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Introduction

The existence of a self-similar very singular solution at the origin to the following viscous Hamilton-Jacobi equation

u t -∆u + |∇u| p = 0 in (0, +∞) × R N , (1.1) 
has been established in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I -Existence[END_REF] and in [START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF] by two different methods, when 1 < p < (N +2)/(N +1).

Recall that a very singular solution at the origin to (1.1) is a nonnegative solution to (1.1) which is smooth in (0, +∞) × R N and fulfils the following two conditions lim t→0 {|x|≤r} u(t, x) dx = +∞, lim t→0 {|x|≥r} u(t, x) dx = 0, for every r ∈ (0, +∞). In addition, a very singular solution u is self-similar if there is a smooth function f ∈ L 1 ((0, +∞); r N -1 dr) such that u(t, x) = t -a/2 f |x|t -1/2 , (t, x) ∈ (0, +∞) × R N ,
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where a = (2 -p)/(p -1). In [START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF], Qi & Wang show that there is one and only one self-similar very singular solution to (1.1). The purpose of this paper is to extend this uniqueness result without the self-similarity assumption. Before describing our results, let us mention that the name very singular solution has been introduced by Brezis, Peletier and Terman [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] who proved the existence and uniqueness of a self-similar very singular solution to u t -∆u + u p = 0 in (0, +∞) × R N , (1.2) when 1 < p < 1 + 2/N . As self-similar very singular solutions to (1.2) satisfy an ordinary differential equation, the uniqueness proof in [START_REF] Brezis | A very singular solution of the heat equation with absorption[END_REF] relies on ordinary differential equations techniques. The uniqueness of the very singular solution to (1.2) (without the self-similarity assumption) was subsequently obtained by Oswald [START_REF] Oswald | Isolated positive singularities for a nonlinear heat equation[END_REF]. Since then, the existence and uniqueness of nonnegative very singular solutions have been studied for other nonlinear parabolic equations with absorption such as

u t -∆u m + u p = 0 in (0, +∞) × R N , (1.3) 
where m > (1 -2/N ) + , m = 1 [START_REF] Peletier | A very singular solution of the porous media equation with absorption[END_REF][START_REF] Kamin | Existence and uniqueness of the very singular solution of the porous media equation with absorption[END_REF][START_REF] Peletier | Source-type solutions of the porous media equation with absorption : the fast diffusion case[END_REF][START_REF] Leoni | A very singular solution for the porous media equation u t = ∆ (u m ) -u p when 0 < m < 1[END_REF][START_REF] Leoni | On very singular self-similar solutions for the porous media equation with absorption[END_REF], or

u t -div |∇u| m-2 ∇u + u p = 0 in (0, +∞) × R N , (1.4) 
where m > 2N/(N + 1), m = 2 [START_REF] Peletier | A very singular solution of a quasilinear degenerate diffusion equation with absorption[END_REF][START_REF] Diaz | Uniqueness of very singular self-similar solution of a quasilinear degenerate parabolic equation with absorption[END_REF][START_REF] Kamin | Singular solutions of some nonlinear parabolic equations[END_REF][START_REF] Zhao | Source-type solutions of a quasilinear degenerate parabolic equation with absorption[END_REF]. Let us mention at this point that the uniqueness results obtained in the above mentioned papers are either restricted to self-similar very singular solutions or use the finite speed of propagation of the support of solutions to (1.3) and (1.4) when m > 1 and m > 2, respectively. ¿From another viewpoint, let us notice that a very singular solution u formally satisfies u(0, x) = 0 if x ∈ R N \ {0} and u(0, 0) = +∞ and thus belongs to the class of solutions having initial data taking infinite values on some subset of R N . Existence and uniqueness of such solutions have been investigated in [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF] for (1.2) and in [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF] for (1.1) on a bounded open subset Ω of R N with homogeneous Dirichlet boundary conditions. In the latter work [START_REF] Crandall | Maximal solutions and universal bounds for some partial differential equations of evolution[END_REF] the initial data are required to take infinite values on a bounded subset of Ω with non-empty interior and thus do not include very singular solutions.

