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VERY SINGULAR SOLUTIONS TO A NONLINEAR
PARABOLIC EQUATION WITH ABSORPTION.

II – UNIQUENESS

Säıd Benachour 1, Herbert Koch 2 and Philippe Laurençot 3

Abstract

We prove the uniqueness of the very singular solution to

ut −∆u+ |∇u|p = 0 in (0,+∞)× RN ,

when 1 < p < (N +2)/(N +1), thus completing the previous result by Qi & Wang (2001)
restricted to self-similar solutions.

Key words. viscous Hamilton-Jacobi equation, very singular solution, uniqueness

1 Introduction

The existence of a self-similar very singular solution at the origin to the following viscous
Hamilton-Jacobi equation

ut −∆u+ |∇u|p = 0 in (0,+∞)× RN , (1.1)

has been established in [2] and in [18] by two different methods, when 1 < p < (N+2)/(N+1).
Recall that a very singular solution at the origin to (1.1) is a nonnegative solution to (1.1)
which is smooth in (0,+∞)× RN and fulfils the following two conditions

lim
t→0

∫
{|x|≤r}

u(t, x) dx = +∞,

lim
t→0

∫
{|x|≥r}

u(t, x) dx = 0,

for every r ∈ (0,+∞). In addition, a very singular solution u is self-similar if there is a
smooth function f ∈ L1((0,+∞); rN−1dr) such that

u(t, x) = t−a/2 f
(
|x|t−1/2

)
, (t, x) ∈ (0,+∞)× RN ,

1Institut Elie Cartan – Nancy, Université de Nancy 1, BP 239, F–54506 Vandœuvre-lès-Nancy cedex, France
E-mail : benachou@iecn.u-nancy.fr

2Fachbereich Mathematik, Universität Dortmund, Vogelpothsweg 87, D–44221 Dortmund, Germany
E-mail : koch@mathematik.uni-dortmund.de
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where a = (2−p)/(p−1). In [18], Qi & Wang show that there is one and only one self-similar
very singular solution to (1.1). The purpose of this paper is to extend this uniqueness result
without the self-similarity assumption.

Before describing our results, let us mention that the name very singular solution has
been introduced by Brezis, Peletier and Terman [4] who proved the existence and uniqueness
of a self-similar very singular solution to

ut −∆u+ up = 0 in (0,+∞)× RN , (1.2)

when 1 < p < 1 + 2/N . As self-similar very singular solutions to (1.2) satisfy an ordi-
nary differential equation, the uniqueness proof in [4] relies on ordinary differential equations
techniques. The uniqueness of the very singular solution to (1.2) (without the self-similarity
assumption) was subsequently obtained by Oswald [14]. Since then, the existence and unique-
ness of nonnegative very singular solutions have been studied for other nonlinear parabolic
equations with absorption such as

ut −∆um + up = 0 in (0,+∞)× RN , (1.3)

where m > (1− 2/N)+, m 6= 1 [16, 9, 15, 11, 12], or

ut − div
(
|∇u|m−2∇u

)
+ up = 0 in (0,+∞)× RN , (1.4)

where m > 2N/(N + 1), m 6= 2 [17, 6, 8, 7]. Let us mention at this point that the unique-
ness results obtained in the above mentioned papers are either restricted to self-similar very
singular solutions or use the finite speed of propagation of the support of solutions to (1.3)
and (1.4) when m > 1 and m > 2, respectively.

¿From another viewpoint, let us notice that a very singular solution u formally satisfies
u(0, x) = 0 if x ∈ RN \ {0} and u(0, 0) = +∞ and thus belongs to the class of solutions
having initial data taking infinite values on some subset of RN . Existence and uniqueness of
such solutions have been investigated in [13] for (1.2) and in [5] for (1.1) on a bounded open
subset Ω of RN with homogeneous Dirichlet boundary conditions. In the latter work [5] the
initial data are required to take infinite values on a bounded subset of Ω with non-empty
interior and thus do not include very singular solutions.

We now state our main result : we first make more precise the definition of a very singular
solution to (1.1) we will use in this paper.

Definition 1.1 A very singular solution to (1.1) is a function u ∈ C((0,+∞);L1(RN )) sat-
isfying for each t ∈ (0,+∞) and τ ∈ (0, t):

u(t) ≥ 0 a.e. in RN and u ∈ Lp((τ, t);W 1,p(RN )), (1.5)

u(t) = G(t− τ)u(τ)−
∫ t

τ
G(t− σ) (|∇u(σ)|p) dσ, (1.6)

sup
s∈(t,+∞)

(s− t)N/2 ‖u(s)‖L∞ <∞, (1.7)

sup
s∈(t,+∞)

(s− t)(p(N+1)−N)/2p
∥∥∥∇u(p−1)/p(s)

∥∥∥
L∞

<∞, (1.8)
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lim
s→0

∫
{|x|≤r}

u(s, x) dx = +∞, r ∈ (0,+∞), (1.9)

lim
s→0

∫
{|x|≥r}

u(s, x) dx = 0, r ∈ (0,+∞). (1.10)

Here, G(t) denotes the linear heat semigroup in RN .

