequalities.

We still have to estimate

N -1 n=0 k (u n+1 h -u(t n+1 )) -(u n h -u(t n )) k 2 H 1 (Ω) 1/2 .
We introduce a variant of Stokes projection as follows :

∀(u, p) ∈ V × L 2 0 (Ω), S h u ∈ V h is defined by ∀v h ∈ V h , ν(∇(S h u -u), ∇v h ) = -(p, div v h ), (36) 
Lemma 4.7. Let (u, p) ∈ V × L 2 0 (Ω). Then S h u defined by (36) satisfies :

|S h u -u| H 1 (Ω) ≤ 2|P h u -u| H 1 (Ω) + 1 ν ||r h p -p|| L 2 (Ω) . (37) 
If, in addition, Ω is convex, there exists a constant C independent of h such that:

||S h u -u|| L 2 (Ω) ≤ Ch |S h u -u| H 1 (Ω) + ||r h p -p|| L 2 (Ω) . (38) 
Theorem 4.8. Under the assumptions of Theorem 4.6 and assuming p ′ ∈ L 2 (0, T ; H 2 (Ω)), we have :

N -1 n=0 k (u n+1 h -u(t n+1 )) -(u n h -u(t n )) k 2 H 1 (Ω) ≤ C(h 3 + k 2 ). (39) 
Proof. We consider, once more, the first equation in the proof of Theorem 4.6, choose v n+1 h ∈ V h , insert r h p(s) and S h u ′ = (S h u) ′ and we set e n h = u n h -S h u(t n ). We obtain : 

(u n+1 h -S h u(t n+1 )) -(u n h -S h u(t n )), v n+1 h - t n+1 t n u ′ (s) -S h u ′ (s), v n+1 h ds +α ∇(u n+1 h -S h u(t n+1 )) -∇(u n h -S h u(t n )), ∇v n+1 h -α t n+1 t n ∇(u ′ (s) -S h u ′ (s)),

  We sum this above equation over n = 0, . . . , N -1 and we treat the terms denoted again(a i ), i = 1, . . . , 6 in the left-hand side. We take v n+1 -S h u ′ || L 2 (t n ,t n+1 ;L 2 (Ω) 2 ) k|| -S h u ′ || 2 L 2 (0,T ;L 2 (Ω) 2 ) + ||u ′ || 2 L 2 (0,T ;H 2 (Ω) 2 ) + ||p ′ || 2 L 2 (0,T ;H 1 (Ω)) +The second term (a 2 ) is treated as the first one. We have :(a 2 ) = α Cα 2ε 2 h 4 ||u ′ || 2 L 2 (0,T ;H 3 (Ω) 2 ) + ||p ′ || 2 L 2 (0,T ;H 2 (Ω)) + || 2 L 2 (Ω)and by defining S h u 0 with p = 0, we obtain :(tt n )|S h u ′ (t)| H 1 (Ω) dt |v n+1 h | H 1 (Ω) ||S h u ′ || L 2 (t n ,t n+1 ;H 1 (Ω) 2 ) ||S h u ′ || 2 L 2 (0,T ;H 1 (Ω) 2 ) .Using the definition of S h , we have(a 4 ) + (a 6 ) = νFinally, the last term (a 5 ) is bounded as previously in Theorem 4.6 :Theorem 4.9. Under the assumptions of Theorem 4.6, there exists a constant C that does not depend on h and k such that