We now state our main result : we first make more precise the definition of a very singular solution to (1.1) we will use in this paper. Definition 1.1 A very singular solution to (1.1) is a function u ∈ C((0, +∞); L 1 (R N )) satisfying for each t ∈ (0, +∞) and τ ∈ (0, t): Here, G(t) denotes the linear heat semigroup in R N .

u(t) ≥ 0 a.e. in R N and u ∈ L p ((τ, t); W 1,p (R N )), (1.5) 
u(t) = G(t -τ )u(τ ) - t τ G(t -σ) (|∇u(σ)| p ) dσ, (1.6) sup s∈(t,+∞) (s -t) N/2 u(s) L ∞ < ∞, (1.7) sup s∈(t,+∞) (s -t) (p(N +1)-N )/2p ∇u (p-1)/p (s) L ∞ < ∞, (1.8) 
Our result then reads as follows.

Theorem 1.2 Assume that 1 < p < (N + 2)/(N + 1) and put a = (2 -p)/(p -1). There is one and only one very singular solution U to (1.1) in the sense of Definition 1.1. More precisely, there is a nonnegative and non-increasing function

f ∈ L 1 ((0, +∞); r N -1 dr) ∩ C ∞ ((0, +∞)) such that U (t, x) = t -a/2 f |x|t -1/2 , (t, x) ∈ (0, +∞) × R N , (1.11)
and f is a solution to the ordinary differential equation

f (r) + N -1 r + r 2 f (r) + a 2 f (r) -f (r) p = 0, r ∈ (0, +∞), (1.12) 
with the boundary conditions

f (0) = 0 and lim r→+∞ r a f (r) = 0. (1.13)
As already mentioned the existence of a very singular solution to (1.1) which has the self-similar form (1.11) and with a profile f satisfying (1.12)-(1.13) has been proved in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I -Existence[END_REF][START_REF] Qi | The self-similar profiles of generalized KPZ equation[END_REF]. The main achievement of the present paper is the uniqueness part of Theorem 1.2 which we prove in the following way : we first proceed as in the proof of [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]Theorem 2] to show that any very singular solution to (1.1) takes on the initial value zero uniformly on compact subsets of R N \ {0}. At this point a suitable modification of the proof of [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]Theorem 2] is needed to handle the gradient term. This result then enables us to derive some estimates which are valid for every very singular solution to (1.1) and to prove that the very singular solution to (1.1) we constructed in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I -Existence[END_REF] (denoted by U throughout the paper) is the minimal very singular solution to (1.1). The next section is devoted to the existence of a maximal very singular solution V to (1.1), following the approach of [START_REF] Kamin | Singular solutions of some nonlinear parabolic equations[END_REF]. Both minimal and maximal very singular solutions being self-similar with profiles satisfying (1.12)-(1.13), the conclusion U = V readily follows from [18, Theorem 2.1].

Let us finally mention that the very singular solutions to (1.2) (when they exist) play an important role in the description of the large time behaviour of the solutions to (1.2) (see, e.g., the survey paper [START_REF] Vázquez | Asymptotic behaviour of nonlinear parabolic equations. Anomalous exponents[END_REF] and the references therein). A similar result is expected for (1.1) and the above uniqueness result thus opens the path towards the study of the large time behaviour of the solutions to (1.1) when 1 < p < (N + 2)/(N + 1).

Preliminaries

We first recall the well-posedness of (1.1) in the space of nonnegative and bounded measures

M + b (R N ) [1, Theorems 1 & 3].
Theorem 2.1 Consider p ∈ (1, (N + 2)/(N + 1)) and u 0 ∈ M + b (R N ). There is a unique nonnegative function

u ∈ C((0, T ); L 1 (R N )) ∩ L p ((0, T ); W 1,p (R N )), T ∈ (0, +∞), satisfying u(t) = G(t -s)u(s) - t s G(t -σ) (|∇u(σ)| p ) dσ, 0 < s ≤ t, lim t→0 u(t, x) ψ(x) dx = ψ(x) du 0 (x), ψ ∈ BC(R N ), and      sup t∈(0,+∞) t N/2 u(t) L ∞ ≤ C H , sup t∈(0,+∞) t (p(N +1)-N )/2p ∇u (p-1)/p (t) L ∞ ≤ C H . (2.1)
Here BC(R N ) denotes the space of bounded and continuous functions in R N and C H is a positive real number depending only on N , p and u 0 M b . In addition, there holds sup t∈(0,+∞)

t 1/p ∇u (p-1)/p (t) L ∞ ≤ (p -1) 1-1/p p -1 := C HJ .
(2.