Our result then reads as follows.

Theorem 1.2 Assume that 1 < p < (N + 2)/(N + 1) and put a = (2 − p)/(p − 1). There
is one and only one very singular solution U to (1.1) in the sense of Definition 1.1. More
precisely, there is a nonnegative and non-increasing function

f ∈ L1((0,+∞); rN−1dr) ∩ C∞((0,+∞))

such that
U(t, x) = t−a/2 f

(
|x|t−1/2

)
, (t, x) ∈ (0,+∞)× RN , (1.11)

and f is a solution to the ordinary differential equation

f ′′(r) +
(
N − 1
r

+
r

2

)
f ′(r) +

a

2
f(r)−

∣∣f ′(r)∣∣p = 0, r ∈ (0,+∞), (1.12)

with the boundary conditions

f ′(0) = 0 and lim
r→+∞

ra f(r) = 0. (1.13)

As already mentioned the existence of a very singular solution to (1.1) which has the
self-similar form (1.11) and with a profile f satisfying (1.12)-(1.13) has been proved in [2, 18].
The main achievement of the present paper is the uniqueness part of Theorem 1.2 which
we prove in the following way : we first proceed as in the proof of [3, Theorem 2] to show
that any very singular solution to (1.1) takes on the initial value zero uniformly on compact
subsets of RN \ {0}. At this point a suitable modification of the proof of [3, Theorem 2] is
needed to handle the gradient term. This result then enables us to derive some estimates
which are valid for every very singular solution to (1.1) and to prove that the very singular
solution to (1.1) we constructed in [2] (denoted by U throughout the paper) is the minimal
very singular solution to (1.1). The next section is devoted to the existence of a maximal
very singular solution V to (1.1), following the approach of [8]. Both minimal and maximal
very singular solutions being self-similar with profiles satisfying (1.12)-(1.13), the conclusion
U = V readily follows from [18, Theorem 2.1].

Let us finally mention that the very singular solutions to (1.2) (when they exist) play an
important role in the description of the large time behaviour of the solutions to (1.2) (see,
e.g., the survey paper [19] and the references therein). A similar result is expected for (1.1)
and the above uniqueness result thus opens the path towards the study of the large time
behaviour of the solutions to (1.1) when 1 < p < (N + 2)/(N + 1).
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2 Preliminaries

We first recall the well-posedness of (1.1) in the space of nonnegative and bounded measures
M+

b (RN ) [1, Theorems 1 & 3].

Theorem 2.1 Consider p ∈ (1, (N + 2)/(N + 1)) and u0 ∈ M+
b (RN ). There is a unique

nonnegative function

u ∈ C((0, T );L1(RN )) ∩ Lp((0, T );W 1,p(RN )), T ∈ (0,+∞),

satisfying

u(t) = G(t− s)u(s)−
∫ t

s
G(t− σ) (|∇u(σ)|p) dσ, 0 < s ≤ t,

lim
t→0

∫
u(t, x) ψ(x) dx =

∫
ψ(x) du0(x), ψ ∈ BC(RN ),

and 
sup

t∈(0,+∞)
tN/2 ‖u(t)‖L∞ ≤ CH ,

sup
t∈(0,+∞)

t(p(N+1)−N)/2p
∥∥∥∇u(p−1)/p(t)

∥∥∥
L∞

≤ CH .
(2.1)

Here BC(RN ) denotes the space of bounded and continuous functions in RN and CH is a
positive real number depending only on N , p and ‖u0‖Mb

.
In addition, there holds

sup
t∈(0,+∞)

t1/p
∥∥∥∇u(p−1)/p(t)

∥∥∥
L∞

≤ (p− 1)1−1/p p−1 := CHJ . (2.2)

It follows from Theorem 2.1 that, if u is a very singular solution to (1.1) in the sense of
Definition 1.1, the conditions (1.6)-(1.8) imply that s 7→ u(s+t) is the unique solution to (1.1)
with initial datum u(t) given by Theorem 2.1 for each t ∈ (0,+∞). Therefore s 7→ u(s + t)
satisfies (2.2), i.e.

sup
s∈(0,+∞)

s1/p
∥∥∥∇u(p−1)/p(s+ t)

∥∥∥
L∞

≤ CHJ .

