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Numerical implementation of a multiphase model
for the analysis and design of reinforced slopes

Ghazi Hassen, Patrick de Buhan
LMSGC (LCPC, ENPC, CNRS, UMR 113), Ecole Nationale des Ponts et Chaussées, France
E-mail: hassen@lmsgc.enpc.fr

Abstract. A multiphase model is proposed for the elastoplastic analysis and design of soil structures reinforced by stiff linear
inclusions, where shear and bending effects should be taken into account. A f.e.m-based numerical tool, incorporating a plasticity
algorithm adapted to this multiphase model, is developed and illustrated on the example of a slope stabilized by such reinforcing
inclusions. Emphasis is put in this analysis on the crucial role played by the shear and flexural behaviour of the inclusions in the slope

stabilization.
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1 INTRODUCTION

The use of reinforcing inclusions in order to enhance the
stability or improve the performance of geotechnical
structures, has been widely developed for several decades in
the field of geotechnical engineering. The so-obtained
composite soil structure exhibits a strong heterogeneity,
which leads to intractable, or at least computational time-
consuming difficulties, when trying to simulate the response
of this kind of structure numerically, by means for instance
of finite element techniques. As an alternative approach, a
so-called multiphase model of reinforced soil structures has
been recently proposed (de Buhan and Sudret, 2000), in
which the soil mass and reinforcement network are treated
as mutually interacting superposed homogeneous continua.
The numerical implementation of such a multiphase model
leads to a considerably shorter computational time than the
use of a direct simulation. As regards some applications,
such as reinforced earth or even soil nailing, in which
“flexible” inclusions are used, a simplified version of this
multiphase model, where only axial forces in the
reinforcements are taken into account, remains sufficient.
On the contrary, in the case of a reinforcement by “rigid”
inclusions, such as piled raft foundations or pile reinforced
slopes, a more elaborate version of this model should be
proposed, where shear and bending effects are accounted
for, through an idealization of the inclusions as 1D-beams
continuously distributed throughout the matrix

The present contribution is devoted to the extension of
the latter model to the context of elastoplasticity, the
behavior of each phase being characterized by its elastic and
plastic properties. As concerns the reinforcement phase, it
appears that the elastic parameters to be introduced in the
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model may be interpreted as the axial, shear and bending
stiffnesses of the reinforcements, per unit transverse area,
while the yield criterion is formulated as a condition
involving both the axial force and bending moment
densities. A variational formulation and related finite
element implementation of the model has been performed in
the particular case when a perfect bonding condition
between matrix and reinforcement phases may be assumed.
Restricting for instance the analysis to plane strain
problems, three independent kinematic variables (two
displacements and one rotation) are attached to each node of
the finite element mesh (Hassen and de Buhan, 20054a). The
elastoplasticity is then treated for each phase separately by
means of the classical iterative procedure which combines
an elastic calculation with prescribed non elastic strains
defined in both phases and a local projection of the trial
states of stress in each phase on the corresponding yield
strength domain. A finite element computational tool
dedicated to the analysis of two-dimensional (plane strain)
problems has been developed and used to simulate the
behavior of a slope under weight loading.

2 TWO-PHASE MODEL OF REINFORCED SOILS

Consider any volume of homogeneous soil reinforced by a
network of regularly distributed linear inclusions oriented
along the same direction Ox. According to the two-phase
model (de Buhan and Sudret, 2000), the composite
reinforced soil is regarded as the superposition of two
continuous media, called matrix and reinforcement phases,
respectively. This notably means that matrix and
reinforcement particles are geometrically coincident at any
point, but may be attributed different kinematics.
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Figure 1 Plane strain kinematics of a two-phase model of
reinforced soil

Restricting our analysis to plane strain problems, the
matrix phase (which represents the soil) is endowed with the
kinematics of a classical Cauchy continuum, characterised
at any point by a displacement vector £, whereas the
reinforcement phase (inclusions) is modelled as a
micropolar continuum (Cosserat medium), the kinematics of
which is defined in each point by a displacement vector &',
along with a rotation @’e. (Figure 1).

3 STATICS OF THE MODEL

Starting from this kinematic description, the virtual work
method, and related principles, allows to obtain the set of
equations governing the equilibrium of such a multiphase
continuum (see Sudret, 1999) for more details). Those
equations may be written as follows, for each phase
separately:

dive"+p"F"+1=0 (1
for the matrix phase, and:

div(n'e,®e, +v'e, ®e )+p F —1=0
div(m'e. ®e¢,)+v'e. =0

2)

for the reinforcement phase, where:

0 o is the Cauchy stress tensor defined in each point of
the matrix phase;

¢ #n', v and m" denote the densities of axial and shear
forces, and bending moment, per unit transverse area to the
reinforcement orientation;

O P"F" (resp. p'F") is the volume density of external body
forces applied to the matrix phase (resp. reinforcement
phase);
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¢ [ is the matrix-reinforcement interaction force volume
density.

