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THE SECOND YAMABE INVARIANT

B. AMMANN AND E. HUMBERT!

ABSTRACT. Let (M, g) be a compact Riemannian manifold of dimension n > 3. We define the

second

Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics
conformal to g and of volume 1. We study when it is attained. As an application, we find nodal

solutions of the Yamabe equation.
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Let (M, g) be an n-dimensional compact Riemannian manifold (n > 3). In ] Yamabe attempted to

show that there is a metric § conformal to g such that the scalar curvature Sy of § is const

ant. However,

Trudinger [ realized that Yamabe’s proof contained a serious gap. The problem is now solved, but

it took a very long time to find the good approach. The problem of finding a metric g

with constant

scalar curvature in the conformal class [g] is called the Yamabe problem. The first step towards a rigorous

solution of this problem was achieved by Trudinger [ who was able to repair the ga
article in the case that the scalar curvature of g is non-positive. Eight years later, Aubin []

p of Yamabe’s

Aub7d] solved

the problem for arbitrary non locally conformally flat manifolds of dimension n > 6. The problem was
completely solved another eight years later in an article of Schoen [] in which the proof was reduced
to the positive-mass theorem which had previously been proved by Schoen and Yau [, . The
reader can refer to [LP87], [Aub76] or [Heb97] for more information on this subject. The method to solve
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2 THE SECOND YAMABE INVARIANT
the Yamabe problem was the following. Let u € C°°(M), u > 0 be a smooth function and § = u’¥~2g
where N = 2—”2 Then, multiplying u by a constant, the following equation is satisfied:

Ly(u) = SzlulN 2u.

where ( )
4n—1
n—2 Bg+ 5
is called the Yamabe operator. As a consequence, solving the Yamabe problem is equivalent to finding a

positive smooth solution u of

Ly=cpAg+ 5, =

L, (u) = Colulu. (1)
where (Y is a constant. In order to obtain solutions of this equation Yamabe defined the quantity
M, g) = inf Y
#(M, g) u;éO,ulenC"o(I\/[) (u)

where
_ Ju el Vaul? + S,u” do,

2
(Jar [ulN dvg) ¥
Nowadays, pu(M,g) is called the Yamabe invariant, and Y the Yamabe functional. Writing the Euler-
Lagrange equation associated to Y, we see that there exists a one to one correspondence between critical
points of Y and solutions of equation (m) In particular, if w is a positive smooth function such that
Y(u) = u(M,g), then u is a solution of (fl) and § = uN~2g is the desired metric of constant scalar
curvature. The key point of the resolution of the Yamabe problem is the following theorem due to Aubin
[Aub7d]. In the theorem and in the whole article, SN will always denote the sphere S™ with the standard
Riemannian structure.

Y (u)

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n > 3. If u(M, g) < u(S™),
then there exists a positive smooth function u such that Y (u) = u(M,g).

This strict inequality is used to show that a minimizing sequence does not concentrate in any point.

Aubin [A ] and Schoen [[Sch84] proved the following.

Theorem 1.2. Let (M,g) be a compact Riemannian manifold of dimension n > 3. Then u(M,g) <
2

w(S™) = n(n — 1wy where wy, stands for the volume of the standard sphere S™. Moreover, we have
equality in this inequality if and only if (M, g) is conformally diffeomorphic to the sphere.

These theorems solves the Yamabe problem.

In this paper, we introduce and study an invariant that we will call the second Yamabe invariant. It is
well known that the operator L, has discrete spectrum

Spec(Lg) = {A1(g), A2(g), -+ }
where the eigenvalues
A1(g) < A2(g) < As(g) < < Aelg) -+ — +00
appear with their multiplicities. The variational characterization of A1 (g) is given by
M(g) = o Jas enlVul* + Sgu? dug
uF0,u€C>= (M) Joy ul? dug

Let [g] be the conformal class of g. Assume now that the Yamabe invariant u(M,g) > 0. It is easy to
check that
. - 2
u(M,g) = inf Xy (g)Vol(M,g)~,
gelgl

where [g] is the conformal class of g. We then enlarge this definition.
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Definition 1.3. Let k € N*. Then, the k" Yamabe invariant is defined by
ue(M.g) = nf A (3)Vol(M, g)*.
G€lg]

With these notations, pi(M,g) equals to Yamabe invariant u(M,g) in the case p(M,g) > 0, and
u1(M, g) = —oo in the case u(M,g) < 0.

The goal of this article is to study the second Yamabe invariant ps(M, g) for manifolds whose Yamabe
invariant in the case (M, g) > 0. As explained in Section[§, the most interesting case is when u(M, g) > 0.
In particular, we discuss whether us(M, g) is attained. This question is discussed in Subsection @ In
particular, Proposition @ asserts that contrary to the standard Yamabe invariant, uo(M,g) cannot
be attained by a metric if M is connected. In other words, there does not exist § € [g] such that
p2(M, g) = Aa(§)Vol(M, ). In order to find minimizers, we enlarge the conformal class [g] to what
we call the class of generalized metrics conformal to g. A generalized metric is a “metric” of the form
g = uN~2g, where u is no longer necessarily positive and smooth, but v € LY (M), u > 0, u # 0. The
definitions of A2(g) and of Vol(M, g) can be extended to generalized metrics (see section 3). Then, we
are able to prove the following result:

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n > 3 whose Yamabe invari-
ant is non-negative. Then, pus(M,g) is attained by a generalized metric in the following cases:

2
n

o (M, g) >0 and p2(M,g) < [p1(M,g)% +pu(S"))=]";
o 11(M,g) =0 and p2(M,g) < pua(S™)

2
where 11 (S™) =n(n — Dwyy is the Yamabe invariant of the standard sphere.

The result we obtain in the case u1(M,g) = 0 is not surprising. Indeed, when ps(M,g) < wpi(S™),
Aubin’s methods [[Aub76] can be adapted here and allow to avoid concentration of minimizing sequences.

n

2
However, when i1 (M, g) > 0 and p2(M,g) < [p1(M,g)2 + p1(S™))2] ™, the result is much more difficult
to obtain (see Subsection ﬂ) A second result is to find explicit examples for which the assumptions of
Theorem @ are satisfied. The method consists in finding an appropriate couple of test functions.

Theorem 1.5. The assumptions of Theorem are satisfied in the following cases:
o u1(M,g) >0, (M,g) is not locally conformally flat and n > 11;
e 11 (M,g) =0, (M,g) is not locally conformally flat and n > 9.

One of our motivations is to find solutions of the Yamabe equation () with alternating sign, i.e. positive
and negative values. If M is connected, alternating sign implies that the zero set u~1(0) of u is not
empty. In the following we will use the standard definition to call the zero set u~1(0) of a function u
the nodal set of u. A solution with a non-empty nodal set is usually called a nodal solution. If M is
connected, then the maximum principle implies that a solution of the Yamabe equation is nodal if and
only if it has alternating sign. They are called nodal solutions of the Yamabe equation. The articles
[EV94], IDJ0Z, [Pou99, [Hol9Y| prove existence of nodal solutions under symmetry assumptions or under
some assumptions which allow to use Aubin’s methods, as in Theorem [L.4 when (M, g) = 0 and
ua(M,g) < ur(S™). If u(M,g) < 0, another method is given in Section E The method we use here is
completely different and we obtain solutions on a large class of manifolds. In particular, to our knowledge,
there is no work which leads to the existence of such solutions if the Yamabe invariant is positive and if
(M, g) is not conformally equivalent to the round sphere. The result we obtain is the following:

Theorem 1.6. Let (M, g) be a compact Riemannian manifold of dimension n > 3. Assume that ps(M, g)
is attained by a generalized metric u™N ~2g where u € L™ (M), u >0 and u #Z 0. Let Q be the nodal set of
u. Then, there exists a nodal solution w € C=(M\Q)NC>*(M) (o < N —2) of equation ([]) such that
|lw] = w.
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A corollary of Theorems , E and E is then

Corollary 1.7. Let (M,g) be a compact Riemannian manifold of dimension n > 3 whose Yamabe
invariant is non-negative. We assume that one of the following assumptions is true:

o u1(M,g) >0, (M,g) is not locally conformally flat and n > 11;
e u1(M,g) =0, (M,g) is not locally conformally flat and n > 9.