2)

It follows from Theorem 2.1 that, if u is a very singular solution to (1.1) in the sense of Definition 1.1, the conditions (1.6)-(1.8) imply that s → u(s+t) is the unique solution to (1.1) with initial datum u(t) given by Theorem 2.1 for each t ∈ (0, +∞). Therefore s → u(s + t) satisfies (2.2), i.e. sup s∈(0,+∞)

s 1/p ∇u (p-1)/p (s + t) L ∞ ≤ C HJ .
As this is valid for every t ∈ (0, +∞) we may let t → 0 in the above inequality and obtain the following result. 

t 1/p ∇u (p-1)/p (t) L ∞ ≤ C HJ . (2.3) 
We now recall additional estimates for solutions to (1.1) satisfying a growth condition for large values of x. For p ∈ (1, 2) we put

Γ p (r) = γ p r -a , r ∈ (0, +∞), (2.4) 
where

γ p = (p -1) (p-2)/(p-1) (2 -p) -1 . Recall that a = (2 -p)/(p -1). The following result is proved in [2, Lemma 2.2 & Proposi- tion 2.4]. Lemma 2.3 Let p ∈ (1, (N +2)/(N +1)) and consider a nonnegative function u 0 in L 1 (R N ).
We define

R(u 0 ) := inf {R > 0 , |x| a u 0 (x) ≤ γ p a.e. in {|x| ≥ R}} ∈ [0, +∞],
and denote by u the nonnegative solution to (1.1) with initial datum u 0 given by Theorem 2.1.

If R(u 0 ) < +∞ and t ∈ (0, +∞) there holds

0 ≤ u(t, x) ≤ Γ p (|x| -R(u 0 )) , x ∈ R N , |x| > R(u 0 ).
In addition, there is a positive real number C 1 depending only on N and p such that

u(t) L 1 ≤ C 1 t -((N +2)-p(N +1))/2(p-1) , u(t) L ∞ ≤ C 1 t -a/2 , ∇u(t) L ∞ ≤ C 1 t -1/2(p-1) ,
for each t > τ (u 0 ), where

τ (u 0 ) = (N + 2) -p(N + 1) (N + 1)p -N 1-p R(u 0 ) 2 .

Some properties of very singular solutions

In this section we investigate the behaviour of the very singular solutions of (1.1) near t = 0 and in (0, +∞) × R N .

Proposition 3.1 Let u be a very singular solution to (1.1) and r ∈ (0, +∞).

Putting Ω r := {x ∈ R N ; |x| > r} we have u ∈ L ∞ ((0, 1) ; L 1 (Ω r )), ∇u ∈ L p ((0, 1) × Ω r ). (3.1)
The proof of this assertion follows step 2 of [3, Theorem 2].

Proposition 3.2 Let u be a very singular solution to (1.1). Then

u ∈ C 1,2 t,x ([0, +∞) × (R N \ {0})), (3.2) 
and for every compact subset K of R N \ {0} there holds

lim t→0 u(t) C(K) = 0. (3.3)
Proof. We adapt step 3 of the proof of [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]Theorem 2]. Let Ω be a bounded open subset of R N such that Ω ⊂ R N \ {0}. We define a function v on (-1, 1) × Ω by

v(t, x) =    u(t, x) if (t, x) ∈ (0, 1) × Ω, 0 if (t, x) ∈ (-1, 0) × Ω.
Then

∇v(t, x) =    ∇u(t, x) if (t, x) ∈ (0, 1) × Ω, 0 if (t, x) ∈ (-1, 0) × Ω, and (3.1) ensures that v ∈ L ∞ ((-1, 1) ; L 1 (Ω)), ∇v ∈ L p ((-1, 1) × Ω). (3.4) Also, v is a nonnegative function in (-1, 1) × Ω.
We may then proceed as in step 3 of [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF]Theorem 2] to show that

v t -∆v + |∇v| p = 0 in D ((-1, 1) × Ω). (3.5)
Since v satisfies (3.4) and is a subsolution to the heat equation, parabolic regularity theory then entails

v ∈ L ∞ loc ((-1, 1) × Ω). As Ω is an arbitrary open subset of R N with Ω ⊂ R N \ {0} we have shown that v ∈ L ∞ loc ((-1, 1) × (R N \ {0})). (3.6) 
At this point we need to extend the argument of [START_REF] Brezis | Nonlinear parabolic equations involving measures as initial conditions[END_REF] to obtain some more regularity on |∇v| p . Since v satisfies (3.5), (3.6) and is a nonnegative subsolution of the heat equation, classical arguments yield ∇v ∈ L 2 loc ((-1, 1) × (R N \ {0})).

