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Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We define the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics conformal to g and of volume 1. We study when it is attained. As an application, we find nodal solutions of the Yamabe equation.

Introduction

Let (M, g) be an n-dimensional compact Riemannian manifold (n ≥ 3). In [START_REF] Yamabe | On a deformation of Riemannian structures on compact manifolds[END_REF] Yamabe attempted to show that there is a metric g conformal to g such that the scalar curvature S g of g is constant. However, Trudinger [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF] realized that Yamabe's proof contained a serious gap. The problem is now solved, but it took a very long time to find the good approach. The problem of finding a metric g with constant scalar curvature in the conformal class [g] is called the Yamabe problem. The first step towards a rigorous solution of this problem was achieved by Trudinger [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF] who was able to repair the gap of Yamabe's article in the case that the scalar curvature of g is non-positive. Eight years later, Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] solved the problem for arbitrary non locally conformally flat manifolds of dimension n ≥ 6. The problem was completely solved another eight years later in an article of Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] in which the proof was reduced to the positive-mass theorem which had previously been proved by Schoen and Yau [START_REF] Schoen | On the proof of the positive mass conjecture in general relativity[END_REF][START_REF] Schoen | Conformally flat manifolds, Kleinian groups and scalar curvature[END_REF]. The reader can refer to [START_REF] Lee | The Yamabe problem[END_REF], [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] or [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF] for more information on this subject. The method to solve 1 bernd.ammann@gmx.net, humbert@iecn.u-nancy.fr 1 the Yamabe problem was the following. Let u ∈ C ∞ (M ), u > 0 be a smooth function and g = u N -2 g where N = 2n n-2 . Then, multiplying u by a constant, the following equation is satisfied: L g (u) = S g|u| N -2 u.

where

L g = c n ∆ g + S g = 4(n -1) n -2 ∆ g + S g
is called the Yamabe operator. As a consequence, solving the Yamabe problem is equivalent to finding a positive smooth solution u of

L g (u) = C 0 |u| N -2 u. (1) 
where C 0 is a constant. In order to obtain solutions of this equation Yamabe defined the quantity

µ(M, g) = inf u =0,u∈C ∞ (M) Y (u)
where

Y (u) = M c n |∇u| 2 + S g u 2 dv g M |u| N dv g 2 N .
Nowadays, µ(M, g) is called the Yamabe invariant, and Y the Yamabe functional. Writing the Euler-Lagrange equation associated to Y , we see that there exists a one to one correspondence between critical points of Y and solutions of equation (1). In particular, if u is a positive smooth function such that Y (u) = µ(M, g), then u is a solution of (1) and g = u N -2 g is the desired metric of constant scalar curvature. The key point of the resolution of the Yamabe problem is the following theorem due to Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF]. In the theorem and in the whole article, S N will always denote the sphere S n with the standard Riemannian structure.

Theorem 1.1. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. If µ(M, g) < µ(S n ), then there exists a positive smooth function u such that Y (u) = µ(M, g).

This strict inequality is used to show that a minimizing sequence does not concentrate in any point.

Aubin [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] and Schoen [START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] proved the following.

Theorem 1.2. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Then µ(M, g) ≤ µ(S n ) = n(n -1)ω

2 n n where ω n stands for the volume of the standard sphere S n . Moreover, we have equality in this inequality if and only if (M, g) is conformally diffeomorphic to the sphere.

These theorems solves the Yamabe problem.

In this paper, we introduce and study an invariant that we will call the second Yamabe invariant. It is well known that the operator L g has discrete spectrum Spec(L g ) = {λ 1 (g), λ 2 (g), • • • } where the eigenvalues

λ 1 (g) < λ 2 (g) ≤ λ 3 (g) ≤ • • • ≤ λ k (g) • • • → +∞ appear with their multiplicities. The variational characterization of λ 1 (g) is given by λ 1 (g) = inf u =0,u∈C ∞ (M) M c n |∇u| 2 + S g u 2 dv g M |u| 2 dv g . Let [g] be the conformal class of g. Assume now that the Yamabe invariant µ(M, g) ≥ 0. It is easy to check that µ(M, g) = inf g∈[g] λ 1 (g)Vol(M, g) 2 n ,
where [g] is the conformal class of g. We then enlarge this definition.

Definition 1.3. Let k ∈ N * . Then, the k th Yamabe invariant is defined by

µ k (M, g) = inf g∈[g] λ k (g)Vol(M, g) 2 n .
With these notations, µ 1 (M, g) equals to Yamabe invariant µ(M, g) in the case µ(M, g) ≥ 0, and

µ 1 (M, g) = -∞ in the case µ(M, g) < 0.
The goal of this article is to study the second Yamabe invariant µ 2 (M, g) for manifolds whose Yamabe invariant in the case µ(M, g) ≥ 0. As explained in Section 8, the most interesting case is when µ(M, g) > 0.