Stress boundary conditions are also prescribed for each
phase separately.

4 ELASTOPLASTIC CONSTITUTIVE BEHAVIOUR

In the context of small perturbations, the deformations in the
matrix phase are classically described by the linearized
strain tensor £”, while as regards the reinforcement phase,
three strain variables, analogous to those encountered in the
classical beam theory, are introduced, namely the axial
strain £", shear strain 8" and curvature y”, defined as:

& A daf
r— X 6} :_y_a)r r__~"" 3
€ ox ox & ox @)

Besides, the matrix-reinforcement interaction strain variable
is:
Ag=¢"-¢ )
For the matrix phase the elastoplastic behaviour could be
expressed by the constitutive law:

o =rmule'-g" Juor (-2 ) )

where A" and ¢ ™ are the Lamé coefficients and £”, is the
plastic strain tensor, the evolution of which is governed by a
plastic flow rule:

. ai: with 77— { 0if f(0")=/(c")=0 ©)

" =n"
=p o0 0 otherwise

where /" is the yield function and g" the plastic yield
potential, these two functions being coincident in the case of
an associated flow rule.

As concerns the reinforcement phase, the elastoplastic
constitutive behaviour may be expressed in the form of
three stress-strain scalar relationships

n'=a'E-¢),v=0-6) . m=yx-x) )
where a’, f" and ¥y’ are the axial, shear and flexural
stiffness densities of the reinforcements, per unit transverse
area to the reinforcement orientation. The yield function,
which defines the elastic domain, is formulated as a function
of the three generalised stress components:

@ v,m)<0 (8)

and the evolution of the plastic parts of the reinforcement-
phase strain variables are expressed through the plastic flow
rule:

oo ofT L of L
" —n" . er: r_’ = — 9
&= on" " 7 v’ %=1 om’ ©)

Likewise, the matrix-reinforcement interaction constitutive
behaviour may be expressed as:
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where ¢’ is the interaction stiffness tensor and:

Aﬁp:ﬁl% with ’7’2{20 e D=0 a

=0 otherwise

where , /7 (resp. g ') is the yield criterion (resp. potential ).

5 NUMERICAL IMPLEMENTATION

A finite element formulation of the model has been
developed, first in the context of elasticity, then extended to
take into account the elastoplastic behaviour of the different
constituents (matrix and reinforcement phases), whereas
perfect bonding is assumed between the reinforcement and
matrix phases.

Denoting by {Q} the set of loading parameters to which
the structure is subjected, any loading path may be divided
into sufficiently small load increments {AQ} defined as:

{aok={oke+an—{ok (12)

Assuming now that the solution has been determined up to
the load value {Q}(?), in terms of displacement-rotation
fields {&,@"}(¢), generalized stress fields {o”, (" V' ,m")}(?),
and plastic strain fields {£",.(€}, 85, ¥ )} (1), the problem
consists in updating the solution at time z+A¢ associated
with the application of the load increment {AQ}. This
solution may be obtained by adding to the solution at time ¢,
the solution of an elastic problem relative to the application
of the load increment {AQ}, the plastic strain increments
{Ae",(AE,, AB",, Ax'",)} being prescribed as non-elastic
strains. This may be written as:

Ac”; (An', AV ,Am")
Agm; (AEAG A" (13)

=E1as.[[ AQ },{Agg’; (Ag,A8 ,AZ;)H

Those plastic strain increments must themselves satisfy
the plastic flow rules (6) and (9), expressed in their
incremental form as:

afm

Ae"=An"=—(c"+Ac") , An"20 (14)
=p Jo" = =

for the matrix phase, and

Ag] :An’%(n’ +An")
n
- Vafr r
Ag=An W(V’—FAV’) , An'20 (15)
af”
A, =A77’#(m’+Am’)

for the reinforcement phase.

Combining these relationships with the constitutive
equations (5) and (7) also expressed in their incremental
form, finally yields:

g"+Ac” =proj.{ g"+C" :Aem} (16)

o

and:

(n" +An" V' +AV m" +Am" ) =

N S e ek 17)
prOJ.{n’ +a" A"V + BAO m" + Y Ay’ }

o

where proj.{.} denotes the projection onto the convex
elastic domains C" or C’, defined by the matrix (resp.
reinforcement) phase yield condition, these projections
being calculated in the sense of the scalar products defined
by:

<g,g‘>=1/ 20:(C"Y g, C":elasticstiffness tensor  (18)

for the matrix phase stresses, and:

(n,v,m),(n',v',m") =1/2(nn'+v—v'+m—m'j (19)
< ) a poy

for the reinforcement stress variables.