(3.7)

On the other hand, we recall a well-known regularity result for a solution to the heat equation.

Lemma 3.3 [START_REF] Ladyženskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF] Let Ω be a bounded open subset of R N , T > 0 and q ∈ (1, +∞). Consider w ∈ L q ((0, T ) ; W 1 q (Ω)) and f ∈ L q ((0, T ) × Ω) such that

w t -∆w = f in D ((0, T ) × Ω). Then, for each bounded open subset O of Ω such that O ⊂ O ⊂ Ω and ε ∈ (0, T /2), there holds w , w t , ∇w , D 2 w ∈ L q ((ε, T -ε) × O).
In addition

∇w ∈ L σ ((ε, T -ε) × O), where σ =        +∞ if q ≥ N + 2, q(N + 2) N + 2 -q if 1 < q < N + 2.
The last statement of Lemma 3.3 is a consequence of the embedding theorem for anisotropic Sobolev spaces [START_REF] Ladyženskaja | Linear and Quasilinear Equations of Parabolic Type[END_REF]Lemma II.3.3].

We continue with the proof of Proposition 3.2. By (3.6) and (3.7) we have

v ∈ L 2/p loc ((-1, 1) × (R N \ {0})), ∇v ∈ L 2/p loc ((-1, 1) × (R N \ {0})),
(recall that 1 < p < (N + 2)/(N + 1)). Thus, v satisfies (3.5). We may then apply Lemma 3.3 and obtain

∇v ∈ L q 1 loc ((-1, 1) × (R N \ {0})), q 1 = 2(N + 2) p(N + 2) -2 • (3.8)
Consequently, (3.6) and (3.8) yield

v ∈ L q 1 /p loc ((-1, 1) × (R N \ {0})), |∇v| p ∈ L q 1 /p loc ((-1, 1) × (R N \ {0})).
Noticing that q 1 > q 0 = 2 (since p < (N + 2)/(N + 1) < (N + 4)/(N + 2)) we have indeed a better regularity for |∇v| p . Applying again Lemma 3.3 we obtain

∇v ∈ L q 2 loc ((-1, 1) × (R N \ {0})), q 2 =        +∞ if q 1 ≥ p(N + 2) q 1 (N + 2) p(N + 2) -q 1 if q 1 < p(N + 2).
We then define, by induction, a sequence (q k ) by q 0 = 2 and

q k+1 =        +∞ if q k ≥ p(N + 2), q k (N + 2) p(N + 2) -q k if q k < p(N + 2).
We claim that q k ≥ 2, ∀k ≥ 0.

(3.9) Indeed, we have q 0 = 2. Assume that q k ≥ 2 for some k. Then either q k ≥ p(N + 2) and q k+1 = +∞. Or q k < p(N + 2) and

q k+1 = q k (N + 2) p(N + 2) -q k ≥ q k N + 2 p(N + 2) -2 • Since 1 < p < (N + 2)/(N + 1), we see that N + 2 p(N + 2) -2 > 1, (3.10) 
whence q k+1 > q k > 2. Thus (3.9) holds true.

It then follows from (3.9) that

q k+1 ≥ q k (N + 2) p(N + 2) -2 > q k .
Therefore the sequence (q k ) k≥0 is increasing and (3.10) ensures that there is an integer k 0 > 2 such that q k < p(N + 2) for k ∈ {1, . . . , k 0 } and q k = +∞ if k > k 0 . Proceeding by induction we infer from Lemma 3.3 that

∇v ∈ L ∞ loc ((-1, 1) × (R N \ {0})).
Classical parabolic regularity results then entail

v ∈ C 1,2 t,x ((-1, 1) × (R N \ {0})),
whence (3.2) and (3.3).

Thanks to Proposition 3.2, we may now use comparison principle arguments to obtain additional information on the short time behaviour of the very singular solutions to (1.1). Lemma 3.4 Let u be a very singular solution to (1.1). Then