In particular, we discuss whether µ 2 (M, g) is attained. This question is discussed in Subsection 5.1. In particular, Proposition 5.2 asserts that contrary to the standard Yamabe invariant, µ 2 (M, g) cannot be attained by a metric if M is connected. In other words, there does not exist g

∈ [g] such that µ 2 (M, g) = λ 2 (g)Vol(M, g) 2 n
. In order to find minimizers, we enlarge the conformal class [g] to what we call the class of generalized metrics conformal to g. A generalized metric is a "metric" of the form g = u N -2 g, where u is no longer necessarily positive and smooth, but u ∈ L N (M ), u ≥ 0, u ≡ 0. The definitions of λ 2 (g) and of Vol(M, g) can be extended to generalized metrics (see section 3). Then, we are able to prove the following result:

Theorem 1.4. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 whose Yamabe invariant is non-negative. Then, µ 2 (M, g) is attained by a generalized metric in the following cases:

• µ 1 (M, g) > 0 and µ 2 (M, g) < µ 1 (M, g) n 2 + µ 1 (S n )) n 2 2 n ; • µ 1 (M, g) = 0 and µ 2 (M, g) < µ 1 (S n ) where µ 1 (S n ) = n(n -1)ω 2 n
n is the Yamabe invariant of the standard sphere.

The result we obtain in the case µ 1 (M, g) = 0 is not surprising. Indeed, when µ 2 (M, g) < µ 1 (S n ), Aubin's methods [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] can be adapted here and allow to avoid concentration of minimizing sequences. However, when µ 1 (M, g) > 0 and µ 2 (M, g) < µ 1 (M, g)

n 2 + µ 1 (S n )) n 2 2
n , the result is much more difficult to obtain (see Subsection 6). A second result is to find explicit examples for which the assumptions of Theorem 1.4 are satisfied. The method consists in finding an appropriate couple of test functions.

Theorem 1.5. The assumptions of Theorem 1.4 are satisfied in the following cases:

• µ 1 (M, g) > 0, (M, g) is not locally conformally flat and n ≥ 11;

• µ 1 (M, g) = 0, (M, g) is not locally conformally flat and n ≥ 9.

One of our motivations is to find solutions of the Yamabe equation (1) with alternating sign, i.e. positive and negative values. If M is connected, alternating sign implies that the zero set u -1 (0) of u is not empty. In the following we will use the standard definition to call the zero set u -1 (0) of a function u the nodal set of u. A solution with a non-empty nodal set is usually called a nodal solution. If M is connected, then the maximum principle implies that a solution of the Yamabe equation is nodal if and only if it has alternating sign. They are called nodal solutions of the Yamabe equation. The articles [START_REF] Hebey | Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev growth[END_REF], [START_REF] Djadli | Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds[END_REF], [START_REF] Jourdain | Solutions nodales pour des équations du type courbure scalaire sur la sphère[END_REF], [START_REF] Holcman | Solutions nodales sur les variétés riemanniennes[END_REF] prove existence of nodal solutions under symmetry assumptions or under some assumptions which allow to use Aubin's methods, as in Theorem 1.4 when µ 1 (M, g) = 0 and µ 2 (M, g) < µ 1 (S n ). If µ(M, g) ≤ 0, another method is given in Section 8. The method we use here is completely different and we obtain solutions on a large class of manifolds. In particular, to our knowledge, there is no work which leads to the existence of such solutions if the Yamabe invariant is positive and if (M, g) is not conformally equivalent to the round sphere. The result we obtain is the following: Theorem 1.6. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Assume that µ 2 (M, g) is attained by a generalized metric u N -2 g where u ∈ L N (M ), u ≥ 0 and u ≡ 0. Let Ω be the nodal set of u. Then, there exists a nodal solution w

∈ C ∞ (M \ Ω) ∩ C 3,α (M ) ( α ≤ N -2) of equation (1) such that |w| = u.
A corollary of Theorems 1.4, 1.5 and 1.6 is then Corollary 1.7. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 whose Yamabe invariant is non-negative. We assume that one of the following assumptions is true:

• µ 1 (M, g) > 0, (M, g) is not locally conformally flat and n ≥ 11;

• µ 1 (M, g) = 0, (M, g) is not locally conformally flat and n ≥ 9.

Then, there exists a nodal solution of Yamabe equation (1).
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2. Variational characterization of µ 2 (M, g) 2.1. Notation. In the whole article we will use the following notations

L N + (M ) := u ∈ L N (M ) | u ≥ 0, u ≡ 0 .
2.2. Grassmannians and the min-max principle. Let Gr k (C ∞ (M )) be the k-dimensional Grassmannian in C ∞ (M ), i.e. the set of all k-dimensional subspaces of C ∞ (M ). The Grassmannian is an important ingredient in the min-max characterization of λ k (g)

λ k (L g) := inf V ∈Gr k (C ∞ (M)) sup v∈V \{0} (L g v)v dv g
M v 2 dv g . We will also need a slightly modified Grassmannian. For any u ∈ L N + (M ) we define Gr u k (C ∞ ) to be the set of all k-dimensional subspaces of C ∞ (M ), such that the restriction operator to M \ u -1 (0) is injective. More explicitly, we have span(v 1 , . . . , v k ) ∈ Gr u k (C ∞ (M )) if and only if v 1 | M\u -1 (0) , . . . , v k | M\u -1 (0) are linearly independent. Sometimes it will be convenient to use the equivalent statement that the functions u

N -2 2 v 1 , . . . , u N -2 2 v k are linearly independent.
Similarly, by replacing C ∞ (M ) by H 2 1 (M ) we obtain the definitions of Gr k (H 2 1 (M )) and Gr u k (H 2 1 (M )).