This system of equations is classically solved by means
of an iterative procedure, called return mapping algorithm
(Crisfield, 1991; Simo and Hughes, 1998). Starting the
iterative procedure from =0, where all the plastic strain
increments are taken equal to zero, and assuming that their
values have been calculated up to iteration n°i, these values
are updated at the next iteration i+1 through the following
steps:

(/) Calculate the corresponding elastic solution incor-
porating these plastic strain increments as prescribed non-
elastic strains:

Agm; (An",AV',Am") O
Agm; (A€ A0 Ay (20)
=E1as.[{ AQ },{Agp; (As;,AQ;,A;(;)}i)
(ii) Determine the projections of the different trial stress
states onto the respective elastic domains:

" ())=proj { a"+C" :Ag”’(i)} (21)
=p.a. o = = =

(n;.a? ‘}};.a?n/ll};.a)(i):
proil{w+a AZ () +BAGG) T+ AY ()}
(o4

(22)

(iii) Compute the updated plastic strain increments at
iteration i+1 as:

AT+ =Ae"()HC) | "~ a” () o)
= . 23
= A%’:(i)+(g’)‘1 : ( g’"+Ag’”(i)—g:a.(i))



and

Agg(i+l)=A8r(i)+é(n”—n;_a_(i))

AG(i+1)=A 9f(i)+%(vr—v;.a.(i)) (24)

A =07 O = )

This iterative procedure is carried out until convergence,
which corresponds for instance to the fact that the sequences
of P.A. and S.A. stress fields tend simultaneously towards
the solution:

timle? 17 0 -

m

={gm+Ag ;(n’+An",v"+Av’,m"+Am”)}

It should be noted that, while steps (i7) and (iii) are
associated with the local treatment of plasticity, which is
carried out for each phase independently, step (i)
corresponds to a global elastic calculation.

6 APPLICATION TO THE DESIGN OF A REINFORCED
SLOPE

A finite element code based upon the above described
numerical implementation of the two-phase model, has been
set up and validated on theoretical solutions dealing with
two-phase structures. A first application of this numerical
tool is the design of piled raft foundations subjected to
combined loadings, showing in particular that the flexural
stiffness and strength properties of the inclusions play an
important role to ensure the stability of such structures
subject to both lateral loading and overturning moment
(Hassen and de Buhan, 20054 and b).

The numerical tool is applied here to analyse the
stability of a slope of angle £ (Figure 2) subject to its own
weight, made of a superficial layer of soft soil of thickness
D lying upon a soil having better mechanical characteristics.
Both soils are purely cohesive materials (clays) of
elastoplastic characteristics (£}, v;, C;) for the upper one
and (E,, W, (,) for the lower one. Their specific weights are
denoted by H} and 7}, repectively. The following
geometrical characteristics have been selected:

tanf=1/2,D=13m, H=10m, L=70m, B=40m, B'=50m (26)

The upper surface layer is given the following mechanical
characteristics:

E,=5MPa,v, =03, C,=10kPa, 7, =I18kN/m  (27)

while the underlying soil displays much stronger cha-
racteristics:

E, =100MPa, v, =0.3, C, =100kPa, 7, =25kN/n’  (28)

As shown in figure 2, this slope has been reinforced in
its central part by a group of vertical tubular piles of radius
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R=1m, thickness =0.02m and length equal to the superficial
soft layer. The reinforcing inclusions are placed into the soil
mass following a regular square mesh of s=5m side. There
are made of a steel having the following characteristics:

E*=200GPa, v'=0.3 , 0,=200MPa (29)

where oy is the steel uniaxial yield strength.
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two-phase zone

Figure 2. Stabilization of a slope by vertical inclusions
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Figure 3 Finite element mesh used for the different simulations

A finite element mesh of the structure comprising 620
six-noded triangular elements and 1303 nodes has been
adopted for the different simulations, as shown in Figure 3.
The decisive advantage of the two-phase model is thus
clearly apparent from this figure, since the direct
implementation of the finite element method on the
reinforced structure would have required a much more
refined discretization of the structure in the reinforced zone,
in order to capture the complex interactions prevailing
between the soil and the dense network of cylindrical piles.



It should be emphasized in particular that the typical size of
the mesh elements in the reinforced zone is in no way
different from that adopted in the absence of reinforcement,
and no remeshing procedure is required when the different
characteristics of the reinforcements (spacing, diameter,
thickness etc.) have to be changed.