0 ≤ u(t, x) ≤ Γ p (|x|), (t, x) ∈ (0, +∞) × R N . (3.11) 
Proof. Take r ∈ (0, +∞) and put Ω r := {x ∈ R N , |x| > r}. Then u and x → Γ p (|x| -r) are solutions to (1.1) on (0, +∞) × Ω r with

u(0, x) = 0 ≤ Γ p (|x| -r) if x ∈ Ω r , u(t, x) ≤ +∞ = Γ p (0) if (t, x) ∈ (0, +∞) × ∂Ω r .
The comparison principle then entails

u(t, x) ≤ Γ p (|x| -r), (t, x) ∈ (0, +∞) × Ω r . Now fix x 0 ∈ R N \ {0}. For r ∈ (0, |x 0 |), we have x 0 ∈ Ω r and u(t, x 0 ) ≤ Γ p (|x 0 | -r), t ∈ (0, +∞).
We then let r → 0 and obtain (3.11) for x 0 ∈ R N \ {0}. As Γ(0) = +∞, (3.11) also holds true for x = 0. Lemma 3.5 There is a constant K 1 depending only on p and N such that, if u is a very singular solution to (1.1) and t ∈ (0, +∞), there holds

u(t) L 1 ≤ K 1 t -(N +2-p(N +1))/2(p-1) , (3.12 
)

u(t) L ∞ ≤ K 1 t -a/2 , (3.13) ∇u(t) L ∞ ≤ K 1 t -1/2(p-1) , (3.14) 
with a = (2 -p)/(p -1).

Proof. Owing to Lemma 2.2 and Lemma 3.4, the proof of (3.12), (3.13) and (3.14) is similar to that of [2, Proposition 2.4] to which we refer.

The next lemma follows from [5, p. 186].

Lemma 3.6 For y ∈ R N and ρ > 0, we denote by α y,ρ the solution to -∆α y,ρ = 1 in B(y, ρ), α y,ρ = 0 on ∂B(y, ρ).

For every λ ∈ (0, +∞) there is C λ ∈ (0, +∞) such that, if u is a very singular solution to (1.1), y ∈ R N \ {0} and ρ ∈ (0, |y|), there holds

u(t, x) ≤ λe C λ t exp 1 α y,ρ (x) , (t, x) ∈ (0, +∞) × B(y, ρ).
The last lemma of this section will allow us to prove that the very singular solution we constructed in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I -Existence[END_REF] is the minimal very singular solution. By a suitable truncation, it is possible to construct a sequence of nonnegative functions (u 0,k ) k≥k M such that

u 0,k (x) ≤ u(1/k, x), x ∈ R N , (3.15) 
u 0,k || L 1 = M, (3.16) 
for k ≥ k M , where k M is a sufficiently large integer. We denote by u k the unique nonnegative solution to (1.1) with initial datum u 0,k given by Theorem 2.1. Since (u 0,k ) is bounded in L 1 (R N ), we may use (2.1) to proceed as in the proof of [1, Theorem 3] and show that there are a subsequence of (u k ) (not relabeled) and a function u ∈ C((0, +∞), L 1 (R N )) such that, as k → +∞ :

u k → u in C((0, +∞) ; L 1 (R N )) ∩ L p ((s, t) ; W 1,p (R N )), (3.17) u(t) = G(t -s)u(s) - t s G(t -σ)(|∇u(σ)| p )dσ,
for every s ∈ (0, +∞) and t ∈ (s, +∞).

It also follows from (3.17) that u satisfies (2.1). It remains to identify the initial datum taken by u. Let ρ ∈ D(R N ), k ≥ k M and t ∈ (0, 1). By (1.1), (2.1) and (3.16) we have

u k (t, x)ρ(x)dx -u 0,k (x)ρ(x)dx ≤ ∆ρ L ∞ t 0 u k (σ, x)dxdσ + ρ L ∞ t 0 |∇u k (σ, x)| p dxdσ ≤ M t ∆ρ L ∞ + p p -1 p ρ L ∞ t 0 u k ∇u (p-1)/p k p dxdσ ≤ M t ∆ρ L ∞ + C(ρ, p, M, N ) t 0 σ (N -p(N +1))/2 dσ ≤ C(ρ, p, M, N ) t + t (N +2-p(N +1))/2 .
(3.18)

For r ∈ (0, +∞), we also have by (3.15) Thanks to (3.17) and (3.19) we may let k → +∞ in (3.18) and obtain

u 0,k (x)ρ(x)dx -M ρ(0) ≤ 2 ρ L ∞ {|x|≥r} u 1 k , x dx + {|x|≤r} u 0,k (x)dx sup {|x|≤r} |ρ(x) -ρ(0)| ≤ 2 ρ L ∞ {|x|≥r} u 1 k , x dx + M sup {|x|≤r} |ρ(x) -ρ(0)|.
u(t, x)ρ(x)dx -M ρ(0) ≤ C(ρ, p, M, N ) t + t (N +2-p(N +1))/2 . Consequently, for each ρ ∈ D(R N ), lim t→0 u(t, x)ρ(x)dx = M ρ(0) . (3.20)
As u is a subsolution to the heat equation, a comparison argument yields that (3.20) actually holds for every ρ ∈ BC(R N ). Summarizing, we have proved that u is a solution to (1.1) with initial datum M δ fulfilling all the requirements of Theorem 2.1. Such a solution being unique, we conclude that u = u M .