The functionals. For all

u ∈ L N + (M ), v ∈ H 2 1 (M ) such that u N -2 2 v ≡ 0, we set F (u, v) = M c n |∇v| 2 + S g v 2 dv g M v 2 u N -2 dv g M u N dv g 2 n .
2.4. Variational characterization of µ 2 (M, g). The following characterization will be of central importance for our article.

Proposition 2.1. We have

µ k (M, g) = inf u∈L N + (M) V ∈Gr u k (H 2 1 (M)) sup v∈V \{0} F (u, v) (2) 
Proof. Let u be a smooth positive function on M . For all smooth functions f , f ≡ 0, we set g = u N -2 g (N = 2n n-2 ) and

F ′ (u, f ) = M f L gf dv g M f 2 dv g .
The operator L g is conformally invariant (see [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF]) in the following sense:

u N -1 L g(u -1 f ) = L g (f ) (3) 
Together with the fact that

dv g = u N dv g , (4) 
we get that

F ′ (u, f ) = M (uf )L g (uf ) dv g M (uf ) 2 u N -2 dv g .
Using the min-max principle, we can write that

λ k (g) = inf V ∈Gr u k (H 2 1 (M)) sup f ∈V \{0} F ′ (u, f )
Now, replacing uf by v, we obtain that

λ k (g) = inf V ∈Gr k (H 2 1 (M)) sup v∈V \{0} M vL g v dv g M v 2 u N -2 dv g . ( 5 
)
Using the definition of µ 2 and Vol g (M ) = M u N dv g , we derive

µ k (M, g) = inf u∈L N + (M) V ∈Gr u k (C ∞ (M)) sup v∈V \{0} F (u, v)
The result follows immediately.

3. Generalized metrics and the Euler-Lagrange equation 3.1. A regularity result. We will need the following result.

Lemma 3.1. Let u ∈ L N (M ) and v ∈ H 2 1 (M ). We assume that L g v = u N -2 v
holds in the sense of distributions. Then, v ∈ L N +ε (M ) for some ε > 0.

This result is well known for the standard Yamabe equation. Proofs for the standard Yamabe equation can be found in [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF] and [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF], and the modifications for proving Lemma 3.1 are obvious. Unfortunately, [START_REF] Trudinger | Remarks concerning the conformal deformation of Riemannian structures on compact manifolds[END_REF] contains some typos, and the book [START_REF] Hebey | Introduction à l'analyse non-linéaire sur les variétés[END_REF] is difficult to obtain. This is why we included a proof in the appendix for the convenience of the reader.

3.2.

The k-th eigenvalue of the Yamabe operator for a generalized metric. On a given Riemannian manifold (M, g) we say that g = u N -2 g, u ∈ L N + (M ), is a generalized metric conformal to g. For a generalized metric g, we can define

λ k (g) = inf V ∈Gr u k (H 2 1 (M)) sup v∈V \{0} M vL g v dv g M v 2 u N -2 dv g . ( 6 
)
Proposition 3.2. For any u ∈ L N + , g = u N -2 there exist two functions v, w belonging to H 2 1 (M ) with v ≥ 0 and such that in the sense of distributions.

L g v = λ 1 (g)u N -2 v (7)
and

L g w = λ 2 (g)u N -2 w. (8) 
Moreover, we can normalize v, w by

M u N -2 v 2 dv g = M u N -2 w 2 dv g = 1 and M u N -2 vw dv g = 0 (9)
For k = 2 the infimum in formula (5) over all subspaces V ∈ Gr u 2 (H 2 1 (M )) is attained by V = span(v, w) and the supremum over the functions in V \ {0} is attained by w. The reader should pay attention to the fact that the space V is in general non unique. As one can check, if w changes the sign then the supremum over all v ∈ V = span(v, w) \ {0} and the supremum over all v ∈ V 1 = span(w, |w|) \ {0} coincide.

From section (2), we get

µ 2 (M, g) = inf g∈[g] λ 2 (g).
Hence, µ 2 (M, g) can be attained by a regular metric, or by a generalized metric or it can be not attained at all. These questions are discussed in Section 5. Let us now prove Proposition 3.2.