As this is valid for every t ∈ (0,+∞) we may let t → 0 in the above inequality and obtain
the following result.

Lemma 2.2 Let u be a very singular solution to (1.1) in the sense of Definition 1.1. Then

sup
t∈(0,+∞)

t1/p
∥∥∥∇u(p−1)/p(t)

∥∥∥
L∞

≤ CHJ . (2.3)

We now recall additional estimates for solutions to (1.1) satisfying a growth condition for
large values of x. For p ∈ (1, 2) we put

Γp(r) = γp r
−a, r ∈ (0,+∞), (2.4)
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where
γp = (p− 1)(p−2)/(p−1) (2− p)−1.

Recall that a = (2− p)/(p− 1). The following result is proved in [2, Lemma 2.2 & Proposi-
tion 2.4].

Lemma 2.3 Let p ∈ (1, (N+2)/(N+1)) and consider a nonnegative function u0 in L1(RN ).
We define

R(u0) := inf {R > 0 , |x|a u0(x) ≤ γp a.e. in {|x| ≥ R}} ∈ [0,+∞],

and denote by u the nonnegative solution to (1.1) with initial datum u0 given by Theorem 2.1.
If R(u0) < +∞ and t ∈ (0,+∞) there holds

0 ≤ u(t, x) ≤ Γp (|x| −R(u0)) , x ∈ RN , |x| > R(u0).

In addition, there is a positive real number C1 depending only on N and p such that

‖u(t)‖L1 ≤ C1 t
−((N+2)−p(N+1))/2(p−1),

‖u(t)‖L∞ ≤ C1 t
−a/2,

‖∇u(t)‖L∞ ≤ C1 t
−1/2(p−1),

for each t > τ(u0), where

τ(u0) =
(

(N + 2)− p(N + 1)
(N + 1)p−N

)1−p

R(u0)2.

3 Some properties of very singular solutions

In this section we investigate the behaviour of the very singular solutions of (1.1) near t = 0
and in (0,+∞)× RN .

Proposition 3.1 Let u be a very singular solution to (1.1) and r ∈ (0,+∞). Putting Ωr :=
{x ∈ RN ; |x| > r} we have

u ∈ L∞((0, 1) ;L1(Ωr)), ∇u ∈ Lp((0, 1)× Ωr). (3.1)

The proof of this assertion follows step 2 of [3, Theorem 2].

Proposition 3.2 Let u be a very singular solution to (1.1). Then

u ∈ C1,2
t,x ([0,+∞)× (RN \ {0})), (3.2)

and for every compact subset K of RN \ {0} there holds

lim
t→0

‖u(t)‖C(K) = 0. (3.3)
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Proof. We adapt step 3 of the proof of [3, Theorem 2]. Let Ω be a bounded open subset of
RN such that Ω ⊂ RN \ {0}. We define a function v on (−1, 1)× Ω by

v(t, x) =


u(t, x) if (t, x) ∈ (0, 1)× Ω,

0 if (t, x) ∈ (−1, 0)× Ω.

Then

∇v(t, x) =


∇u(t, x) if (t, x) ∈ (0, 1)× Ω,

0 if (t, x) ∈ (−1, 0)× Ω,

and (3.1) ensures that

v ∈ L∞((−1, 1) ; L1(Ω)), ∇v ∈ Lp((−1, 1)× Ω). (3.4)

Also, v is a nonnegative function in (−1, 1)× Ω.
We may then proceed as in step 3 of [3, Theorem 2] to show that

vt −∆v + |∇v|p = 0 in D′((−1, 1)× Ω). (3.5)

Since v satisfies (3.4) and is a subsolution to the heat equation, parabolic regularity theory
then entails

v ∈ L∞loc((−1, 1)× Ω).

As Ω is an arbitrary open subset of RN with Ω ⊂ RN \ {0} we have shown that

v ∈ L∞loc((−1, 1)× (RN \ {0})). (3.6)

At this point we need to extend the argument of [3] to obtain some more regularity on |∇v|p.
Since v satisfies (3.5), (3.6) and is a nonnegative subsolution of the heat equation, classical

arguments yield
∇v ∈ L2

loc((−1, 1)× (RN \ {0})). (3.7)

On the other hand, we recall a well-known regularity result for a solution to the heat
equation.

Lemma 3.3 [10] Let Ω be a bounded open subset of RN , T > 0 and q ∈ (1,+∞). Consider
w ∈ Lq((0, T ) ; W 1

q (Ω)) and f ∈ Lq((0, T )× Ω) such that

wt −∆w = f in D′((0, T )× Ω).