	∇v n+1 h L 2 (Ω) . || 2 ds = 0 -e n ∇(S h u(s) -u(s))ds, ∇v n+1 h t n+1 t n+1 t n t n p(s), div v n+1 h ds = 0. h = e n+1 h -e n h k . The first term is composed of two parts as follows : +ν t n+1 t n ∇(u n+1 h -S h u(s))ds, ∇v n+1 h + ν + t n+1 t n (z n h ∧ u n+1 h -z(s) ∧ u(s))ds, v n+1 h + where (a 1,1 ) = N -1 n=0 k|| e n+1 h -e n h k L 2 (Ω) , and |(a 3,2 )| = ν N -1 n=0 t n+1 t n (∇S h (u(t n+1 ) -u(s)), ∇v n+1 h )ds || 2 |(a 1,2 )| ≤ N -1 n=0 ||u ′ e n+1 h -e n h k || 2 L 2 (Ω) 1/2 ≤ 1 2ε 1 ||u ′ ε 1 2 N -1 k|| e n+1 h -e n h k || 2 = ν N -1 t n+1 t n h )dt (∇S h u ′ (t)(t -t n ), ∇v n+1 n=0 ≤ ν N -1 t n+1 |v n+1 h | H 1 (Ω) t n n=0 L 2 (Ω) N -1 n=0 ≤ C 2ε 1 h 4 ε 1 2 N -1 n=0 k|| e n+1 h h k N -1 n=0 (∇e n+1 h -∇e n h , ∇v n+1 h )-α N -1 n=0 t n+1 t n ≤ ν n=0 k 3/2 ≤ ν 2ε 3 N -1 n=0 k| e n+1 h -e n h k | 2 H 1 (Ω) + νε 3 2 k 2 t n+1 t n ∇(S h u(s) -u(s))ds, ∇v n+1 h + t n+1 t n p(s), div v n+1 h ∇u N -1 n=0 k| e n+1 h -e n h k | 2 H αε 2 2 N -1 n=0 k|| e n+1 h -e n h k || 2 H 1 (Ω) . The third term is treated as : |(a 3 )| = ν N -1 n=0 t n+1 t n (∇(u n+1 h -S h u(s)), ∇v n+1 h )ds = ν N -1 n=0 (∇e n+1 h , ∇v n+1 h ) + ν N -1 n=0 t n+1 t n (∇S h (u(t n+1 ) -u(s)), ∇v n+1 h )ds = |(a 3,1 ) + (a 3,2 )|. Using the relation (a n+1 -a n , a n+1 ) = 1 2 ||a n+1 || 2 L 2 (Ω) -1 2 ||a n || 2 L 2 (Ω) + 1 2 |(a 5 )| ≤ Cε 4 2 (h 3 + k 2 ) + C 2ε 4 N -1 n=0 k| e n+1 h -e n h k | 2 H N -1 ||a n+1 -a n |(a 3,1 )| = ν 2 N -1 n=0 k| e n+1 h -e n h k | 2 H 1 (Ω) + ν 2 N -1 n=0 k | e n+1 h k | 2 H 1 (Ω) -| h k H 1 (Ω) | 2 e n n=0 k||p n+1 h -p(t n+1 )|| 2 L 2 (Ω) ≤ C(h 3 + k 2 ). (40)	ds
	(a 1 ) =	N -1 n=0 (e n+1 h =	-e n h , v n+1 h ) -ν 2 N -1 n=0 k| e n+1 N -1 n=0 h -e n h k	t n+1 t n | 2 H 1 (Ω) + u ′ (s) -S h u ′ (s), v n+1 h ν 2 k| e N h k | 2 H 1 (Ω) .	ds = (a 1,1 ) + (a 1,2 ),

′ (s)-∇S h u ′ (s), ∇v n+1 h ds = (a 2,1 )+(a 2,2 ), with (a 2,1 ) = α 1 (Ω) , |(a 2,2 )| ≤ 1 (Ω) .

Collecting these results, writing (a 1,1 ) + (a 2,1 ) + (a 3,1 ) ≤ |(a 1,2 )| + |(a 2,2 )| + |(a 3,2 )| + |(a 5 )|, choosing suitably ε i , i = 1, . . . , 4 and by applying the following triangular inequality

|u n+1 h u(t n+1 )| H 1 (Ω) ≤ |u n+1 h -S h u(t n+1 )| H 1 (Ω) + |S h u(t n+1 )u(t n+1 )| H 1 (Ω) ,

(39) follows easily.

i=2 (b 3,i )| + |(b 4 )|.