Proof of Proposition 3.2: Let (v m ) m be a minimizing sequence for λ 1 (g) i.e. a sequence

v m ∈ H 2 1 (M ) such that lim m→∞ M c n |∇v m | 2 + S g v 2 m dv g M u N -2 v 2 m dv g = λ 1 (g).
It is well known that (|v m |) m is also a minimizing sequence. Hence, we can assume that

v m ≥ 0. If we normalize v m by M u N -2 v 2 m dv g = 1, then (v m ) m is bounded in H 2 1 (M )
and after restriction to a subsequence we may assume that there exists

v ∈ H 2 1 (M ), v ≥ 0 such that v m → v weakly in H 2 1 (M ), strongly in L 2 (M ) and almost everywhere. If u is smooth, then M u N -2 v 2 dv g = lim m M u N -2 v 2 m dv g = 1 (10)
and by standard arguments, v is a non-negative minimizer of the functional associated to λ 1 (g). We must show that (10) still holds if u ∈ L N + (M ). Let A > 0 be a large real number and set u A = inf(u, A). Then, using the Hölder inequality, we write

M u N -2 v 2 m -v 2 dv g ≤ M u N -2 A |v 2 m -v 2 | dv g + M (u N -2 -u N -2 A )(|v m | + |v|) 2 dv g ≤ A M |v 2 m -v 2 | dv g + M (u N -2 -u N -2 A ) N N -2 dv g N -2 N M (|v m | + |v|) N dv g 2 N
.

By Lebesgue's theorem we see that

lim A→+∞ M (u N -2 -u N -2 A ) N N -2 dv g = 0. Since (v m ) m is bounded in H 2 1 (M ), it is bounded in L N (M ) and hence there exists C > 0 such that M (|v m | + |v|) N dv g ≤ C. By strong convergence in L 2 (M ), lim m M |v 2 m -v 2 | dv g = 0.
Equation (10) easily follows and v is a non-negative minimizer of the functional associated to λ 1 (g).

Writing the Euler-Lagrange equation of v, we find that v satisfies equation (7). Now, we define

λ ′ 2 (g) = inf M c n |∇w| 2 + S g w 2 dv g M u N -2 |w| 2 dv g
where the infimum is taken over smooth functions w such that u N -2 2 w ≡ 0 and such that M u N -2 vw dv g = 0. With the same method, we find a minimizer w of this problem that satisfies (8) with λ ′ 2 (g) instead of λ 2 (g). However, it is not difficult to see that λ ′ 2 (g) = λ 2 (g) and Proposition 3.2 easily follows.

Euler-Lagrange equation of a minimizer of λ

2 Vol 2/n . Lemma 3.3. Let u ∈ L N + (M ) with u N = 1. Suppose that w 1 , w 2 ∈ H 2 1 (M ) \ {0}, w 1 , w 2 ≥ 0 satisfy (c n |∇w 1 | 2 + Scal g w 2 1 ) dv g ≤ µ 2 (M, g) u N -2 w 2 1 (11) (c n |∇w 2 | 2 + Scal g w 2 2 ) dv g ≤ µ 2 (M, g) u N -2 w 2 2 (12)
and suppose that (M \ w -1 1 (0)) ∩ (M \ w -1 2 (0)) has measure zero. Then u is a linear combination of w 1 and w 2 and we have equality in (11) and (12).

Proof. We let ū = aw 1 + bw 2 where a, b > 0 are chosen such that

a N -2 b N -2 M u N -2 w 2 1 dv g M u N -2 w 2 2 dv g = M w N 1 dv g M w N 2 dv g (13) 
and

M ūN dv g = a N M w N 1 + b N w N 2 = 1. ( 14 
)
Because of the variational characterization of µ 2 we have

µ 2 (M, g) ≤ sup (λ,µ)∈R 2 \{(0,0)} F (ū, λw 1 + µw 2 ) (15)
By ( 11),( 12) and ( 14), and since (M \ w -1

1 (0)) ∩ (M \ w -1 2 (0)) has measure zero F (ū, λw 1 + µw 2 ) = λ 2 M c n |∇w 1 | 2 + S g w 2 1 dv g + µ 2 M c n |∇w 2 | 2 + S g w 2 2 dv g λ 2 M |ū| N -2 w 2 1 dv g + µ 2 M |ū| N -2 w 2 2 dv g ≤ µ 2 (M, g) λ 2 M u N -2 w 2 1 dv g + µ 2 M u N -2 w 2 2 dv g λ 2 a N -2 M w N 1 dv g + µ 2 b N -2 M w N 2 dv g . ( 16 
)
As one can check, relation (13) implies that this expression does not depend on λ, µ. Hence, setting λ = a and µ = b, the denominator is 1, and we get sup

(λ,µ)∈R 2 \{(0,0)} F (ū, λw 1 + µw 2 ) ≤ µ 2 (M, g) M u N -2 (a 2 w 2 1 + b 2 w 2 2 ) dv g = µ 2 (M, g) M u N -2 ū2 dv g .
By Hölder inequality, sup

(λ,µ)∈R 2 \{(0,0)} F (ū, λw 1 + µw 2 ) ≤ µ 2 (M, g) M u N dv g N -2 N M ūN dv g 2 N = µ 2 (M, g). (17) 
Inequality (15) implies that we have both equality in the Hölder inequality of (17) and in (16). The equality in the Hölder inequality implies that there exists a constant c > 0 such that u = cū almost everywhere. Moreover, since u N = ūN = 1, we have u = ū = aw 1 + bw 2 . The equality in (16) implies inequality in (11) and (12).