Then, for each bounded open subset O of Ω such that O ⊂ O ⊂ Ω and ε ∈ (0, T/2), there
holds

w ,wt ,∇w ,D2w ∈ Lq((ε, T − ε)×O).

In addition

∇w ∈ Lσ((ε, T − ε)×O), where σ =


+∞ if q ≥ N + 2,

q(N + 2)
N + 2− q

if 1 < q < N + 2.
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The last statement of Lemma 3.3 is a consequence of the embedding theorem for anisotropic
Sobolev spaces [10, Lemma II.3.3].

We continue with the proof of Proposition 3.2. By (3.6) and (3.7) we have

v ∈ L
2/p
loc ((−1, 1)× (RN \ {0})),

∇v ∈ L
2/p
loc ((−1, 1)× (RN \ {0})),

(recall that 1 < p < (N+2)/(N+1)). Thus, v satisfies (3.5). We may then apply Lemma 3.3
and obtain

∇v ∈ Lq1

loc((−1, 1)× (RN \ {0})), q1 =
2(N + 2)

p(N + 2)− 2
· (3.8)

Consequently, (3.6) and (3.8) yield

v ∈ L
q1/p
loc ((−1, 1)× (RN \ {0})),

|∇v|p ∈ L
q1/p
loc ((−1, 1)× (RN \ {0})).

Noticing that q1 > q0 = 2 (since p < (N + 2)/(N + 1) < (N + 4)/(N + 2)) we have indeed a
better regularity for |∇v|p. Applying again Lemma 3.3 we obtain

∇v ∈ Lq2

loc((−1, 1)× (RN \ {0})), q2 =


+∞ if q1 ≥ p(N + 2)

q1(N + 2)
p(N + 2)− q1

if q1 < p(N + 2).

We then define, by induction, a sequence (qk) by q0 = 2 and

qk+1 =


+∞ if qk ≥ p(N + 2),

qk(N + 2)
p(N + 2)− qk

if qk < p(N + 2).

We claim that
qk ≥ 2, ∀k ≥ 0. (3.9)

Indeed, we have q0 = 2. Assume that qk ≥ 2 for some k. Then either qk ≥ p(N + 2) and
qk+1 = +∞. Or qk < p(N + 2) and

qk+1 = qk
(N + 2)

p(N + 2)− qk
≥ qk

N + 2
p(N + 2)− 2

·

Since 1 < p < (N + 2)/(N + 1), we see that

N + 2
p(N + 2)− 2

> 1, (3.10)

whence qk+1 > qk > 2. Thus (3.9) holds true.
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It then follows from (3.9) that

qk+1 ≥ qk
(N + 2)

p(N + 2)− 2
> qk.

Therefore the sequence (qk)k≥0 is increasing and (3.10) ensures that there is an integer k0 > 2
such that qk < p(N +2) for k ∈ {1, . . . , k0} and qk = +∞ if k > k0. Proceeding by induction
we infer from Lemma 3.3 that

∇v ∈ L∞loc((−1, 1)× (RN \ {0})).

Classical parabolic regularity results then entail

v ∈ C1,2
t,x ((−1, 1)× (RN \ {0})),

whence (3.2) and (3.3). �

Thanks to Proposition 3.2, we may now use comparison principle arguments to obtain
additional information on the short time behaviour of the very singular solutions to (1.1).

Lemma 3.4 Let u be a very singular solution to (1.1). Then

0 ≤ u(t, x) ≤ Γp(|x|), (t, x) ∈ (0,+∞)× RN . (3.11)

Proof. Take r ∈ (0,+∞) and put Ωr := {x ∈ RN , |x| > r}. Then u and x 7→ Γp(|x| − r) are
solutions to (1.1) on (0,+∞)× Ωr with

u(0, x) = 0 ≤ Γp(|x| − r) if x ∈ Ωr,

u(t, x) ≤ +∞ = Γp(0) if (t, x) ∈ (0,+∞)× ∂Ωr.

The comparison principle then entails

u(t, x) ≤ Γp(|x| − r), (t, x) ∈ (0,+∞)× Ωr.

Now fix x0 ∈ RN \ {0}. For r ∈ (0, |x0|), we have x0 ∈ Ωr and

u(t, x0) ≤ Γp(|x0| − r), t ∈ (0,+∞).