(3.21)

To complete the proof we only have to notice that the comparison principle and (3.15) entail that for

k ≥ k M , u k (t, x) ≤ u(t + 1/k, x), (t, x) ∈ (0, +∞) × R N .
We then use (3.17) and (3.21) to obtain Lemma 3.7.

We end up this section by recalling the main result of [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. I -Existence[END_REF].

Theorem 3.8 The function

U (t, x) = sup {M >0} u M (t, x), (t, x) ∈ (0, +∞) × R N ,
is a very singular solution to (1.1), where u M denotes the solution to (1.1) with initial datum M δ. Moreover, there is a nonnegative and non-increasing function

f ∈ L 1 ((0, +∞), r N -1 dr) ∩ C ∞ ((0, +∞))
satisfying (1.12) and (1.13) and such that

U (t, x) = t -a/2 f (|x|t -1/2 ), (t, x) ∈ (0, +∞) × R N .
As a consequence of Lemma 3.7 and Theorem 3.8, we see that, if u is a very singular solution to (1.1), there holds u ≥ U.

Then U is the minimal very singular solution to (1.1), and it is the unique self-similar very singular solution to (

.

Existence of a maximal very singular solution

We denote by S the set of very singular solutions to (1.1) in the sense of Definition 1.1. Notice that, as the minimal very singular solution U (defined in Theorem 3.8) belongs to S, the set S is non-empty.

We now proceed as in [START_REF] Kamin | Singular solutions of some nonlinear parabolic equations[END_REF]Theorem 4.1] to prove that S has a maximal element. More precisely we put

V (t, x) = sup u∈S u(t, x), (t, x) ∈ (0, +∞) × R N . (4.1) Lemma 4.1 For each t ∈ (0, +∞), V (t) is a nonnegative function in L 1 (R N ) ∩ W 1,∞ (R N ) which satisfies t a/2 V (t) L ∞ + t 1/2(p-1) ∇V (t) L ∞ ≤ 2K 1 , (4.2) 
t 1/p ∇V (p-1)/p (t) L ∞ ≤ C HJ , (4.3) 
U (t, x) ≤ V (t, x) ≤ Γ p (|x|), x ∈ R N , (4.4) 
where C HJ , Γ p and K 1 are defined in (2.2), (2.4) and Lemma 3.5, respectively.

Proof. Since U ∈ S, (4.4) is a straightforward consequence of (3.11) and (4.1). Next, (3.13) and (4.4) entail that 0 ≤ V (t, x) ≤ min (K 1 t -a/2 , Γ p (x)).

Consequently, for each t ∈ (0, +∞),

V (t) ∈ L 1 (R N ) ∩ L ∞ (R N ) and t a/2 V (t) L ∞ ≤ K 1 , t ∈ (0, +∞). It next follows from (3.14) that if u ∈ S and (x, y) ∈ R N × R N u(t, x) ≤ u(t, y) + K 1 t -1/2(p-1) |x -y| ≤ V (t, y) + K 1 t -1/2(p-1) |x -y|.
Therefore,

V (t, x) ≤ V (t, y) + K 1 t -1/2(p-1) |x -y|,
and V (t) is Lipschitz continuous with Lipschitz constant K 1 t -1/2(p-1) . We have thus shown (4.2). Since σ → σ (p-1)/p is non-decreasing on (0, +∞), a similar argument yields (4.3).

Lemma 4.2 V ∈ S.

