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The Fixed-Interval Smoothing Problem for
Continuous Systems

Eric Blanco, Philippe Neveux, and Gérard Thomas

Abstract—The smoothing problem for continuous systems
is treated in a state space representation by means of variational
calculus techniques. The smoothing problem is introduced in an

criterion by means of an artificial discontinuity that splits the
problem in term of forward and backward filtering prob-
lems. Hence, the smoother design is realized in three steps. First,
a forward filter is developed. Secondly, a backward filter is de-
veloped taking into account the backward Markovian model. The
third step consists of combining the two previous steps in order to
compute the smoothed estimate. An example shows the effi-
ciency of this proposed smoother.

Index Terms— criterion, Markovian model, robust estima-
tion, signal processing, smoothing, variational calculus.

I. INTRODUCTION

THE most common estimation tool for continuous systems
represented in the state space domain is the Kalman filter

[7]. Though this filter has proved its efficiency, the filtering op-
eration brings a slight time delay in the estimation due to the
causality of the filter. In order to solve this problem, one has to
consider a smoothing operation. In the setting, for systems
represented in the state space form, one faces two philosophi-
cally different techniques.

1) The Kalman smoother [3]. It consists of the combina-
tion of a forward and a backward filter. In fact, the objective
is to realize the weighted sum of the forward estimate and
the backward one.

2) The Rauch–Tung–Streibel (RTS) smoother [13]. It
consists of the combination of two forward filters. The
first filter is fed with the measured output and the second
with the estimate of the first filter.

In both cases, the design of the smoother is directly related to the
perfect knowledge of both the model of the system under consid-
eration and the noise statistics. Unfortunately, noise statistics are
approximately known in practice. This uncertainty in the noise
properties is not handled by estimators. Consequently, they
do not guarantee a constant level of performance when noise
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statistics vary from the assumed value. Generally, if the level of
noise is larger than the assumed one, the performance of the
estimators decreases. In order to solve this problem, numerous
developments have been done in the setting.

The key idea of the latter design framework is to minimize the
estimation error while considering the worst case for noise sta-
tistics. The objective is to guaranteey a constant level of perfor-
mance over the range of variation of the noise statistics. For
filtering problems, numerous works have been done for both
continuous and discrete time systems through different system
representations (see [1], [10], [11], and [17] in the state space
and [5], [6], and [14] in the transfer function representation, to
mention a few). In opposition, the smoothing problem for
continuous time systems has received poor attention [2], [11].

Blanco [2] has designed a forward–backward smoother
considering that the smoothed estimate is the combination of
two estimates obtained from a forward filter and a back-
ward filter. The problem is solved considering two distinct

filtering problems. This approach leads to an upper bound
to the smoothing criterion. Clearly, this approach appears
to be a suboptimal one.

Nagpal [11] has designed an implicit formulation for the
fixed-interval smoother through a Hamiltonian representation.
Even though the structure of the smoother appears to be inde-
pendent of the bound, one can with decoupling efforts find
an explicit RTS smoother defined from a classical Riccati equa-
tion and a Riccati equation. The latter permits one to define
a bound for the error covariance matrix. As a consequence,
the result obtained is rather a mixed smoother than a
pure smoother.

This paper develops a smoothing technique based on a for-
ward–backward scheme. It differs from Blanco [2] in that the
smoother globally minimizes a criterion taking into account
both the initial and final state estimation error. In this paper, the
problem is treated by introducing an artificial discontinuity in
the criterion. The latter permits to split the overall smoothing
problem in two filtering problems. In [2] and [11], no attention
has been paid to the Markovian properties of the state equa-
tion especially in the backward filtering problem. In this paper,
a backward Markovian model has been used in the backward
problem by introducing the result in [15].