We then let r → 0 and obtain (3.11) for x0 ∈ RN \ {0}. As Γ(0) = +∞, (3.11) also holds
true for x = 0. �

Lemma 3.5 There is a constant K1 depending only on p and N such that, if u is a very
singular solution to (1.1) and t ∈ (0,+∞), there holds

‖u(t)‖L1 ≤ K1t
−(N+2−p(N+1))/2(p−1), (3.12)

‖u(t)‖L∞ ≤ K1t
−a/2, (3.13)

‖∇u(t)‖L∞ ≤ K1t
−1/2(p−1), (3.14)

with a = (2− p)/(p− 1).
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Proof. Owing to Lemma 2.2 and Lemma 3.4, the proof of (3.12), (3.13) and (3.14) is similar
to that of [2, Proposition 2.4] to which we refer. �

The next lemma follows from [5, p. 186].

Lemma 3.6 For y ∈ RN and ρ > 0, we denote by αy,ρ the solution to

−∆αy,ρ = 1 in B(y, ρ),
αy,ρ = 0 on ∂B(y, ρ).

For every λ ∈ (0,+∞) there is Cλ ∈ (0,+∞) such that, if u is a very singular solution to
(1.1), y ∈ RN \ {0} and ρ ∈ (0, |y|), there holds

u(t, x) ≤ λeCλt exp
(

1
αy,ρ(x)

)
, (t, x) ∈ (0,+∞)×B(y, ρ).

The last lemma of this section will allow us to prove that the very singular solution we
constructed in [2] is the minimal very singular solution.

Lemma 3.7 If u is a very singular solution to (1.1) and M ∈ (0,+∞) we have

uM ≤ u,

where uM denotes the solution to (1.1) with initial datum Mδ.

Proof. As u is a very singular solution to (1.1) we have

lim
t→0

‖u(t)‖L1 = +∞.

By a suitable truncation, it is possible to construct a sequence of nonnegative functions
(u0,k)k≥kM

such that

u0,k(x) ≤ u(1/k, x), x ∈ RN , (3.15)
‖u0,k||L1 = M, (3.16)

for k ≥ kM , where kM is a sufficiently large integer. We denote by uk the unique nonnegative
solution to (1.1) with initial datum u0,k given by Theorem 2.1. Since (u0,k) is bounded in
L1(RN ), we may use (2.1) to proceed as in the proof of [1, Theorem 3] and show that there
are a subsequence of (uk) (not relabeled) and a function u ∈ C((0,+∞), L1(RN )) such that,
as k → +∞ :

uk → u in C((0,+∞) ;L1(RN )) ∩ Lp((s, t) ;W 1,p(RN )), (3.17)

u(t) = G(t− s)u(s)−
∫ t

s
G(t− σ)(|∇u(σ)|p)dσ,

for every s ∈ (0,+∞) and t ∈ (s,+∞).
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It also follows from (3.17) that u satisfies (2.1). It remains to identify the initial datum
taken by u. Let ρ ∈ D(RN ), k ≥ kM and t ∈ (0, 1). By (1.1), (2.1) and (3.16) we have∣∣∣∣∫ uk(t, x)ρ(x)dx−

∫
u0,k(x)ρ(x)dx

∣∣∣∣
≤ ‖∆ρ‖L∞

∫ t

0

∫
uk(σ, x)dxdσ + ‖ρ‖L∞

∫ t

0

∫
|∇uk(σ, x)|pdxdσ

≤ Mt‖∆ρ‖L∞ +
(

p

p− 1

)p

‖ρ‖L∞

∫ t

0

∫
uk

∣∣∣∇u(p−1)/p
k

∣∣∣pdxdσ
≤ Mt‖∆ρ‖L∞ + C(ρ, p,M,N)

∫ t

0
σ(N−p(N+1))/2dσ

≤ C(ρ, p,M,N)
(
t+ t(N+2−p(N+1))/2

)
. (3.18)

For r ∈ (0,+∞), we also have by (3.15)∣∣∣∣∫ u0,k(x)ρ(x)dx−Mρ(0)
∣∣∣∣

≤ 2‖ρ‖L∞

∫
{|x|≥r}

u

(
1
k
, x

)
dx+

(∫
{|x|≤r}

u0,k(x)dx

)
sup

{|x|≤r}
|ρ(x)− ρ(0)|

≤ 2‖ρ‖L∞

∫
{|x|≥r}

u

(
1
k
, x

)
dx+M sup

{|x|≤r}
|ρ(x)− ρ(0)|.

We let k → +∞ and use Definition 1.1 to obtain that

lim sup
k→+∞

∣∣∣∣∫ u0,k(x)ρ(x)dx−Mρ(0)
∣∣∣∣ ≤M sup

{|x|≤r}
|ρ(x)− ρ(0)|.