Proof. Fix τ ∈ (0, +∞). As V (τ ) is a nonnegative function in L 1 (R N ) ∩ W 1,∞ (R N ), we denote by v τ the unique nonnegative solution to (1.1) in (τ, +∞) × R N with v τ (τ ) = V (τ )
given by Theorem 2.1. For u ∈ S it follows from (4.1) that

v τ (τ ) = V (τ ) ≥ u(τ ),
and the comparison principle entails

v τ (t) ≥ u(t), t ∈ [τ, +∞). Consequently v τ (t) ≥ V (t), t ∈ [τ, +∞). (4.5) 
Next, on the one hand, it follows from (4.4) and the comparison principle that

v τ (t, x) ≤ Γ p (|x|), (t, x) ∈ [τ, +∞) × R N . (4.6) 
On the other hand, by (2.2) we have sup t∈(τ,+∞)

(t -τ ) 1/p ∇(v τ ) (p-1)/p (t) L ∞ ≤ C HJ . (4.7) 
We may therefore proceed as in [2, Proposition 2.4] to show that there is a positive constant K 2 depending only on p and N such that for each τ ∈ (0, +∞) and t ∈ (τ, +∞) there holds 1) . (4.10)

v τ (t) L 1 ≤ K 2 (t -τ ) -(N +2-p(N +1))/2(p-1) , (4.8) v τ (t) L ∞ ≤ K 2 (t -τ ) -a/2 , (4.9) ∇v τ (t) L ∞ ≤ K 2 (t -τ ) -1/2(p-
We next claim that

τ < σ ⇒ v σ (t, x) ≤ v τ (t, x), (t, x) ∈ [σ, +∞) × R N . (4.11)
Indeed, by (4.5) we have

v σ (σ) = V (σ) ≤ v τ (σ), σ ≥ τ,
and (4.11) follows from the comparison principle. We now define

W (t, x) = sup τ ∈(0,t/2)
v τ (t, x), (t, x) ∈ (0, +∞) × R N . (4.12)

Thanks to (4.8), (4.11) and the monotone convergence theorem, we realize that, for each t ∈ (0, +∞),

W (t) ∈ L 1 (R N ) and lim τ →0 W (t) -v τ (t) L 1 = 0. (4.13)
Next, owing to (4.8)-(4.10), we may proceed as in [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF]Section 3] to show that, for each t ∈ (0, +∞) and s ∈ (0, t), we have

W ∈ C((s, t) ; L 1 (R N )) ∩ L p ((s, t) ; W 1,p (R N )),
and W satisfies

W (t) = G(t -s)W (s) - t s G(t -σ)(|∇W (σ)| p )dσ. (4.14) 
Also, if t 0 ∈ (0, +∞), it follows from (4.8) that

Y (t 0 ) := sup τ ∈(0,t 0 /2) v τ (t 0 ) L 1 < ∞.
We then infer from Theorem 2.1 that

(t -t 0 ) N/2 v τ (t) L ∞ + (t -t 0 ) (p(N +1)-N )/2p ∇(v τ ) (p-1)/p (t) L ∞ ≤ K 3 (t 0 ),
for t ∈ (t 0 , +∞) and τ ∈ (0, t 0 /2), where K 3 (t 0 ) only depends on N , p and Y (t 0 ). Owing to (4.13), we may let τ → 0 in the above estimate and see that

(t -t 0 ) N/2 W (t) L ∞ + (t -t 0 ) (p(N +1)-N )/2p ∇W (p-1)/p (t) L ∞ ≤ K 3 (t 0 ), (4.15) 
for t ∈ (t 0 , +∞). We next infer from (4.4), (4.5), (4.6) and (4.12) that

U (t, x) ≤ V (t, x) ≤ W (t, x) ≤ Γ p (|x|), (t, x) ∈ (0, +∞) × R N . (4.16)
Since U is a very singular solution, we obtain lim t→0 {|x|≤r} W (t, x)dx = +∞, r ∈ (0, +∞). (4.17)

Finally, take r ∈ (0, +∞) and consider ρ

∈ C ∞ (R N ) such that 0 ≤ ρ ≤ 1, ρ(x) = 1 if |x| ≥ r and ρ(x) = 0 if |x| ≤ r 2 •
Since v τ is a solution to (1.1), we have for t ∈ (0, +∞) and τ ∈ (0, t)

ρ(x)v τ (t, x)dx + t τ ρ(x)|∇v τ (σ, x)| p dxdσ = ρ(x)v τ (τ, x)dx + t τ ∆ρ(x)v τ (σ, x)dσdx.
Recalling that v τ (τ, x) = V (τ, x), we find 

ρ(x)v τ (t, x)dx ≤ ρ(x)V (τ, x)dx + t τ {r/2<|x|<r} |∆ρ|v τ (σ, x)dσdx. ( 4 
(x)V (τ, x)dx ≤ {r/2<|x|<r} V (τ, x)dx + {|x|>R} Γ p (|x|)dx, (4.20) 
for every R ∈ [2r, +∞). Since

K(r, R) := x ∈ R N , r/2 ≤ |x| ≤ R
is compact, there is a finite number of points (y i ) 1≤i≤k in K(r, R) such that

K(r, R) ⊂ k i=1
B (y i , r/8) .