Then, there exists a nodal solution of Yamabe equation @
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2. VARIATIONAL CHARACTERIZATION OF ps2(M, g)

2.1. Notation. In the whole article we will use the following notations
LY(M) :={ue LN(M)|u=>0, u#0}.

2.2. Grassmannians and the min-max principle. Let Gr,(C*(M)) be the k-dimensional Grass-
mannian in C*° (M), i.e. the set of all k-dimensional subspaces of C*°(M). The Grassmannian is an
important ingredient in the min-max characterization of A, (g)

Ae(Lg) == inf su M.
VeGrk(COC(M))UeV\{O} fM v2 d’l)g
We will also need a slightly modified Grassmannian. For any u € LY (M) we define Grj}(C) to be the
set of all k-dimensional subspaces of C*° (M), such that the restriction operator to M \ u~1(0) is injective.
More explicitly, we have span(vi,...,vx) € Gry,(C*(M)) if and only if v1|pnu-1(0ys- - - Vklar\u—1(0) are
linearly independent. Sometimes it will be convenient to use the equivalent statement that the functions
w'T Vlyen ,u¥ vy, are linearly independent.

Similarly, by replacing C* (M) by H%(M) we obtain the definitions of Gr,(HZ(M)) and Grj(HZ(M)).
2.3. The functionals. For all u € LY (M), v € Hf (M) such that uw T # 0, we set

o[ VOl2 + S0 d g
F(u,v):fMC| vl g¥ g (/ uNdvg) .
M

2, N—2
va U dvg

2.4. Variational characterization of us(M,g). The following characterization will be of central im-
portance for our article.

Proposition 2.1. We have

i (M, g) = inf sup  F(u,v) (2)
weL (M)  veVv\{0}
VeGrj (HF (M))

Proof. Let u be a smooth positive function on M. For all smooth functions f, f # 0, we set § = u™N ~2g

(N =22 and
, ~ Ju fLgf dvg
Flw )= fo2d”§ .

The operator L, is conformally invariant (see [Heb97]) in the following sense:

uN T Lg(uTt f) = Ly (f) (3)
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Together with the fact that
dvg = uN dvg, (4)
we get that
(D) () dv,
Joswf)?uN=2dvg

Using the min-max principle, we can write that

F'(u, f)

Ae(g) = inf sup  F'(u, f)
VeGry(H? (M)) fev\{0}

Now, replacing u f by v, we obtain that
Sy vLgv dug

Ae(9) = inf sup . 5
( VEGr, (H2(M)) yev\ (o} [y v2uN 2 duy (5)

Using the definition of y, and Volg(M) = [,, uN dvg, we derive

(M, g) = inf sup  F'(u,v)
welN (M) vev\{0}
VeGr} (0™ (M)

The result follows immediately.

3. GENERALIZED METRICS AND THE EULER-LAGRANGE EQUATION

3.1. A regularity result. We will need the following result.

Lemma 3.1. Let u € LN(M) and v € H(M). We assume that

Lgyv = uN "2y

holds in the sense of distributions. Then, v € LN+5(M) for some ¢ > 0.

This result is well known for the standard Yamabe equation. Proofs for the standard Yamabe equation can
be found in [Tru6g] and [Heb97], and the modifications for proving Lemma B.1] are obvious. Unfortunately,
[Lru6g| contains some typos, and the book is difficult to obtain. This is why we included a proof
in the appendix for the convenience of the reader.

3.2. The k-th eigenvalue of the Yamabe operator for a generalized metric. On a given Rie-
mannian manifold (M, g) we say that § = uN=2g, u € LY (M), is a generalized metric conformal to g.
For a generalized metric g, we can define

- . f vLgv dug
Ae(9) = inf sup M 2 9 6
(9) VEGry (HE(M)) vev\ (o} [y v2ulN~2dv, (6)

Proposition 3.2. For any u € Lf, G = uN "2 there exist two functions v, w belonging to HZ(M) with
v > 0 and such that in the sense of distributions.

Lyv= Al(g)u]\F?v (7)
and
Lyw = Ao (§)uN "2w. (8)

Moreover, we can normalize v, w by

/ uN"2? dv, = / uN 2w dvy, = 1 and / u™N " 2ow dv, = 0 9)
M M M
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For k = 2 the infimum in formula (f]) over all subspaces V € Gry(HZ(M)) is attained by V = span(v, w)
and the supremum over the functions in V'\ {0} is attained by w. The reader should pay attention to
the fact that the space V is in general non unique. As one can check, if w changes the sign then the
supremum over all v € V' = span(v,w) \ {0} and the supremum over all v € V4 = span(w, |w|) \ {0}
coincide.

From section (), we get
p2(M, g) = inf Ax(g).
geld]

Hence, u2(M, g) can be attained by a regular metric, or by a generalized metric or it can be not attained
at all. These questions are discussed in Section E Let us now prove Proposition @

Proof of Proposition B.3: Let (v,,),, be a minimizing sequence for A1 () i.e. a sequence v,, € HZ(M)
such that
lim Jas enlVom|* + Sgv2, dug
m—o00 Sy uN 7202, dog

= Mi(9)-

It is well known that (Jum|)m is also a minimizing sequence. Hence, we can assume that v, > 0. If
we normalize vy, by [, uN =202 dv, = 1, then (vy,)n is bounded in HZ(M) and after restriction to a
subsequence we may assume that there exists v € HZ(M), v > 0 such that v,, — v weakly in HZ(M),
strongly in L?(M) and almost everywhere. If u is smooth, then

/ uN 20 dv, = lim/ uN 7202 dv, =1 (10)
M moJM

and by standard arguments, v is a non-negative minimizer of the functional associated to A1 (g). We must
show that ([L0) still holds if u € LY (M). Let A > 0 be a large real number and set us = inf(u, A). Then,
using the Holder inequality, we write

[ -y dn| < ([ -+ [ @ o+ ) s,
M M M
< A R v dy,
M
N-—2 2
N-2 _ N—2\: Y N Y
() @' —uy )N dyg (lom] =+ [v)™ dug
M M
By Lebesgue’s theorem we see that
: N-2 N—-2\+5
ALHEOO M(u —uy “)¥-2dvy =0.

Since (vn)m is bounded in HZ(M), it is bounded in LY (M) and hence there exists C' > 0 such that
Sy (vm| + [0))Y dvg < C. By strong convergence in L*(M),

lim/ [v2, — v?| dv, = 0.
moJM

Equation ([Ld) easily follows and v is a non-negative minimizer of the functional associated to A;(§).
Writing the Euler-Lagrange equation of v, we find that v satisfies equation (ﬂ) Now, we define

Jos enl V| + Sgw? dug

A5(G) = inf
a(0) f]M uN=2w|? du,

where the infimum is taken over smooth functions w such that "= w # 0 and such that [,, uN "2ow dv, =

0. With the same method, we find a minimizer w of this problem that satisfies (§) with \(g) instead of
A2(§). However, it is not difficult to see that \y(§) = X2(§) and Proposition B.d easily follows.
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3.3. Euler-Lagrange equation of a minimizer of A2 Vol?/™,

Lemma 3.3. Let u € LY (M) with [u™N = 1. Suppose that wy,ws € HF(M)\ {0}, wy,ws > 0 satisfy
/(cn|Vw1|2 + Scal,wi) dvy < pa(M, g) /uNwif (11)

/(cn|Vw2|2 + Scalyws) dvy < pa(M, g) /uN*ng (12)

and suppose that (M \ wy*(0)) N (M \ w5 *(0)) has measure zero. Then u is a linear combination of wy
and we and we have equality in ([L1]) and ().