Passing to the limit as r → 0 then yields

lim
k→+∞

∫
u0,k(x)ρ(x)dx = Mρ(0). (3.19)

Thanks to (3.17) and (3.19) we may let k → +∞ in (3.18) and obtain∣∣∣∣∫ u(t, x)ρ(x)dx−Mρ(0)
∣∣∣∣ ≤ C(ρ, p,M,N)

(
t+ t(N+2−p(N+1))/2

)
.

Consequently, for each ρ ∈ D(RN ),

lim
t→0

∫
u(t, x)ρ(x)dx = Mρ(0) . (3.20)

As u is a subsolution to the heat equation, a comparison argument yields that (3.20) actually
holds for every ρ ∈ BC(RN ).

Summarizing, we have proved that u is a solution to (1.1) with initial datum Mδ fulfilling
all the requirements of Theorem 2.1. Such a solution being unique, we conclude that

u = uM . (3.21)
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To complete the proof we only have to notice that the comparison principle and (3.15) entail
that for k ≥ kM ,

uk(t, x) ≤ u(t+ 1/k, x), (t, x) ∈ (0,+∞)× RN .

We then use (3.17) and (3.21) to obtain Lemma 3.7. �

We end up this section by recalling the main result of [2].

Theorem 3.8 The function

U(t, x) = sup
{M>0}

uM (t, x), (t, x) ∈ (0,+∞)× RN ,

is a very singular solution to (1.1), where uM denotes the solution to (1.1) with initial datum
Mδ. Moreover, there is a nonnegative and non-increasing function

f ∈ L1((0,+∞), rN−1dr) ∩ C∞((0,+∞))

satisfying (1.12) and (1.13) and such that

U(t, x) = t−a/2f (|x|t−1/2), (t, x) ∈ (0,+∞)× RN .

As a consequence of Lemma 3.7 and Theorem 3.8, we see that, if u is a very singular
solution to (1.1), there holds

u ≥ U. (3.22)

Then U is the minimal very singular solution to (1.1), and it is the unique self-similar very
singular solution to (1.1) by [18, Theorem 2.1].

4 Existence of a maximal very singular solution

We denote by S the set of very singular solutions to (1.1) in the sense of Definition 1.1.
Notice that, as the minimal very singular solution U (defined in Theorem 3.8) belongs to S,
the set S is non-empty.

We now proceed as in [8, Theorem 4.1] to prove that S has a maximal element. More
precisely we put

V (t, x) = sup
u∈S

u(t, x), (t, x) ∈ (0,+∞)× RN . (4.1)

Lemma 4.1 For each t ∈ (0,+∞), V (t) is a nonnegative function in L1(RN ) ∩W 1,∞(RN )
which satisfies

ta/2‖V (t)‖L∞ + t1/2(p−1)‖∇V (t)‖L∞ ≤ 2K1, (4.2)

t1/p
∥∥∥∇V (p−1)/p(t)

∥∥∥
L∞

≤ CHJ , (4.3)

U(t, x) ≤ V (t, x) ≤ Γp(|x|), x ∈ RN , (4.4)

where CHJ , Γp and K1 are defined in (2.2), (2.4) and Lemma 3.5, respectively.
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Proof. Since U ∈ S, (4.4) is a straightforward consequence of (3.11) and (4.1). Next, (3.13)
and (4.4) entail that

0 ≤ V (t, x) ≤ min (K1t
−a/2,Γp(x)).

Consequently, for each t ∈ (0,+∞), V (t) ∈ L1(RN ) ∩ L∞(RN ) and

ta/2‖V (t)‖L∞ ≤ K1, t ∈ (0,+∞).

It next follows from (3.14) that if u ∈ S and (x, y) ∈ RN × RN

u(t, x) ≤ u(t, y) +K1t
−1/2(p−1)|x− y|

≤ V (t, y) +K1t
−1/2(p−1)|x− y|.

Therefore,
V (t, x) ≤ V (t, y) +K1t

−1/2(p−1)|x− y|,

and V (t) is Lipschitz continuous with Lipschitz constant K1t
−1/2(p−1). We have thus shown

(4.2). Since σ 7→ σ(p−1)/p is non-decreasing on (0,+∞), a similar argument yields (4.3). �

Lemma 4.2 V ∈ S.

Proof. Fix τ ∈ (0,+∞). As V (τ) is a nonnegative function in L1(RN ) ∩W 1,∞(RN ), we
denote by vτ the unique nonnegative solution to (1.1) in (τ,+∞) × RN with vτ (τ) = V (τ)
given by Theorem 2.1. For u ∈ S it follows from (4.1) that

vτ (τ) = V (τ) ≥ u(τ),

and the comparison principle entails

vτ (t) ≥ u(t), t ∈ [τ,+∞).