Theorem 3.4 (Euler-Lagrange equation). Assume that µ 2 (M, g) = 0 and that µ 2 (M, g) is attained by a generalized metric g = u N -2 g with u ∈ L N + (M ). Let v, w be as in Proposition 3.2. Then, u = |w|. In particular,

L g w = µ 2 (M, g)|w| N -2 w (18)
Moreover, w has alternating sign and w ∈ C 3,α (M ) (α ≤ N -2).

Remark 3.5. Assume that µ 2 (M, g) is equal to 0 and is attained by a generalized metric g ′ , then, using the conformal invariance of the Yamabe operator, it is easy to check that for all generalized metrics g conformal to g ′ , we have λ 2 (g) = 0. Consequently, each metric conformal to g is a minimizer for µ 2 (M, g) and Theorem 3.4 is always false in this case. However, we will still get a nodal solution of (1) if µ 2 (M, g) = 0. Indeed, by Theorem 1.4 and the remark above, λ 2 (g) = 0. Let w be an eigenfunction associated to λ 2 (g). We have L g w = 0. Then, we have a solution of (18).

Remark 3.6. Assume that µ 2 (M, g) = 0 and that µ 2 (M, g) is attained by a generalized metric. Let w be the solution of equation ( 18) given by Theorem 3.4. We let Ω + = {x ∈ M s.t. w(x) > 0} and Ω -= {x ∈ M s.t. w(x) -0}. Then, a immediate consequence of Lemma 3.3 is that Ω + and Ω -have exactly one connex component.

Proof. Without loss of generality, we can assume that M u N dv g = 1. By assumption we have λ 2 (g) = µ 2 (M, g). Let v, w ∈ H 2 1 (M ) be some functions satisfying equations ( 7), (8) and relation (9).

Step 1. We have λ 1 (g) < λ 2 (g).

We assume that λ 1 (g) = λ 2 (g). Then, after possibly replacing w by a linear combination of v and w, we can assume that the function u N -2 2 w changes the sign. We apply Lemma 3.3 for w 1 := sup(w, 0) and w 2 := sup(-w, 0). We obtain the existence of a, b > 0 with u = aw 1 + bw 2 . Now, by Lemma 3.1, w ∈ L N +ε (M ). By a standard bootstrap argument, equation (8) shows that w ∈ C 2,α (M ) for all α ∈]0, 1[. It follows that u ∈ C 0,α (M ) for all α ∈]0, 1[. Now, since λ 1 (g) = λ 2 (g) and by definition of λ 1 (g), w is a minimizer of the functional w → F (u, w) among the functions belonging to H 2 1 (M ) and such that u

N -2 2 w ≡ 0. Since F (u, w) = F (u, |w|),
we see that |w| is a minimizer for the functional associated to λ 1 (g) and hence, writing the Euler-Lagrange equation of the problem, w satisfies the same equation as w. As a consequence, |w| is C 2 (M ). By the maximum principle, we get |w| > 0 everywhere. This is false. Hence, the step is proved.

Step 2. The function w changes the sign.

Assume that w does not change the sign, i.e. after possibly replacing w by -w, we have w ≥ 0. Using (9) we see that (M \ v -1 (0)) ∩ (M \ w -1 (0)) has measure zero. Setting w 1 := v and w 2 := w we have (11) and (12). While we have equality in (12), Step 1 implies that inequality (11) is strict. However using Lemma 3.3 we can derive equality in (11). Hence we obtain a contradiction, and the step is proved.

Step 3. There exists a, b > 0 such that u = a sup(w, 0) + b sup(-w, 0). Moreover, w ∈ C 2,α (M ) and u ∈ C 0,α (M ) for all α ∈]0, 1[. As in the proof of Step 1 we apply Lemma 3.3 for w 1 := sup(w, 0) and w 2 := sup(-w, 0). We obtain the existence of a, b > 0 such that u = aw 1 + bw 2 . As in Step 1 we get that w ∈ C 2,α (M ) and u ∈ C 0,α (M ) for all α ∈]0, 1[. This proves the present step.

Step 4. Conclusion.

Let h ∈ C ∞ (M ) whose support is contained in M \ {u -1 (0)}. For t close to 0, set u t = |u + th|. Since u > 0 on the support of h and since u is continuous (see last step), we have for t close to 0, u t = u + th. As span(v, w) ∈ Gr u 2 (H 2 1 (M )) we obtain using (2) for all t µ 2 (M, g) ≤ sup

(λ,µ)∈R 2 \{(0,0)} F (u t , λv + µw).