Proof. We let @ = aw; + bws where a,b > 0 are chosen such that
aN—2 fM ulN~2w? dvg fM wi dvy

N—2 N=2,2 do. N
b Sy uNPwido, [ wh dug

/ﬁNdvg:aN/ w{erbN/wéV:l. (14)
M M

Because of the variational characterization of us we have

pa(M, g) < sup F(u, Mwy + prws) (15)
(A, ) ER2\{(0,0)}

By (1),([?) and ([14), and since (M \ w; ' (0)) N (M \ wy '(0)) has measure zero

A2 fM (Cn|vwl|2 + Sgw%) dvg + 2 fM (Cn|vw2|2 + Sgw%) dug
N2 [ [aN =208 dog + p? [, [a]N —2w? dog

A2 fM ulN=2wi dvg + p? fM ulN2ws dv,

NalV=2 [ w) dog + p2bN=2 [} wh dug’

(13)

and

F(a, \wy + pwe) =

< pa(M,g) (16)

As one can check, relation ([13]) implies that this expression does not depend on A, u. Hence, setting A = a
and g = b, the denominator is 1, and we get

sup F(@, \wy + pawg) < uz(M,g)/ WV (@Pw? 4 bPw3) duyg
(i) ER2\{(0,0)} M

(M, g) /M u™N "2 dv,.

By Holder inequality,

N-—2 2
N N
sup F(a, \w1 + pws) < pa(M, g) (/ uN dvg) (/ av dvg> = pn2(M, g). (17)
(A1) ER2\{(0,0)} M M
Inequality (E) implies that we have both equality in the Holder inequality of (E) and in ([L6]). The
equality in the Holder inequality implies that there exists a constant ¢ > 0 such that u = cu almost
everywhere. Moreover, since f ulN = f @™ =1, we have u = %@ = aw; + bwy. The equality in (E) implies
inequality in ([L1]) and ([13). O

Theorem 3.4 (Euler-Lagrange equation). Assume that po(M,g) # 0 and that pe(M, g) is attained by
a generalized metric § = u™N~2g with u € LY (M). Let v,w be as in Proposition 3.4. Then, u = |w|. In
particular,

Lyw = po(M, g)[w|N ~*w (18)
Moreover, w has alternating sign and w € C>*(M) (a < N —2).
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Remark 3.5. Assume that po(M, g) is equal to 0 and is attained by a generalized metric ¢’, then, using
the conformal invariance of the Yamabe operator, it is easy to check that for all generalized metrics
g conformal to ¢’, we have A2(§) = 0. Consequently, each metric conformal to ¢ is a minimizer for
p2(M, g) and Theorem B.4 is always false in this case. However, we will still get a nodal solution of ([l)
if po(M,g) = 0. Indeed, by Theorem B and the remark above, A2(g) = 0. Let w be an eigenfunction
associated to A2(g). We have Lyw = 0. Then, we have a solution of ([L§).

Remark 3.6. Assume that ps(M,g) # 0 and that pa(M,g) is attained by a generalized metric. Let
w be the solution of equation ([[§) given by Theorem B.4. We let Q; = {z € M s.t. w(z) > 0} and
Q- = {z € M s.t. w(z) — 0}. Then, a immediate consequence of Lemma B.J is that Q4 and Q_ have
exactly one connex component.

Proof. Without loss of generality, we can assume that | Y u dv, = 1. By assumption we have \2(g) =
p2(M, g). Let v,w € HZ(M) be some functions satisfying equations (), (§) and relation ([).

Step 1. We have A\1(g) < A2(g)-

We assume that A1(§) = A2(g). Then, after possibly replacing w by a linear combination of v and w,
we can assume that the function u 7w changes the sign. We apply Lemma @ for wy := sup(w,0)
and ws := sup(—w,0). We obtain the existence of a,b > 0 with u = aw; + bws. Now, by Lemma

w € LN+¢(M). By astandard bootstrap argument, equation (§) shows that w € C%%(M) for all a €]0, 1].
It follows that u € C%*(M) for all « €]0,1[. Now, since A\1(g) = X2(g) and by definition of A\;(g), w
is a minimizer of the functional @ — F(u,w) among the functions belonging to HZ(M) and such that
w2 w # 0. Since F(u,w) = F(u,|w|), we see that |w| is a minimizer for the functional associated to
A1(g) and hence, writing the Euler-Lagrange equation of the problem, w satisfies the same equation as
w. As a consequence, |w| is C%(M). By the maximum principle, we get |w| > 0 everywhere. This is false.
Hence, the step is proved.

Step 2. The function w changes the sign.

Assume that w does not change the sign, i.e. after possibly replacing w by —w, we have w > 0. Using 8)
we see that (M \ v=1(0)) N (M \ w™'(0)) has measure zero. Setting w; := v and wsy := w we have ([L1))
and (E) While we have equality in ), Step 1 implies that inequality (E) is strict. However using
Lemma E we can derive equality in ([L1). Hence we obtain a contradiction, and the step is proved.

Step 3. There exists a,b > 0 such that u = asup(w,0) + bsup(—w,0). Moreover, w € C**(M) and
u e CY*(M) for all a €]0,1].

As in the proof of Step 1 we apply Lemma for wy := sup(w, 0) and wsy := sup(—w,0). We obtain the
existence of a,b > 0 such that u = aw; + bwy. As in Step 1 we get that w € C**(M) and u € C**(M)
for all « €]0, 1[. This proves the present step.

Step 4. Conclusion.
Let h € C°°(M) whose support is contained in M \ {u=1(0)}. For ¢ close to 0, set u; = |u + th|. Since

u > 0 on the support of h and since u is continuous (see last step), we have for ¢ close to 0, u; = u + th.
As span(v,w) € Gry(H7(M)) we obtain using () for all ¢

p2(M, g) < sup F(ug, Ao + pw).
(L )ER2\{(0,0)}

Equations (), (B), and relation () yield

P B )\2)\1 (g) fM UN 2 2 d’Ug + i )\2 )fM N-2 2 d’U N %
(ue, W + pw) = — S 5 5 uy dug
A2 [y, up 02 duyg +2)\,ufM vwdvg—i—,u Jag ue 2w dvg \J

A2\ 2o
= 1( T H 2 / |’U,t|Nd’Ug
A2ay + Auby + p2eq
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a; = / ul ~2v? dvy,
M

by = 2/uiv72vw dvg

c = / uiv_2w2 dvg.
M

The functions a;, by and ¢; are smooth for ¢ close to 0, furthermore ag = ¢g = 1 and by = 0. The function
ft, o) := F(uy,sin(a)v + cos(a)w) is smooth for small ¢. Using A1 (§) < A2(g) one calculates

0

where

and

5 [0.0) =0 & aegZ
82
wf(o,a) <0 for o €l
2 T
a2 (0,a) >0 for a€7TZ+§

Applying the implicit function theorem to g—i at the point (0,0), we see that there is a smooth function
t — «(t), defined on a neighborhood of 0 with «(0) = 0 and

fta(®) = sup f(ta) = sup  Flushv+ puw).
a€R (A,pw)ER2\{(0,0)}

As a consequence
—| sin? (t) = —| cos? (t) = —| (s' 2 (t) ) = —| (s' (t) Ccos (t)b ) =
- - —o(sin” a(t)a —o(sin« « 0.
It t=0S1 It t=0 It t=0 t It t=0 t

Hence, <4|,_o f(t,a(t)) exists and we have

n

Sl (o) = %(M9) (—%|t_oct+%|t_o( [ fula, ) )

= (M, 5)(N-2) (/ uNthdevgjL/ uNlhdvg).
M M

By definition of us(M,g), f admits a minimum in ¢t = 0. As \y(M, §) = u2(M, g) # 0 we obtain

/uN_3hw2dvg:/ uN_lhdvg.
M M

Since h is arbitrary (we just have to ensure that its support is contained in M \ {u~1(0)}), we get that
uN3w? = uN "t on M\ {u=1(0)}, hence u = |w| on M \ {u=1(0)}. Together with Step 3, we get u = |w|
everywhere. This proves theorem @ O

4. A SHARP SOBOLEV INEQUALITY RELATED TO u2(M, g)
4.1. Statement of the results. For any compact Riemannian manifold (M, g) of dimension n > 3,
Hebey and Vaugon have shown in ([HV94]) that there exists Bo(M, g) > 0 such that
_ nf Jas €nlVul® + Bo [y, u? dvg

uwe HZ (M)\{0} (f,, u™ dv,) 2

33

p1(S") =n(n—-1)w

()

where w,, stands for the volume of the standard n-dimensional sphere S™ and where p; (S™) is the Yamabe
invariant of S™.