Consequently
vτ (t) ≥ V (t), t ∈ [τ,+∞). (4.5)

Next, on the one hand, it follows from (4.4) and the comparison principle that

vτ (t, x) ≤ Γp(|x|), (t, x) ∈ [τ,+∞)× RN . (4.6)

On the other hand, by (2.2) we have

sup
t∈(τ,+∞)

(t− τ)1/p
∥∥∥∇(vτ )(p−1)/p(t)

∥∥∥
L∞

≤ CHJ . (4.7)

We may therefore proceed as in [2, Proposition 2.4] to show that there is a positive constant
K2 depending only on p and N such that for each τ ∈ (0,+∞) and t ∈ (τ,+∞) there holds

‖vτ (t)‖L1 ≤ K2(t− τ)−(N+2−p(N+1))/2(p−1), (4.8)
‖vτ (t)‖L∞ ≤ K2(t− τ)−a/2, (4.9)

‖∇vτ (t)‖L∞ ≤ K2(t− τ)−1/2(p−1). (4.10)
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We next claim that

τ < σ ⇒ vσ(t, x) ≤ vτ (t, x), (t, x) ∈ [σ,+∞)× RN . (4.11)

Indeed, by (4.5) we have
vσ(σ) = V (σ) ≤ vτ (σ), σ ≥ τ,

and (4.11) follows from the comparison principle.
We now define

W (t, x) = sup
τ∈(0,t/2)

vτ (t, x), (t, x) ∈ (0,+∞)× RN . (4.12)

Thanks to (4.8), (4.11) and the monotone convergence theorem, we realize that, for each
t ∈ (0,+∞),

W (t) ∈ L1(RN ) and lim
τ→0

‖W (t)− vτ (t)‖L1 = 0. (4.13)

Next, owing to (4.8)-(4.10), we may proceed as in [1, Section 3] to show that, for each
t ∈ (0,+∞) and s ∈ (0, t), we have

W ∈ C((s, t) ;L1(RN )) ∩ Lp((s, t) ;W 1,p(RN )),

and W satisfies

W (t) = G(t− s)W (s)−
∫ t

s
G(t− σ)(|∇W (σ)|p)dσ. (4.14)

Also, if t0 ∈ (0,+∞), it follows from (4.8) that

Y (t0) := sup
τ∈(0,t0/2)

‖vτ (t0)‖L1 <∞.

We then infer from Theorem 2.1 that

(t− t0)N/2‖vτ (t)‖L∞ + (t− t0)(p(N+1)−N)/2p
∥∥∥∇(vτ )(p−1)/p(t)

∥∥∥
L∞

≤ K3(t0),

for t ∈ (t0,+∞) and τ ∈ (0, t0/2), where K3(t0) only depends on N , p and Y (t0). Owing to
(4.13), we may let τ → 0 in the above estimate and see that

(t− t0)N/2‖W (t)‖L∞ + (t− t0)(p(N+1)−N)/2p
∥∥∥∇W (p−1)/p(t)

∥∥∥
L∞

≤ K3(t0), (4.15)

for t ∈ (t0,+∞). We next infer from (4.4), (4.5), (4.6) and (4.12) that

U(t, x) ≤ V (t, x) ≤W (t, x) ≤ Γp(|x|), (t, x) ∈ (0,+∞)× RN . (4.16)

Since U is a very singular solution, we obtain

lim
t→0

∫
{|x|≤r}

W (t, x)dx = +∞, r ∈ (0,+∞). (4.17)

Finally, take r ∈ (0,+∞) and consider ρ ∈ C∞(RN ) such that

0 ≤ ρ ≤ 1, ρ(x) = 1 if |x| ≥ r and ρ(x) = 0 if |x| ≤ r

2
·
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Since vτ is a solution to (1.1), we have for t ∈ (0,+∞) and τ ∈ (0, t)∫
ρ(x)vτ (t, x)dx+

∫ t

τ

∫
ρ(x)|∇vτ (σ, x)|pdxdσ

=
∫
ρ(x)vτ (τ, x)dx+

∫ t

τ

∫
∆ρ(x)vτ (σ, x)dσdx.