The elastic as well as plastic parameters of the two-
phase constituents to be introduced in the calculations, may
then be determined as follows. It is first to be noted that, in
the reinforced zone, the reinforcement volume fraction can
be easily calculated as the ratio between the cross-sectional
area of one individual pile and the total cross section s* of
the representative volume of reinforced soil, namely:

27 Rt

n="020.5% (30)
S

so that the soil volume fraction, equal to 1-7 is close to
unity. Therefore, it seems reasonable to adopt for the matrix
phase in the reinforced zone, the same elastic and plastic
characteristics as the corresponding upper soil layer, that is:

E"=E=5MPa,v"=v,=0.3, C"=C=5kPa  (31)

As regards the reinforcement phase, the axial, shear and
bending stiffness densities are simply calculated, by
dividing the corresponding quantities relative to one
individual reinforcing inclusion by the area s* of the
representative volume’s cross section. One obtains from this
straightforward procedure:

o =2E" 1004 MPa

S
B= Asf =193 MPa (32)
7’2%2502 MPa.m?

S

Figure 3 Interaction diagram for an individual reinforcing pile

. . . . 3k
where A=27zR¢ is the inclusion cross sectional area, 4 =A4/2
its reduced cross sectional area (see for instance Frey,

1994), [ = 2Rt its moment of inertia about its diameter and
1’ the steel shear modulus.

Likewise, the reinforcement phase yield strength
properties, expressed by means of a criterion such as (8),
may be determined from the solution to a yield design
problem, sketched in Figure 34, in which a section of pile is
submitted to the combination of an axial force N and
bending moment M’. Exploring uniaxial stress distributions
in the pile cross-section, as that sketched in Figure 4a,
allows to derive the following interaction formula for a
single pile (Challamel and de Buhan, 2003):

M —cos[%x jSO with {N‘):z”RtO—lY (33)

M, . M ,=4R%0;

This interaction formula, which is represented in Figure 35
(solid line), implicitly assumes that the pile is infinitely
resistant to shear forces. It follows that the reinforcement
phase yield strength condition (8) writes:

—Cos zn <0
2n,

n,=27 Rt 6},/s°=n o, =1 MPa
2

my=4R’t 6},/s’==1 Ro},=0.64MPa.m
T

L
m

Sl )=

0

(34

with

which, for the sake of simplicity in the subsequent
elastoplastic calculations, will be approximated by the
following upper bound condition (dashed rectangle in
Figure 30):

nIn|<1, m/mg|<1 (35)

7 RESULTS OF NUMERICAL SIMULATIONS

14 ‘ ‘

12 "rigid" piles

load factor

-o——o——0—"flexible" piles

unreinforced

04 06 08 1
displacement (m)

Figure 4. Simulated load-displacement curves for unreinforced
and reinforced slope

First of all, a preliminary simulation is performed on the
non reinforced structure. The result is shown in Figure 4 in



the form of a curve, drawn in the lower part of this figure,
showing the evolution of an increasing proportion of the
weight applied to the structure (load factor) as a function of
the displacement of a point located at the top of the slope. It
is clearly apparent that the prescribed weight loading by far
exceeds the limit load of the unreinforced slope, which
corresponds to a load factor equal to 0.35.

Figure 5 Failure mechanisms of (a) unreinforced slope and slope
reinforced by () “flexible” or (¢) “rigid” piles.

The middle curve corresponds to the simulation of the
reinforced slope when shear and flexural effects of the
reinforcements are neglected (£ =y =0, my=0), their stif-
fness and strength characteristics being held constant: case
of “flexible” inclusions. Even though the limit load factor of
the slope for which failure occurs is higher than that of the
non reinforced structure, it still remains well below the
prescribed weight loading (0.6<1).

Finally the upper curve is associated with the situation
when the shear and flexural stiffness and strength capacities
of the reinforcements are accounted for in the analysis. It
clearly shows that the ultimate load is almost 25% higher
than the prescribed loading, thereby ensuring the
stabilization of the slope under its own weight.
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Figure 5 pictures the failure mechanisms corresponding
to the three above described elastoplastic simulations.

CONCLUDING REMARKS

The above results are fully consistent with those recently
presented for piled raft foundations subjected to a
combination of vertical and lateral loadings, associated with
an overturning moment (Hassen and de Buhan, 2005a and
b). They do confirm that the shear and flexural properties of
the reinforcements play a decisive role in the global
response of a reinforced slope. This has important
consequences in terms of engineering design methods and
optimization procedures applied to this kind of reinforced
soil structures.

Indeed, as it has been pointed out in (Hassen and de
Buhan, 20055b), the case when shear and flexural effects of
the reinforcements could be discarded, actually corresponds
to the situation when a large number of piles of small
diameter is used instead of relatively few piles of large
diameter, the volume fraction of reinforcing material given
by Eq. (30), and thus the axial stiffness and strength
properties of the reinforcement phase, being kept constant.
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