This inequality is strongly related to the resolution of the Yamabe problem. It allows to avoid concen-
tration for the minimizing sequence of p3(M,g). For the minimization of us(M,g), this inequality is
not sufficient and another one must be constructed. The following result is adapted to the problem of
minimizing ps (M, g).
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Theorem 4.1. On a compact connected Riemannian manifold (M, g) of dimension n > 3 we have

> W[ V[2 dvg + Bo(M, 24 N g\ ¥
27wy (S™) = inf sup (ch Vol dvg o Ng_)QIJQMU Ug) (fM“ Ug) (S1)
weLY (M) vev\{o} Sy uN 202 dug
VeGr(H2(M))

where Bo(M, g) is given by inequality (S).

We present now two corollaries of Theorem EI

Corollary 4.2. For the standard n-dimensional sphere we have uz(S™) = 2%u1(S").
Corollary 4.3. For allu € C(R™) and V € Gry(C°(R™)) we have

2
22/nM1(Sn) < sup (f]R" Cn|V’U|2 d’Ug) (f]R" |u|N d’Ug) N
T vev\{o} Sz [u[N =202 dv,

4.2. Proof of theorem @ The functional

(Jay en|VoI* dvg + Bo(M, g) [y, v* dvg) (o, w” dvg)
Jop w7202 dvg

is continuous on LY (M) x (HZ(M) \ {0}). As a consequence I(u,V) = sup,ev (o} G(u,v) depends

continuously on u € LY (M) and V € Gry(H{(M)). Thus, in order to show the theorem it is sufficient to

show that I(u, V) > 2%/ (S") for all smooth u > 0 and V € Gry(C°°(M)). Without loss of generality,
we can assume

2o

G(u,v) :=

/ uN dvy = 1. (19)
M

The operator v — P(v) := CHUZENA(’U/ZEN v) + Bo(M, g)u?>~Nv is an elliptic operator on M, and P is

self-adjoint with respect to the L?-scalar product. Hence, P has discrete spectrum A; < Ay < ... and the
- N

corresponding eigenfunctions ¢1, @9, ... are smooth. Setting v; := uz p; we obtain

(CnA + Bo) (Ui) = )\iuN_Qvi

/uN_Qvivj dvg =0 if Ay # Aj.

The maximum principle implies that an eigenfunction to the smallest eigenvalue A\; has no zeroes. Hence
A1 < Ao, and we can assume v > 0.

We define w := a4 sup(0,v2) and w_ := a_ sup(0, —v3), where we choose a,a_ > 0 such that
/ uN2w? dvg = / uNwi_Q‘_ dvg = 1.
M M
We let Q_ = {w < 0} and Q4 = {w > 0}. By Holder inequality,

- N-2, 2 N-2,.2
2 = [,u wfd%,:zl—fMu w? dvg .

= 2 =
(f(z, u® d”g) (Jay 0 dvg) ¥ + (fsu u® dvg) (Jyr wd dvg)
Using the sharp Sobolev inequality (S), we get that

2u1(S™) < (/ ulN dvg>
Q_
N N—-2 N—-2
+ / u® dv, / wyu 2 P(qu w+) duy (21)
Q4 M

£

IN

N

/ w_u'z P (uN;2 w,) dvg (20)
M

2
b
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Since w_ resp. w4 are some multiples of w on Q_ resp. €2, they satisfy the same equation as w. Hence,
we get that

N-—-2 N-—2
R Ml(Sn)_l)\g ((fg uN dvg) N fM uN=22 dvg + (fs2+ uN dvg) N fM uN—2w%r dvg)

= (S") s ((fQ u dug)¥ + (Jo, u¥ dvy) NT) .

Now, for any real non-negative numbers a,b > 0, the Holder inequality yields

N—-2
N

N

a+b< 2N (aNfZ —i—b%)
N-—-2 N—2

We apply this inequality with a = (fQ, ulv dvg) N and b= (fQ+ ulv dvg) R Using ([19), we obtain

2 S Q%Ml(gn)_l)\g (/

We obtain Ay > 2% u(S™). Since Ay = I(u, span(vy, v2)), this ends the proof of Theorem [L.1.

uN dvg —|—/ uN dvg> = 2%/11(8")_1)\2.
Q4

4.3. Proof of Corollaries @ and @ It is well known that Bo(S™) equals to the scalar curvature
of S”, i.e. Bo(S™) =n(n — 1). Replacing Bo(S™) by its value and taking the infimum over u, V, the right
hand term of inequality (S;) is exactly the variational characterization of 12 (S™) (see equation (H)). This
proves that fi2(S™) > 2%/";(S™). Corollary .9 then follows from Theorem p.4. Since R" is conformal
to S™\ {p} (p is any point of S™), we can use the conformal invariance to prove Corollary @

5. SOME PROPERTIES OF ps(M, g)

5.1. Is us(M, g) attained? Let (M, g) be an n-dimensional compact Riemannian manifold. The Yamabe
problem shows that (M, g) is attained by a metric § conformal to g. Some questions arise naturally
concerning us (M, g):

1- Is po(M, g) attained by a metric?
2- Is it possible that us(M, g) is attained by a generalized metric?

In this section, we give answers to these questions. The first result we prove is the following:
Proposition 5.1. Let S*US" be the disjoint union of two copies of the sphere equipped with their standard
metric. Then, pg(SPUS™) = 22/" 11y (S™) and it is attained by the canonical metric.
Proof. One computes

A2 (SPUS™) Vol (SPUS™)#/™ = 22/7 ) (S™) VoI (S™)#/™ = 22/ 1y, (S™).
Hence ji2(S"US™) < 22/7 111 (S™) follows.

Now, let § be an arbitrary smooth metric on S™US™. We write ST for the first S™ and S¥ for the second
S™. Then A(S™US™, §) is the minimum of A2 (S7, ), A2(S%, §) and max{A (ST, g), \1(S%,3)}

It follows from Corollary @ that
A2(ST,9) Vol(S"US™, §)*/™ = Mg (ST, §) Vol(ST, 9)*/™ = 22" pa (S™),
and obviously we have the same for A\2(S%, g).
Summing
A(SP,9)" = pa (S™)"/*Vol (ST, §)
over i € {1,2}, we obtain the remaining inequality
max{A1 (ST, §), M (S5, §)} Vol(S"US™, §)*/" > 22/"uy (),

and the proposition is proved. O
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Question 1 is solved by the following result.

Proposition 5.2. If M is connected, then pa(M, g) cannot be attained by a metric.

Indeed, otherwise by Theorem @, we would have that v = |w| and hence u cannot be positive. Theo-
rem @ and the following result answer Question 2.