Equations ( 7), (8), and relation (9) yield

F (u t , λv + µw) = λ 2 λ 1 (g) M u N -2 v 2 dv g + µ 2 λ 2 (g) M u N -2 w 2 dv g λ 2 M u N -2 t v 2 dv g + 2λµ M u N -2 t vw dv g + µ 2 M u N -2 t w 2 dv g M u N t dv g 2 n = λ 2 λ 1 (g) + µ 2 λ 2 (g) λ 2 a t + λµb t + µ 2 c t M |u t | N dv g 2 n
.

where

a t = M u N -2 t v 2 dv g , b t = 2 u N -2 t vw dv g and c t = M u N -2 t w 2 dv g .
The functions a t , b t and c t are smooth for t close to 0, furthermore a 0 = c 0 = 1 and b 0 = 0. The function f (t, α) := F (u t , sin(α)v + cos(α)w) is smooth for small t. Using λ 1 (g) < λ 2 (g) one calculates

∂ ∂α f (0, α) = 0 ⇔ α ∈ π 2 Z ∂ 2 ∂α 2 f (0, α) < 0 for α ∈ πZ ∂ 2 ∂α 2 f (0, α) > 0 for α ∈ πZ + π 2
Applying the implicit function theorem to ∂f ∂α at the point (0, 0), we see that there is a smooth function t → α(t), defined on a neighborhood of 0 with α(0) = 0 and

f (t, α(t)) = sup α∈R f (t, α) = sup (λ,µ)∈R 2 \{(0,0)} F (u t , λv + µw). As a consequence d dt | t=0 sin 2 α(t) = d dt | t=0 cos 2 α(t) = d dt | t=0 (sin 2 α(t)a t ) = d dt | t=0 (sin α(t) cos α(t)b t ) = 0.
Hence, d dt | t=0 f (t, α(t)) exists and we have

d dt | t=0 f (t, α(t)) = λ 2 (M, g) - d dt | t=0 c t + d dt | t=0 M |u t | N dv g 2 n = λ 2 (M, g)(N -2) - M u N -3 hw 2 dv g + M u N -1 h dv g .
By definition of µ 2 (M, g), f admits a minimum in t = 0. As λ 2 (M, g) = µ 2 (M, g) = 0 we obtain

M u N -3 hw 2 dv g = M u N -1 h dv g .
Since h is arbitrary (we just have to ensure that its support is contained in M \ {u -1 (0)}), we get that u N -3 w 2 = u N -1 on M \ {u -1 (0)}, hence u = |w| on M \ {u -1 (0)}. Together with Step 3, we get u = |w| everywhere. This proves theorem 3.4.

4.

A sharp Sobolev inequality related to µ 2 (M, g) 4.1. Statement of the results. For any compact Riemannian manifold (M, g) of dimension n ≥ 3, Hebey and Vaugon have shown in ( [START_REF] Hebey | Meilleures constantes dans le théorème d'inclusion de Sobolev[END_REF]) that there exists B 0 (M, g) > 0 such that

µ 1 (S n ) = n(n -1) ω 2 n n = inf u∈H 2 1 (M)\{0} M c n |∇u| 2 + B 0 M u 2 dv g M u N dv g 2 n (S)
where ω n stands for the volume of the standard n-dimensional sphere S n and where µ 1 (S n ) is the Yamabe invariant of S n .

This inequality is strongly related to the resolution of the Yamabe problem. It allows to avoid concentration for the minimizing sequence of µ 1 (M, g). For the minimization of µ 2 (M, g), this inequality is not sufficient and another one must be constructed. The following result is adapted to the problem of minimizing µ 2 (M, g).

Theorem 4.1. On a compact connected Riemannian manifold (M, g) of dimension n ≥ 3 we have

2 2 n µ 1 (S n ) = inf u∈L N + (M) V ∈Gr u k (H 2 1 (M)) sup v∈V \{0} M c n |∇v| 2 dv g + B 0 (M, g) M v 2 dv g M u N dv g 2 N M u N -2 v 2 dv g (S 1 )
where B 0 (M, g) is given by inequality (S).

We present now two corollaries of Theorem 4.1.

Corollary 4.2. For the standard n-dimensional sphere we have

µ 2 (S n ) = 2 2 n µ 1 (S n ). Corollary 4.3. For all u ∈ C ∞ c (R n ) and V ∈ Gr u 2 (C ∞ c (R n )) we have 2 2/n µ 1 (S n ) ≤ sup v∈V \{0} R n c n |∇v| 2 dv g R n |u| N dv g 2 N R n |u| N -2 v 2 dv g 4.2. Proof of theorem 4.1. The functional G(u, v) := M c n |∇v| 2 dv g + B 0 (M, g) M v 2 dv g M u N dv g 2 N M u N -2 v 2 dv g is continuous on L N + (M ) × (H 2 1 (M ) \ {0}). As a consequence I(u, V ) := sup v∈V \{0} G(u, v) depends continuously on u ∈ L N + (M ) and V ∈ Gr u 2 (H 2 1 (M ))
. Thus, in order to show the theorem it is sufficient to show that I(u, V ) ≥ 2 2/n µ 1 (S n ) for all smooth u > 0 and V ∈ Gr 2 (C ∞ (M )). Without loss of generality, we can assume

M u N dv g = 1. ( 19 
)
The operator

v → P (v) := c n u 2-N 2 ∆(u 2-N 2 v) + B 0 (M, g)u 2-N
v is an elliptic operator on M , and P is self-adjoint with respect to the L 2 -scalar product. Hence, P has discrete spectrum λ 1 ≤ λ 2 ≤ . . . and the corresponding eigenfunctions ϕ 1 , ϕ 2 , . . . are smooth. Setting

v i := u 2-N 2 ϕ i we obtain (c n ∆ + B 0 ) (v i ) = λ i u N -2 v i u N -2 v i v j dv g = 0 if λ i = λ j .
The maximum principle implies that an eigenfunction to the smallest eigenvalue λ 1 has no zeroes. Hence λ 1 < λ 2 , and we can assume v 1 > 0.