Recalling that vτ (τ, x) = V (τ, x), we find∫
ρ(x)vτ (t, x)dx ≤

∫
ρ(x)V (τ, x)dx+

∫ t

τ

∫
{r/2<|x|<r}

|∆ρ|vτ (σ, x)dσdx. (4.18)

On the one hand, it follows from (4.4) that∫ t

τ

∫
{r/2<|x|<r}

|∆ρ|vτ (σ, x)dσdx ≤ ‖∆ρ‖L∞

∫ t

τ

∫
{r/2<|x|<r}

Γp(|x|)dx

≤ C(p, r, ρ)t. (4.19)

On the other hand, we have by (4.4) that∫
ρ(x)V (τ, x)dx ≤

∫
{r/2<|x|<r}

V (τ, x)dx+
∫
{|x|>R}

Γp(|x|)dx, (4.20)

for every R ∈ [2r,+∞). Since

K(r,R) :=
{
x ∈ RN , r/2 ≤ |x| ≤ R

}
is compact, there is a finite number of points (yi)1≤i≤k in K(r,R) such that

K(r,R) ⊂
k⋃

i=1

B (yi, r/8) .

Let i ≥ 1. Notice that, as |yi| ≥ r/2, we have |yi| > r/4. We then infer from Lemma 3.6
that, if u belong to S, there holds

u(t, x) ≤ λeCλt exp
(

1
αyi,r/4(x)

)
, (t, x) ∈ (0,+∞)×B (yi, r/4)

for every λ ∈ (0,+∞). The above pointwise estimate being true for every u in S, we deduce
that

V (t, x) ≤ λeCλt exp
(

1
αyi,r/4(x)

)
, (t, x) ∈ (0,+∞)×B (yi, r/4) .

Therefore, ∫
K(r,R)

V (τ, x)dx ≤ λeCλτ
k∑

i=1

∫
B(yi,r/8)

exp
(

1
αyi,r/4(x)

)
dx,
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and

0 ≤ lim sup
τ→0

∫
K(r,R)

V (τ, x)dx ≤ λ
k∑

i=1

∫
B(yi,r/8)

exp
(

1
αyi,r/4(x)

)
dx.

This inequality being valid for every λ ∈ (0,+∞), we finally obtain

lim
τ→0

∫
K(r,R)

V (τ, x)dx = 0. (4.21)

We may then let τ → 0 in (4.18) and use (4.13), (4.19), (4.20) and (4.21) to obtain∫
ρ(x)W (t, x)dx ≤ C(p, r, ρ)t+

∫
{|x|>R}

Γp(|x|)dx

for every t ∈ (0,+∞) and R ≥ 2r. As Γp ∈ L1(RN \ B(0, 1)), we may let R → +∞ in the
above estimate to deduce that

0 ≤
∫
{|x|≥r}

W (t, x)dx ≤ C(p, r, ρ)t.

Therefore,

lim
t→0

∫
{|x|≥r}

W (t, x)dx = 0. (4.22)

It then follows from (4.14), (4.15), (4.17) and (4.22) that W is a very singular solution to
(1.1) in the sense of Definition 1.1. Consequently, W ∈ S, whence W ≤ V by (4.1). Recalling
(4.16), we realize that W = V and the proof of Lemma 4.2 is complete. �

Lemma 4.3 There is a nonnegative and non-increasing function

g ∈ L1((0,+∞), rN−1dr) ∩ C∞((0,+∞)),

satisfying (1.12), (1.13) and such that

V (t, x) = t−a/2g (|x|t−1/2), (t, x) ∈ (0,+∞)× RN .

Proof. Consider u ∈ S and λ ∈ (0,+∞). It is straightforward to check that the function u
defined by

u(t, x) = λau(λ2t, λx), (t, x) ∈ (0,+∞)× RN ,

also belongs to S. The set S being invariant with respect to the above scaling transformation,
we easily deduce that

V (t, x) = λ−aV

(
t

λ2
,
x

λ

)
, (t, x) ∈ (0,+∞)× RN , λ > 0. (4.23)

On the other hand, the equation (1.1) being rotationally invariant, it is clear that S is
rotationally invariant and V (t, .) is therefore radially symmetric with respect to the space
variable for every t ∈ (0,+∞). Putting

g(r) = V (1, r, 0, . . . , 0), r ∈ (0,+∞),

15



and using (4.23) yield

V (t, x) = t−a/2g (|x|t−1/2), (t, x) ∈ (0,+∞)× RN .

We then proceed as in [2, Section 3] to check that g has the required properties. �

Proof of Theorem 1.2. Since f (cf. Theorem 3.8) and g (cf. Lemma 4.3) are solutions to
(1.12), (1.13), it follows from [18, Theorem 2.1] that f = g, whence U = V . Now, if ϑ ∈ S, it
follows from (3.22) and (4.1) that U ≤ ϑ ≤ V = U , whence ϑ = U . Therefore, S = {U} and
Theorem 1.2 is proved. �
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