Proposition 5.3. The invariant ua(S™) is not attained by a generalized metric.
This proposition immediately follows from Proposition @

5.2. Some bounds of us(M,g). At first, we give an upper bound for p2(M, g).
Theorem 5.4. Let (M, g) be an n-dimensional compact Riemannian manifold with pi (M, g) > 00. Then,
n n\% %
p2(M,g) < (u1(M,g)? + pa(S")2)". (22)
This inequality is strict in the following cases:

e u1(M,g) >0, (M,g) is not locally conformally flat and n > 11;
o 11 (M,g) =0, (M,g) is not locally conformally flat and n > 9.

From the solution of the Yamabe problem by Aubin and Schoen [|A 0, Bch84] we know that if (M, g)
is not conformally equivalent to S, then py (M, g) < u1(SY). Hence, (R2)) implies the following corollary.

Corollary 5.5. Let (M, g) be an n-dimensional compact connected Riemannian manifold whose Yamabe
invariant is non-negative. Then po(M,g) < ua(S™) with inequality if and only if (M, g) is conformally
diffeomorphic to the sphere S™.

These inequalities are very important, because they can be used to avoid concentration of minimizing
sequences for o, in a way which is similar to the resolution of the Yamabe problem.

The following proposition gives a lower bound for pus.

Proposition 5.6. Let (M, g) be a n-dimensional compact Riemannian manifold whose Yamabe invariant
is non-negative. Then,

pz(M, g) > 2% i (M, g). (23)

Moreover, if M is connected and if us(M,g) is attained by a generalized metric, then this inequality is
strict.

When (M, g) = 0, inequality () is trivial. If ui(M,g) > 0, by a possible chande of metric in the
conformal class, we can assume that the scalar curvature is positive. The proof of inequality (@) is
exactly the same as the one of Theorem . We just have to replace Bo(M,g) by Sg. Moreover, if M
were connected and if pa(M, g) were attained by a generalized metric, then inequality (@) would be an
equality and we would have that w4 or w_ is a function for which equality in the Sobolev inequality (S)
is attained. By the maximum principle, we would get that w, or w_ is positive on M which is impossible.

5.2.1. Proof of theorem .
Lemma 5.7. For any o > 2, there is a C' > 0 such that
la +b|* < a® +b* + C(a® b+ ab®™t)
for all a,b > 0.
Proof of Lemma @ Without loss of generality, we can assume that a = 1. Then we set for x > 0,

Tz = (1 2%)
f(SC)— .Ta_l-i-ZE
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One checks that lim, o f(2) = lim,—, 4o f(2) = . Since f is continuous, f is bounded by a constant C
on R, . Clearly, this constant is the desired C' in inequality of Lemma @
Proof of Theorem [5.4. For u € HZ(M) \ {0} let
B fM cn|Vul? + Sgu2 dvg
(Sar [ul™ dvg) ™

be the Yamabe functional of M. The solution of the Yamabe problem provides the existence of a smooth
positive minimizer v of Y, and we can assume

Y(u

/ oV dv, = 1. (24)
M
Then, v satisfies the Yamabe equation

Lyv = (M, g0, (25)
Let 29 € M be fixed and choose a system (z1,---,2,) of normal coordinates at xzyo. We note r =

disty(zg,.). If § > 0 is a small fixed number, let 7 be a smooth cut-off function such that 0 < n <1,
n(B(x0,9)) = {1} and n(M \ B(zo,26) = {0}, [Vn| <2/J. Then, we can define for all € > 0

Ve = 877(5 + 742)277”'

where C: > 0 is such that
/ ol dv, = 1. (26)
M

By standard computations (see [Aub76])
lim Y (ve) = p1 (S™). (27)

e—0

If (M, g) is not locally conformally flat, if ¢ is well chosen in the conformal class and if g is well chosen
in M, it was also proven in [Aub76] that there exists a constant C'(M) > 0 such that

Y (0.) = p1(S™) — C(M)e? + o(e?) ifn>6
¢ p1(S™) — C(M)e?|In(e)| + o(e?|In(e)|)  if n = 6.

Moreover, it follows from [Aub7d] that

(28)

n-—2 n=2
ac * <(C.<be 3

where a,b > 0 are independent of . If p > 1, standard computations made in [] show that there
exist some constants ¢, C' > 0 independent of ¢ such that

cope < / v dvg < Coy, o (29)
M
where
R g P> s
ape = | |In(e)le® if p= o
e if p<-t5

Since the large inequality if easier to obtain, we only prove strict inequality. Assume first that pq (M, g) >
0, that (M, g) is not locally conformally flat and that n > 11. We set,

1 1
Ue = Y(vs) N=20¢ + 1 (Mag> N=2o.
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Let us derive estimates for F(ue, M. +pv)). Let (A, 1) € R?\ {(0,0)}. Using (24), (R6) and the equation
(B3) of v, we get that

n

F(ue, e + pv) = N2 g veLg(ve) dvg + 2 [ 0Lg(0) dvg + 2 [y veLgv dvg / ul dvg
A2 3 lue|N =2 (Ave + pw)? dog M

2
n

B NY (v2) + pPpn (M, g) + 2\ upn (M, g) [ o]V ~2ove do, / N g (30)
N [ e N2 dog + i [ Jue [N 202 dog + 22 [ [ue | N Pove dog \ Sy T 7))

Using the definition of u.

)\2/ lus |V 202 dvg+u2/ lue| N 202 dvg+2)\u/ lue|N ~2vve doy
M M M

> NY (ve) [ [ve|N dvog + pPpa (M, g) [, 10| dvg + 22 [ Jue| N~ 2ov, dug
= NY () + pPpn (M, g) + 2\p fM |ue [N 2ove dvg.
If Ap > 0, we have
QAM/ lue|N ~2vv. dv, > 2)\uu1(M,g)/ vV 20, du,.
M M

This implies that

NY (ve) + p?pa (M, g) + 20 upn (M, g) [y [0V P vve dug <1
A2 [y el N 7202 dog + p2 [ Jue|[N 202 dog + 20 [y [ue N 2ove dog T

If A < 0 then, we write that since N — 2 €]0, 1],
[ue|N 72 <Y (0 )l 7 + pa (M, g)o™V 2.
We obtain that

)\2/ Jus |V 202 dvg+u2/ Jue| Y 202 dvg+2)\u/ lue |V 2vve dogy
M M M

> NY (ve) + pP (M, g) — C (/ v o, dug +/ vév_lvdvg) :
M M

where C' > 0 is as in in the following a positive real number independent of €. Together with (@), we
get that

)\2/ lus|N 202 dvg+u2/ lus|N 202 dvg+2/\u/ lue [N ~2vv. dog Z/\QY(UE)+,LL2;L1(M,9)+O(EHT72).
M M M

It follows that

- MY (ve) + p? i (M, g) + 20 upn (M, g) [ [0/ ~2vve dug
(um)ER2\{(0,0)} A Jar luel V7202 dvg + 12 [ [uelN 7202 dug + 27 [ [ue[NT2ove dug

By Lemma @,

<140(E"7). (31)

/uévdvg < (Y(ug))g/ vévdvngul(M,g)g/ oV dv,
M M M

+C (/ oV . dog —|—/ vév_lvdvg) .
M M

By @)a (@)7 (@) and (E)? we obtain

(/M ul dug) " < (M, g)} + (™))

2
n

— Ce? + 0(5%2) + o(g?). (32)
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Since 272 > 2, we get from (B1)) and (BJ) that for  small enough

p2(M,g) < sup F(ue, \ve 4 pw)
(Am)ER2\{(0,0)}

(11 (M, 9)% + i (S") %)
This proves Theorem 4 if u1(M, g) > 0.
Now, we assume that puq (M, g) = 0, that (M, g) is not locally conformally flat and that n > 9. For more

2 2
n n

— Ce?+ O(™T) + 0(e?) < (1 (M, g)F + pa (S")¥)"