We define w + := a + sup(0, v 2 ) and w -:= a -sup(0, -v 2 ), where we choose a + , a -> 0 such that

M u N -2 w 2 -dv g = M u N -2 w 2 + dv g = 1.
We let Ω -= {w < 0} and Ω + = {w ≥ 0}. By Hölder inequality,

2 = M u N -2 w 2 -dv g + M u N -2 w 2 + dv g ≤ Ω-u N dv g N -2 N M w N -dv g 2 N + Ω+ u N dv g N -2 N M w N + dv g 2 N .
Using the sharp Sobolev inequality (S), we get that

2µ 1 (S n ) ≤ Ω- u N dv g N -2 N M w -u N -2 2 P u N -2 2 w -dv g (20) + Ω+ u N dv g N -2 N M w + u N -2 2 P u N -2 2 w + dv g ( 21 
)
Question 1 is solved by the following result.

Proposition 5.2. If M is connected, then µ 2 (M, g) cannot be attained by a metric.

Indeed, otherwise by Theorem 3.4, we would have that u = |w| and hence u cannot be positive. Theorem 1.4 and the following result answer Question 2.

Proposition 5.3. The invariant µ 2 (S n ) is not attained by a generalized metric.

This proposition immediately follows from Proposition 5.6.

5.2. Some bounds of µ 2 (M, g). At first, we give an upper bound for µ 2 (M, g).

Theorem 5.4. Let (M, g) be an n-dimensional compact Riemannian manifold with µ 1 (M, g) ≥ 00. Then,

µ 2 (M, g) ≤ (µ 1 (M, g) n 2 + µ 1 (S n ) n 2 ) 2 n . ( 22 
)
This inequality is strict in the following cases:

• µ 1 (M, g) > 0, (M, g) is not locally conformally flat and n ≥ 11;

• µ 1 (M, g) = 0, (M, g) is not locally conformally flat and n ≥ 9.

From the solution of the Yamabe problem by Aubin and Schoen [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF][START_REF] Schoen | Conformal deformation of a Riemannian metric to constant scalar curvature[END_REF] we know that if (M, g) is not conformally equivalent to S n , then µ 1 (M, g) < µ 1 (S N ). Hence, (22) implies the following corollary.

Corollary 5.5. Let (M, g) be an n-dimensional compact connected Riemannian manifold whose Yamabe invariant is non-negative. Then µ 2 (M, g) ≤ µ 2 (S n ) with inequality if and only if (M, g) is conformally diffeomorphic to the sphere S n .

These inequalities are very important, because they can be used to avoid concentration of minimizing sequences for µ 2 , in a way which is similar to the resolution of the Yamabe problem.

The following proposition gives a lower bound for µ 2 .

Proposition 5.6. Let (M, g) be a n-dimensional compact Riemannian manifold whose Yamabe invariant is non-negative. Then,

µ 2 (M, g) ≥ 2 2 n µ 1 (M, g). (23) 
Moreover, if M is connected and if µ 2 (M, g) is attained by a generalized metric, then this inequality is strict.

When µ 1 (M, g) = 0, inequality (23) is trivial. If µ 1 (M, g) > 0, by a possible chande of metric in the conformal class, we can assume that the scalar curvature is positive. The proof of inequality ( 23) is exactly the same as the one of Theorem 4.1. We just have to replace B 0 (M, g) by S g . Moreover, if M were connected and if µ 2 (M, g) were attained by a generalized metric, then inequality (20) would be an equality and we would have that w + or w -is a function for which equality in the Sobolev inequality (S) is attained. By the maximum principle, we would get that w + or w -is positive on M which is impossible.

5.2.1. Proof of theorem 5.4.

Lemma 5.7. For any α > 2, there is a C > 0 such that

|a + b| α ≤ a α + b α + C(a α-1 b + ab α-1 )
for all a, b > 0.

Proof of Lemma 5.7. Without loss of generality, we can assume that a = 1. Then we set for x > 0,

f (x) = |1 + x| α -(1 + x α ) x α-1 + x . One checks that lim x→0 f (x) = lim x→+∞ f (x) = α. Since f is continuous, f is bounded by a constant C on R + .
Clearly, this constant is the desired C in inequality of Lemma 5.7.

Proof of Theorem 5.4.