Let i ≥ 1. Notice that, as |y i | ≥ r/2, we have |y i | > r/4. We then infer from Lemma 3.6 that, if u belong to S, there holds

u(t, x) ≤ λe C λ t exp 1 α y i ,r/4 (x) , (t, x) ∈ (0, +∞) × B (y i , r/4)
for every λ ∈ (0, +∞). The above pointwise estimate being true for every u in S, we deduce that

V (t, x) ≤ λe C λ t exp 1 α y i ,r/4 (x)
, (t, x) ∈ (0, +∞) × B (y i , r/4) .

Therefore, satisfying (1.12), (1.13) and such that V (t, x) = t -a/2 g (|x|t -1/2 ), (t, x) ∈ (0, +∞) × R N .

K(r,R) V (τ, x)dx ≤ λe C λ τ k i=1 B(y i ,r / 
Proof. Consider u ∈ S and λ ∈ (0, +∞). It is straightforward to check that the function u defined by u(t, x) = λ a u(λ 2 t, λx), (t, x) ∈ (0, +∞) × R N , also belongs to S. The set S being invariant with respect to the above scaling transformation, we easily deduce that

V (t, x) = λ -a V t λ 2 ,
x λ , (t, x) ∈ (0, +∞) × R N , λ > 0. (4.23)

On the other hand, the equation (1.1) being rotationally invariant, it is clear that S is rotationally invariant and V (t, .) is therefore radially symmetric with respect to the space variable for every t ∈ (0, +∞). Putting g(r) = V (1, r, 0, . . . , 0), r ∈ (0, +∞), and using (4.23) yield V (t, x) = t -a/2 g (|x|t -1/2 ), (t, x) ∈ (0, +∞) × R N .

We then proceed as in [2, Section 3] to check that g has the required properties.

Proof of Theorem 1.2. Since f (cf. Theorem 3.8) and g (cf. Lemma 4.3) are solutions to (1.12), (1.13), it follows from [18, Theorem 2.1] that f = g, whence U = V . Now, if ϑ ∈ S, it follows from (3.22) and (4.1) that U ≤ ϑ ≤ V = U , whence ϑ = U . Therefore, S = {U } and Theorem 1.2 is proved.

  x) dx = 0, r ∈ (0, +∞).(1.10) 
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 22 Let u be a very singular solution to (1.1) in the sense of Definition 1.1. Then sup t∈(0,+∞)
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 37 If u is a very singular solution to (1.1) and M ∈ (0, +∞) we have u M ≤ u, where u M denotes the solution to (1.1) with initial datum M δ. Proof. As u is a very singular solution to (1.1) we have lim t→0 u(t) L 1 = +∞.

  We let k → +∞ and use Definition 1.1 to obtain that lim supk→+∞ u 0,k (x)ρ(x)dx -M ρ(0) ≤ M sup {|x|≤r} |ρ(x) -ρ(0)|.Passing to the limit as r → 0 then yields lim k→+∞ u 0,k (x)ρ(x)dx = M ρ(0).(3.19) 
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 43 (τ, x)dx ≤ λ k i=1 B(y i ,r/8) exp 1 α y i ,r/4 (x) dx.This inequality being valid for every λ ∈ (0, +∞), we finally obtainlim τ →0 K(r,R) V (τ, x)dx = 0. (4.21) We may then let τ → 0 in (4.18) and use (4.13), (4.19), (4.20) and (4.21) to obtain ρ(x)W (t, x)dx ≤ C(p, r, ρ)t + {|x|>R} Γ p (|x|)dx for every t ∈ (0, +∞) and R ≥ 2r. As Γ p ∈ L 1 (R N \ B(0, 1)), we may let R → +∞ in the above estimate to deduce that 0 ≤ {|x|≥r} W (t, x)dx ≤ C(p, r, ρ)t. from (4.14), (4.15), (4.17) and (4.22) that W is a very singular solution to (1.1) in the sense of Definition 1.1. Consequently, W ∈ S, whence W ≤ V by (4.1). Recalling (4.16), we realize that W = V and the proof of Lemma 4.2 is complete. There is a nonnegative and non-increasing function g ∈ L 1 ((0, +∞), r N -1 dr) ∩ C ∞ ((0, +∞)),