IN

simplicity, We set u. = v. instead of u. = Y(UE)HTJ’UE as above. We proceed exactly as in the case
w1(M, g) > 0. We obtain that for (A, u) € R?\ {(0,0)}

A?Y (ve) N B
F A = d
(e, Ave + puv) A2 [ 0N dvug + p? [y [oe| N 202 dog + 20 [, [ve| N o dog /MUE Yo
A?Y (ve)
N2+ 2 [ [0l V202 dog + 20 [, [ve| Vo dog

Let Ac, e be such that A2 4+ 2 = 1 and such that

F(ue, AeVe + pev) = sup (e, AVe + po).
(M) ER?\{(0,0)}

If A\. =0, we obtain that F(ue, Aeve + pev) = 0 and the theorem would be proven. Then we assume that
Ae # 0 and we write that

Y (ve)
F(ue, Aeve + pev) = 1+ 220 €+$2a
e0e s0e

where z. = £= and where, using @)
£

n—2

be :/ vév_lvdvg ~e_o Ce 2
M

and
Qe = / 05721)2 dvg ~e—q Ce.
M

Maximizing this expression in z. and using (Rg), we get that

p(S") = C(M)e? +o(e?) _ pu(S") = C(M)e® + oe?)

1- £ 1-0("")

Ae

F(ua; AeVe + MEU) <

Since n > 9, "7_4 > 2 and we get that for ¢ small,
F (e, AeVe + pev) < p1(S™).
This proves Theorem @

6. EXISTENCE OF A MINIMUM OF pu2(M, g)

The aim of this section is to prove Theorem @

We study a sequence of metrics (gm)m = (U 729)m (um > 0, u, € C°°(M)) which minimizes the
infimum in the definition of ua(M, g) i.e. a sequence of metrics such that

2
lim Ay (gm ) VOL(M, gm) ™ = p2(M, g).

Without loss of generality, we may assume that Vol(M, g,,) = 1 i.e. that

/ ul dvy = 1. (33)
M
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In particular, the sequence (uy, ), is bounded in L™ (M) and there exists u € L™ (M), u > 0 such that
Um — u weakly in LV (M). We are going to prove that u # 0 and that the generalized metric u’¥~2g

minimizes ps (M, g). Proposition @ implies the existence of vy, wy, € C°(M), v, > 0 such that

Lgvy, = )\Lmufnyvm (34)
and
Lyw, = )\Qﬁmufnywm. (35)
where A; , = Ai(gm) and such that
/ ulN =22 dv, = / ulN 2?2, dv, = 1 and / uN 20w, dvg = 0 (36)
M M M

With these notations and by (BJ),

m A, = p2(M, g).

Moreover, by the maximum principle, v,, > 0. If Ay ,, = A2, then w,, would be a minimizer of the
functional associated to A; ,,, and by the maximum principle, we would get that w,, > 0. This contradicts
(Bd). Hence, A, < Ag.m for all m. The sequences (vy,)m and (wy, )y, are bounded in H2(M). We can
find v,w € HZ(M), v > 0 such that v, (resp. wy,) tends to v (resp. w) weakly in HZ(M). Together
with the weak convergence of the (wy, )., towards u in LY (M), we get that in the sense of distributions

L= N2y (37)
and

Lyw = pa (M, g) u™ ~w. (38)
where fiy = limy, A < p2(M, g).

From what we know until now, it is not clear whether v and w are linearly independent, and even if they
are, their restrictions to the set M \ «~1(0) might be linearly dependent.

It will take a certain effort to prove the following claim.

Claim 6.1. The functions wTv and ut T w are linearly independent.

Once the claim is proved, we have span(v, w) € Gry(H?(M)), and this implies that
sup  Plu, o+ pw) = pa(M, g).
(A1) #(0,0)

N

Hence, by equations (B7) and ([B8), the generalized metric N ~2g minimizes ps(M, g), i.e. Theorem [.4]

is proved.

The first step in the proof of the claim is an estimate that avoids concentration of w,, and v,.

Step 1. Let x € M and ¢ € 10, %[ We choose a cut-off function n € C* such that 0 < n < 1,
N(Bz(0)) = 1 (where § > 0 is a small number) and n(M \ B.(26)) = 0, |Vn| < 2/5. We define

W = n|wm|*w,,. Then, we have

([ i~ an,) Y aM.9)(1 — a0 (™) ( / » ufx> % ([ 1w~ an,) Yo o)

where Cy is a constant that may depend on § but not on € and where lim._g a. = 0. Moreover, the same
conclusion is true with Vi, = n|v,| v, instead of W,.
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The proof uses classical methods. We will explain the proof for W,,. The proof for V,,, uses exactly the
same arguments.

At first, we differentiate the definition of W and obtain

2
FWal? 2 |V (wmlwm)| 9% = @A90] [ ) ([T wmlwn)|n) + V0l o[22

Y

Y

2 1
¥ (o) [0 = (5[ Fron )P + 2080l 4 19 242

This leads to
12|V (| |Fwm)[* < 2|V Wi [? 4 2|V [w, |72 (40)
Now, we want to derive lower bound for

€ € 2
(V0 [wm[**wm), Vom) = [VWin|* = |V (5]wm]*)|” [wm]? (41)

For the second summand on the right hand side in (ffI]) we have the bound

|V (9w |°) P wm |

2
902w |42 + 290, V) nlwm 2 + 02|V ()| 102,

2
< 2Vl F 207V (o )| 0,
27]252 2

< 2V Plw,, [>T ’V mam‘
< AV s |Vl Fm)

4¢? 4¢?
< (9 V|2 lw,, |22 VW, |2
S @4 ) VP e VWl

Here, we used ([i]) in the last line. Coming back to ({1]), we obtain that
(V1 [wm]*win), Vo) > (1 = @) [VWi [ = C|Vn[? [w,,[*F2.

where a. — 0 when ¢ — 0 and where C' > 0 is a constant independent of . This relations shows that

/ 772|wm|2€meg(wm) dvg > (1 - 045)/
M

cn| VW, |? dv, —C/ | V0|2 |w,, |22 dvg—i—minScal/W,i dvg.
M M

Now, since ¢ < 22 the sequence (wy,)m is bounded in L?+2¢(M) (and hence the sequence (W, )m is
bounded in L?(M)). As a consequence, there exists a constant Cs possibly depending on § but not on e,
and such that

/ 0 Wi |*$ Wi Ly (wy,) dvg > (1 — ozg)/ (cn|VWin|? + Bo(M, g)W2,) dvg — Cs. (42)
M M

Using equation (BY) in the left hand side of () and applying Sobolev inequality (S) to the right hand
side, we get that

2w

(M) [ u%-QWidvgza—aa)m(s")( |Wm|Ndvg) eN
M M

By the Holder inequality, we obtain

</ |Wm|Ndvg> sM(M,g)(las)lul(S")l(/ u£x> </ |Wm|Ndvg> e
M B, (26) M

This ends the proof of the step.

Step 2. If ua(M,g) < p1(S™), then the generalized metric u™ ~2g minimizes us(M, g).
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From (BY), and the fact po(M, g) < p11(S™), we get that for ¢ small enough, there exists a constant K < 1

such that
2 2 2
N " N
(/ |Wm|Ndvg) <K / uly (/ |Wm|Ndvg) + Cs.
M B, (26) M

Since fB (25) U N <1, the sequence [, [Win|" dvg is bounded. This implies that (wm,)m is bounded in

LNTE(B,(5)) and since z is arbitrary in LY *¢(M). Weak convergences w,, — w in HZ(M) implies strong
convergence w,, — w in LV =(M). The Holder inequality yields then strong convergence in L~ (M).
After passing to a subsequence we obtain that (wm)m tends to w strongly in L™ (M). This implies that

(]

we can pass to the limit in (B) and hence that u 5%y and u T w are linearly independent. The claim
follows in this case.