This paper is organized as follows. In Section II, the
smoothing problem is addressed. Notations and assumptions are
detailed. In Section III, the main result is developed in three
steps: the forward filtering, the backward filtering,
and the resulting smoother. An example is presented in
Section IV. Concluding remarks are given in Section V.
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II. STATEMENT OF THE PROBLEM

A. Model and Assumptions

Let consider the MIMO system defined by the following
state-space representation:

(1)

(2)

(3)

where is the state, is the measured output,
and is the signal to estimate. Matrices , ,

, , and are piecewise continuous bounded func-
tions of with appropriate dimensions.

The following assumptions are made.
• The pair is detectable.
• The pair is stabilizable.
• and are zero-mean uncorrelated

white noises such that

(4)

(5)

• The matrices and are bounded matrices such that
and .

• The matrix is invertible and is such that
.

The following notations will be used in the sequel.
• stands for the transpose of the matrix .
• is the expectation operator.
• The relation means that the matrix is

definite positive.
• is the -norm and is -norm with a

weighting matrix .

B. The Smoothing Problem

The objective is to define a smoothed estimate of
the signal using the technique of forward–backward
smoothing. The principle of the forward–backward smoothing
technique is the following.

Given , a measurement signal on the time interval [0, ],
the estimate at time results from the combination of:

• the forward treatment of on [0, ];
• the backward treatment of on .
Let introduce the smoothing lemma that is synthesizing this

approach (see [3] for a proof).
Lemma 1: Let (respectively, ) be the forward es-

timate (respectively, backward estimate) of the state . Then,
the smoothed estimate of is given by the relation

(6)

with

(7)

and (respectively, ) is the error covariance prop-
agation matrix of a forward filter (respectively, a backward
filter).

Remark 1: The relation (6) states that the smoothed estimate
of is always better than or equal to its filtered estimate [4].

In order to solve the problem of smoothing in presence of
noise statistic uncertainties, a criterion is defined as fol-
lows:

(8)

where

(9)

and (respectively, ) is a weighting matrix which reflects
the confidence in the estimate (respectively, the estimate ).

Criterion (8) could be written as a min-max optimization
problem as follows:

(10)

with

(11)

where

(12)

(13)

(14)

From the smoothing principle, it follows that the problem
should be split into two optimization problems, namely:

• the forward filtering problem characterized by and a
state estimate ;

• the backward filtering problem characterized by and a
state estimate .

Thus, (11) becomes

(15)

with

(16)

(17)

with the Lagrangian and its associated multiplier defined
as

(18)
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where is a constraint on the state that will be specified
for each problem.

In order to simplify the presentation, the dependence in time
will be omitted.

III. MAIN RESULTS

A. Forward Filter

In this section, an optimal estimate of is sought. The
problem under consideration is the minimization of the func-
tional (16). The problem treated is similar to the filtering
problem treated by Nagpal [11]. The proof will be given in term
of variational calculus, which seems to be an intuitive manner
to treat this problem.

Theorem 1 (The Forward Filter): The continuous system
(1)–(3) admits an estimate of the signal if there exists
a symmetric definite positive matrix solution to the Riccati
equation

(19)
with and .

The estimator minimizing (16) is given by

(20)

(21)

where is the filter gain defined by the relation

(22)

Proof: A variational approach is used to minimize . For
that purpose, the Lagrangian multiplier will be denoted as
in the sequel. Consider the first variation of [12]

(23)

with

(24)

The optimality condition entails with in (18) as
:

• Constraint equation

(25)

• Optimality

(26)

• Transversality condition

(27)

• Euler–Lagrange equation

(28)

Using Riccati transformation , where is
a symmetric definite positive matrix, in (1), (26), and (28),
one obtains after some manipulations the results presented
in Theorem 1. This completes the proof.

B. Backward Filter

In this section, an optimal estimate of is sought.
The problem under consideration is the minimization of the
functional (17). This problem is a backward filtering
problem.

The state in (1) is a Markovian process [16]. Hence, there
exists a correlation between the value of the state at time and
the driving noise . Consequently, the backward orthogo-
nality condition defined as

(29)

should be verified. The following lemma defines an equivalent
backward Markovian model to the forward model (1) satisfying
to this condition (see [15] for a proof).