In the following, we assume that uq (M, g) > 0 and that

p2(M,g) < (1 (M, )% 4+ (S")%)™.

We define the set of concentration points

1
Q= xeM‘V5>O, limsup/ u%dvg>— .
m JB,(5) 2

Since f M ul} dvgy = 1, we can assume — after passing to a subsequence — that {} contains at most one
point.

;Im

We now prove that:

Step 3. Let U be an open set such that U C M\ Q. Then, the sequence (Vym)m (and (Wp)m resp.)
converges towards v (and w resp.) strongly in HZ(U).

Without loss of generality, we prove the result only for w. For any € M \ Q we can find § > 0 with

1
lim sup/ u,]X dvg < -
m B, (26) 2

2
n

Using pio(M, g) < (u1 (M, g)% + p1(S™)%)" < 2% u1(S™) we obtain for a small € > 0

pa(M,g)(1 — az) " pa (S™) </ ﬂ) <K <1
B.(26)

for almost all m. Together with inequality @), this proves that [, |[Wi | dv, is bounded. This implies
that (W )m is bounded in LY+¢(B,(8)). As in last step, this proves that up to a subsequence, (wy,)m
tends to w strongly in LN (U). Using equation (BJ) and (BY), we easily obtain that

1im/ |Vwm|2dvg:/ |Vw|?du,.
m o Ju U

Together with the weak convergence of (wp, )m to w, this proves the step.

Now, we set for all m,
S = { N + pwm N2 + 2 =1} and S = { v + pw| A2 + p? =1},

Step 4. There exists a sequence (Wp)m (Wm € Sm) and W € S such that W, tends to W strongly in
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By theorem @, there exists Ay, tm such that A2, + 2, = 1 and such that
23(8") [ a0 =) 4 0 — ) iy
M
< [ T = o) + s, = W) o, (43)

+ / BolM.g) (0 = 0) + (00— )i

Up to a subsequence, there exists A, u such that A2+ u? = 1 and such that lim,, \,,, = A and lim,, i, = p.
We set Wy, = A\nUm + fmWim € Sy and W = v + pw. Then, W, tends to W weakly in HZ(M). A first
remark is that by strong convergence in L?(M)

hm/ )+ e (Wi, — w))? dvg = 0. (44)

Using the weak convergence of W, to w in HZ(M) and the weak convergence of u,, to u in LY (M), it is
easy to compute that

/ N2 (Vi — 0) + i (Wi — w))? dvy = / ul 72w2, dvy — / N=2%2 dvg + o(1) (45)
M M M
and that
/ cn| V(i (Vm — V) + pm (0, — w))|>dv, = N2 </ cn|Vum|? dvg — / cn|Vol? dvg>
M M M

+

u? (/ n|Vwm | dv, —/ cn|Vw|? dvg>
M M

+ 2\u (/ en(Vum, Vwy,) du, —/ en(Vo, V) dvg) +o(1).
M M

Using equations B4), (), (B7) and (Bg), we get that
/ en| V(O (Vm — V) + pm (0, — w))|2dv, = Ny (/ uN 7202, dv, — / N=2y2) dvg)
M M M
+ i pua(M,g) (/ ul w2, dv, —/ ulN 72 2)dvg)
M M
)

+ 2 up2(M,g (/ uN =20, w,, dv, —/ uN 2w dvg) + o(1).
M M

Since 111 < p2(M, g) and since, by weak convergence

liminf/ ulN =22 dv, — / u™N"?v?) dvy > 0,
M M

m

we get that

[ el Omom = )+ i — )P oy < N M) </ U202, du, — / 2,
M M M

+ 2 \up2(M,g) (/ ul 20w, dv, —/ uN 2w dvg) ,
M M

and hence,

/M cn|V A (U = 0) + i (Wi, — w))|? dvg < pa(M, g) (/M ul ~2w?, dv, — /M uN 2w 2dvg> + o(1). (46)
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Together with ({d), (i4) and ([tH), we obtain that

22/”#1@”) (/ Ur]X 2752 2 dv, — / W2 QdUg)
M M

< p2(M, g) (/ Upy 2T, dvg — / u dvg> +o(1).
M M

Since pia(M, g) < (1 (M, g)% + p1(S") %)™ < 27 1 (S™), we get that

(/ ul ~*w?, dv, — / uN_2E2dvg) < Ky (/ ul ~2w?, dv, — / uN 2w 2dvg)+o(1)
M M M M

where Ky < 1. This implies that

w3
—
|

m

1=1lim [ w) w2, dv, 7/ N=27%2 do,, (47)
M M
and hence by ([id).

lim/ cnlV O (Vim — 0) + pin (W, — w))|? dvg = 0.
moJM

The step easily follows.

As a remark, () implies that u"z w # 0.

Now, we set Uy, = —pmVUm + AmWy, and v = —pv + Aw. We prove that

Step 5. There exists x € M such that

lim sup/ u2, (U —0)* dvy =1
B.d

m

for all § > 0.

The sequence (T, )y tends to T weakly in HZ(M). If Q = §, then we know from Step [ that (7,,)m tends
to ¥ strongly in H7(M), which implies [u”~20w = 0. Hence, in the case Q = (), the functions u =y
and u" 7w are linearly independent, and the claim follows.

Hence, without loss of generality let Q = {x} where x is some point of M. We assume that the claim is
false, i.e. Ty and u" T w are linearly dependent. As uTw # 0, there exists b € R with W =

N—2
0:/ N=2g deg+b2/ N=2 degf%/ 25w dv,.
M M M

bu 2 w. Hence,
By strong convergence of (W, )m to W in HZ(M), weak convergence of (Up,)m to ¥ in HZ(M) and weak
convergence of (t,)m to u in LY (M), we have fM N=2%2 dvg = 1 and [, uN "*vwWdvy = 0. We obtain

fM N =272 dvg + b* = 0. As a consequence, u 725 = 0. Let now § > 0. We write that

/ uN 2 (T — 1) dv, = / uN 7252, dv,
By (8) B4 (9)
= 1- / ul =2, dv,
M\Bz(5)
By step E,
lim ulN =32 dv, = / uN "% dv, = 0.
" J M\Ba(5) M\B. (5)

This proves the step.
Step 6. Conclusion.
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Let § > 0 be a small fixed number. In the following, o(1) denotes a sequence of real numbers which tends
to 0, however we do not claim that the convergence is uniform in §. By stepﬁ and the Hélder inequality,

1 = / uN 72 (T, —0)? dvg + 0(1)
B (6)

< </Bm(6)uﬁdvg> (/ B — ] dvg)%-i-o(l).

Applying Sobolev inequality (S), we get that

2

1 < </Bm(6) up, dvg>"’u1(8">‘1 (/M |V (B — D)2 dvg + Bo(M, g) /M(am —7)?2 dvg) +o(1).

By strong convergence of (Ty, — ¥)y, to 0 in L2(M),
1< N dvg | (8™ (/ |V (T — D) + Sy (T —E)deg) +o(1)
B (6) M
Using equations (B4), B3), (B7), (BY) and the fact that iy < pua(M, g), we get that
1 < U dvg w1 (S™)
B ()

= < u dvg) 1 (S™) " e (M, g).
B. (5)

2
n

3

“1pn(M, g) / N 2(5,,, — )% dv,
M

Since p2(M, g) < (u1(M,g)% + p1(S*) %)™, we obtain that

5%
ul dv, > i T
/Bm(5) 7 (M, g) %+ (Sh)

and since fMu dvg =1,

M.ag)2
/ uy dv, < Ml(ﬂ .9) _. (48)
M\B, (5) p (M, g)= + pa(Sm)=

Now, we write that by strong convergence of (W, ), in HZ (M),

as = / u%iQE%ldvg
B4 (9)

l—as; = / u% 2w? m dvg
M\B, (5)

where a5 does not depend of m and tends to 0 when ¢ tends to 0. By Holder inequality,

2 2
1—as < / ufyl dvg </ Tl dvg) .
M\ B, (5) M

Since p1(M, g) is the minimum of Yamabe functional, we get that

1—as < / ul dv, ul(M,g)fl/ (cn|VEm|2 + Sgw2,) dvg.
M\ B, (6) M

As we did for 7, we obtain
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1 —as < /‘ X dv, uwwﬂgr4uxﬂag>/‘uﬁ72wid%
M\B. (8) M
| S ——

By (), in the limit § — 0, this gives

2
p2(M,g) = (1 (M, g)2 +pa(S")2)".
This is false by assumption. Hence, the claim is proved, and Theorem follows.

7. THE INVARIANT (M) FOR k > 3

A natural question is: Can we do the same work for pg(M) with & > 3? This problem is still open
but seems to be hard. Let (M, g) be a compact Riemannian manifold of dimension n > 3. Using the
variational characterization of uy (M), one can check that i, (M) < k= pq (S™). It is natural to conjecture
that one has equality if M is the round sphere i.c. that p,(S™) = k= ui(S™). However, the following
result shows that is false:
Proposition 7.1. Let n € N*. Then, forn > 17

2

osa(87) < (n+2)% (7).

Proof: Let us study S" with its natural embedding into R™**. We have L,(1) = n(n —1). Hence,

A1(S") < n(n —1). Let also z; (i € [1,---,n + 1]) be the canonical coordinates on R"™1. As one can
check,
n(n—1)(n+ 2)
L i) = ———————————Z;
g(®i) n—29 x

and hence A, 42(S") < % This shows that

n(n —1)(n+ 2)w%

n -

nr2(S") <
H+2( )_ n_2

As one can check, forn > 7
—1 2) 2 2
%wﬁ <(n+2)7in(n—Dwi = (n+2)7pi (S").
This ends the proof of Proposition 1]

8. THE CASE OF MANIFOLDS WHOSE YAMABE INVARIANT IS NEGATIVE

We let (M, g) be a compact Riemannian manifold of dimension n > 3. Then, we have:
Proposition 8.1. Let k € N*. Assume that pu (M, g) < 0. Then, ux(M,g) = —oc.

Proof: After a possible change of metric in the conformal class, we can assume that A;(g) < 0. This
implies that we can find some smooth functions vy, - - - , vx satisfying

Lgv; = X\i(g)vi

/ vivjdog =0
M

for all 4,5 € {1,--- ,k}, i # j. Let v. be defined as in the proof of Theorem @ We define u. = v +¢
to obtain a positive function. We set V= {v1,--- , v }. It is easy to check that, uniformly in v € V

for all i € {1,--- ,k} and such that

lim 05721)2(11)9 =0.
eto0 M
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Since \; < 0, it is then easy to see that sup,cy F(ve,v) = —o0. Together with the variational character-
ization of uk(M,g), we get that pk(M,g) = —oc.

This result proves for example that if the Yamabe invariant of (M, g) is negative, then py (M, g) = —oc.
This is the reason why we restricted in this article to the case of non-negative Yamabe invariant. Many of
our results and proofs remain valid in the case ua(M) > 0. However, if the Yamabe invariant of (M, g) is
non-positive, there are other ways to find nodal solutions of Yamabe equation. Indeed, Aubin’s methods
[IA q] can be applied to avoid concentration phenomenom. See for example [DJ0J], [fou9d], [Hol99
for such methods. Here, we present very briefly one new method in this case. We just sketch it since it
is not the purpose of our paper to find solutions of Yamabe equation with Aubin’s type methods.

At first, for any metric § conformal to g, we let A} (§) be the first positive eigenvalue of Yamabe operator.
We then define At = inf A\J (§)Vol(M, §)» where the infimum is taken over the conformal class of g.
Then, proceeding in a way analogous to [[AmmO03d, AmmO04], one shows that

(fM |Lgu|n27$2 dvg)
fM uLgu dvg

where the infimum is taken over the smooth functions u such that

/ uLgudvg > 0.
M

Then, one shows using test functions that Ay < pq(S™). If the inequality is strict, then we can find a
minimizer for the functional above which is a solution of the Yamabe equation. If the Yamabe invariant
is positive, this solution is a Yamabe metric and hence is positive. However, if the Yamabe invariant is
non-positive, this solution has an alternating sign.

n+2

n

0 < AT =inf

A. APPENDIX: PROOF OF LEMMA B.]]
Let (M,g) be a compact Riemannian manifold of dimension n > 3 and let v € HZ(M), v # 0 and
u € LY (M) be two functions which satisfy in the sense of distributions
Lgv = u™ 0. (Eq)

We define vy = sup(v,0). We let q €]1, ~25] be a fixed number and [ > 0 be a large real number which
will tend to +o0o0. We let § = 2¢g — 1. We then define the following functions for z € R:

0 if <0
Gi(z) = P if xel0,(]
19 Yqli ez — (¢ — 1)19) if x>
and
0 it <0
F(z) = x4 it xe][0,{]

gtz — (g—1)19 if x>

It is easy to check that for all x € R,

and
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G’ (z) < BG(z). (51)
Since F; and G| are uniformly lipschitz continuous functions, Fj(vy) and Gj(v4) belong to HZ(M). Now,
let 29 € M be any point of M. We denote by n a C? non-negative function supported in By, (28) (6 > 0
being a small number to be fixed) such that 0 < n < 1 and such that (B, (d)) = {1}. Multiply equation
(Eq) by n*Gy(v4) and integrate over M. Since the supports of vy and G;(v4) coincide, we get:

n [ (Vor VipGilo vy + [ SpperGiten)dv, = [ a¥srGilvs o, (52)
M M M

Let us deal with the first term of the left hand side of (5J). In the following, C' will denote a positive
constant depending possibly on 7, ¢, 3, but not on I. We have

[ Von VG, = [ Guen)(Tor, Tt)du, + [ Gilon (T P,
M M M
— [ oA <2 [ viGiton(Tor Vs, + [ GilotITe, e,

1
> fC’/ v+Gl(v+)dvgf2/ vin(v+)|Vn|2dvg+—/ G (v)n? Vg [2dv,.
M M 2 m

Using (@), (@) and (@), we get

| e, = ¢ [ Byl + g [ EwPve P,
>~ [ (Fen)Pdsy + o [ PR Py
> =0 [ (B + - [ FaPEPdy - 5 [ 190D
> =C [ (R)Pdo+ 5 [ 1VGF0) P, (53)

Using the Sobolev embedding HZ(M) into LY (M), there exists a constant A > 0 depending only on
(M, g) such that

[ IVor© P, = A( [ areayan)” - [ reo,

Together with (53), we obtain

2z

[ o ipGitos, = ¢ [ (Fwan, + 4 ([ ore)a,) (54)

Independently, we choose § > 0 small enough such that

AN 2
/ uNdvg < (cn—) .
Bay (20) 8q

Relation (F() and Hélder inequality then lead to

2z

| oG, < [ R Pu, < e ( /M<nF<v+>>Ndvg) - (55)
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Since, by @),
[ SvsriGito)dvy = ~C [ (Fio.)do,
M M
we get from (FJ), (f4) and (F5) that

i ([ P, e | it pas,

Now, by Sobolew embedding, vy € L™ (M). Since 2¢ < N and since C' does not depend on [, the right
hand side of this inequality is bounded when [ tends to +0o. We obtain that

1imsup/ (nF (vy))Ndv, < +o0.
M

l—+o0

This proves that v, € LIV (B,,(d)). Since xq is arbitrary, we get that vy € LY (M). Doing the same
with sup(—wv,0) instead of vy, we get that v € L9V (M). This proves Lemma B.1.
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