Lemma 2 (The Markovian Backward Model): Consider the
process given by the state model

(30)

where

(31)

with a symmetric definite positive matrix solution to the Ric-
cati equation

(32)

with and is zero-mean centered
process with covariance matrix such that

(33)

If the above-mentioned conditions are verified, then has
the same covariance function as .

Consequently, minimizing (17) is equivalent to the minimiza-
tion of the criterion

(34)

with , defined from (18) and (14) by replacing , , and
by , , and , respectively.
Finally, one gets the following result for the definition of the

backward filter.
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Theorem 2 (The Backward Filter): The system (1)–(3)
admits an estimate of the signal if the condition of
Lemma 2 is satisfied and if there exists a symmetric definite
positive matrix solution to the Riccati equation

(35)
with

The estimator minimizing (34) is given by

(36)

(37)

and the backward filter gain is defined by

(38)

Proof: The same technique used to prove Theorem 1 is
employed to prove Theorem 2. It should be noted that the Riccati
transform is and that the function in (18) is
defined as .

C. Smoothing

In Section II-B, the criterion has been split in two terms
and . In Section III-A and B, the forward and backward

filters have been developed using a variational method. From
Lemma 1 and the results in Theorems 1 and 2, the expression of
the smoother is derived as follows.

Theorem 3 (The Smoother): The system (1)–(3) admits
an forward–backward smoother for the signal , if there
exists:

• a symmetric definite positive matrix solution of the Ric-
cati equation

(39)
with ;

• a symmetric definite positive matrix solution of the Ric-
cati equation

(40)

with ;
• a symmetric definite positive matrix solution of the Ric-

cati equation

(41)

(42)

with .

Then, the estimate is obtained from the relations

(43)

with
a) the solution to

(44)

with

(45)

and ;
b) the solution to

(46)

with

(47)

and where: and
.

Proof: The problem of the initial value for the matrices
and has to be treated. Both values relate to the confidence
the designer brings into and with regard
to and , respectively. In order to overcome
this problem, the solution is to consider that and

are infinite. Consequently, (19) and (35) have to be
rewritten in and in order to obtain Riccati equations
with zero initial value. Hence, the initial value of the new (39)
and (41) will be null.

As a consequence, one has to consider the following change
of variable:

(48)

(49)

The direct consequence of this operation is that the initial value
for this new variables is null. Using Lemma 1 and (20) and (36),
one obtains after some mere manipulations (44) and (46). This
completes the proof.

IV. ILLUSTRATIVE EXAMPLE

The performances of the proposed smoother will be com-
pared to the performances of the smoother of Nagpal
[11]. We consider the following system [14]:

diag

The covariance of and is assumed to be unity. In the
problem treated, the real covariance of is smaller than the
assumed value. Hence, we impose ourselves to the worst case
situation for the design of the smoother.

Figs. 1 and 2 show two different situations for the same re-
alization of the measurement noise. The plots clearly show the
great ability of the proposed smoother to deal with uncertainty
on noise properties. In both cases, the dynamic of the restored
signal with the smoother is close to the signal , whereas
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Fig. 1. Comparison of the estimation for (a) the proposed smoother and
(b) the smoother [11] with SNR dB.

Fig. 2. Comparison of the estimation for (a) the proposed smoother and
(b) the smoother [11] with SNR dB.

the smoother exhibits a very smoothed restored signal
. Hence, the behavior of the smoother is very similar to

the filter in terms of dynamic restoration over noise statistic
uncertainty [14].

V. CONCLUSION

In this paper, the smoothing problem has been treated
through an efficient variational approach. The key idea of the
development is that the optimal smoothed estimate results in
the combination of the estimate of an forward filter and
the estimate of an backward filter. In that purpose, the
criterion has been split in two terms that explicitly pose the

smoothing problem in term of forward and backward filtering
problems. The result for the forward filter is clearly a standard
result. For the backward filter, the problem of correlation be-
tween the initial state value and the evolution of the state has
been solved using a Markovian model. The approach developed
in this paper ensures the optimality of the smoother in the
setting compared to previous works.
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