For u ∈ H 2 1 (M ) \ {0} let Y (u) = M c n |∇u| 2 + S g u 2 dv g M |u| N dv g 2 N
be the Yamabe functional of M . The solution of the Yamabe problem provides the existence of a smooth positive minimizer v of Y , and we can assume

M v N dv g = 1. (24) 
Then, v satisfies the Yamabe equation

L g v = µ 1 (M, g)v N -1 . (25) 
Let x 0 ∈ M be fixed and choose a system (x 1 , • • • , x n ) of normal coordinates at x 0 . We note r = dist g (x 0 , .). If δ > 0 is a small fixed number, let η be a smooth cut-off function such that 0 ≤ η ≤ 1, η(B(x 0 , δ)) = {1} and η(M \ B(x 0 , 2δ) = {0}, |∇η| ≤ 2/δ. Then, we can define for all ε > 0

v ε = C ε η(ε + r 2 ) 2-n n .
where

C ε > 0 is such that M v N ε dv g = 1. (26) 
By standard computations (see [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF])

lim ε→0 Y (v ε ) = µ 1 (S n ). (27) 
If (M, g) is not locally conformally flat, if g is well chosen in the conformal class and if x 0 is well chosen in M , it was also proven in [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] that there exists a constant C(M ) > 0 such that

Y (v ε ) = µ 1 (S n ) -C(M )ε 2 + o(ε 2 ) if n > 6 µ 1 (S n ) -C(M )ε 2 | ln(ε)| + o(ε 2 | ln(ε)|) if n = 6. (28) 
Moreover, it follows from [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] that

aε n-2 4 ≤ C ε ≤ bε n-2 4
where a, b > 0 are independent of ε. If p ≥ 1, standard computations made in [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] show that there exist some constants c, C > 0 independent of ε such that

cα p,ε ≤ M v p ε dv g ≤ Cα p,ε (29) 
where

α p,ε = ε 2n-(n-2)p 4 if p > n n-2 ; | ln(ε)|ε n 4 if p = n n-2 ; ε (n-2)p 4 if p < n n-2
Since the large inequality if easier to obtain, we only prove strict inequality. Assume first that µ 1 (M, g) > 0, that (M, g) is not locally conformally flat and that n ≥ 11. We set,

u ε = Y (v ε ) 1 N -2 v ε + µ 1 (M, g) 1 N -2 v.
Let us derive estimates for F u ε , λv ε + µv) . Let (λ, µ) ∈ R 2 \ {(0, 0)}. Using (24), (26) and the equation (25) of v, we get that

F (u ε , λv ε + µv) = λ 2 M v ε L g (v ε ) dv g + µ 2 M vL g (v) dv g + 2λµ M v ε L g v dv g λ 2 M |u ε | N -2 (λv ε + µv) 2 dv g M u N ε dv g 2 n . = λ 2 Y (v ε ) + µ 2 µ 1 (M, g) + 2λµµ 1 (M, g) M |v| N -2 vv ε dv g λ 2 M |u ε | N -2 v 2 ε dv g + µ 2 M |u ε | N -2 v 2 dv g + 2λµ M |u ε | N -2 vv ε dv g M u N ε dv g 2 n . ( 30 
)
Using the definition of u ε

λ 2 M |u ε | N -2 v 2 ε dv g + µ 2 M |u ε | N -2 v 2 dv g + 2λµ M |u ε | N -2 vv ε dv g ≥ λ 2 Y (v ε ) M |v ε | N dv g + µ 2 µ 1 (M, g) M |v| N dv g + 2λµ M |u ε | N -2 vv ε dv g = λ 2 Y (v ε ) + µ 2 µ 1 (M, g) + 2λµ M |u ε | N -2 vv ε dv g . If λµ ≥ 0, we have 2λµ M |u ε | N -2 vv ε dv g ≥ 2λµµ 1 (M, g) M v N -2 v ε dv g .
This implies that

λ 2 Y (v ε ) + µ 2 µ 1 (M, g) + 2λµµ 1 (M, g) M |v| N -2 vv ε dv g λ 2 M |u ε | N -2 v 2 ε dv g + µ 2 M |u ε | N -2 v 2 dv g + 2λµ M |u ε | N -2 vv ε dv g ≤ 1.
If λµ < 0 then, we write that since N -2 ∈]0, 1[,

|u ε | N -2 ≤ Y (v ε )v N -2 ε + µ 1 (M, g)v N -2 .
We obtain that

λ 2 M |u ε | N -2 v 2 ε dv g + µ 2 M |u ε | N -2 v 2 dv g + 2λµ M |u ε | N -2 vv ε dv g ≥ λ 2 Y (v ε ) + µ 2 µ 1 (M, g) -C M v N -1 v ε dv g + M v N -1 ε v dv g .
where C > 0 is as in in the following a positive real number independent of ε. Together with (29), we get that

λ 2 M |u ε | N -2 v 2 ε dv g + µ 2 M |u ε | N -2 v 2 dv g + 2λµ M |u ε | N -2 vv ε dv g ≥ λ 2 Y (v ε ) + µ 2 µ 1 (M, g) + O(ε n-2 4 ).
It follows that sup

(λ,µ)∈R 2 \{(0,0)} λ 2 Y (v ε ) + µ 2 µ 1 (M, g) + 2λµµ 1 (M, g) M |v| N -2 vv ε dv g λ 2 M |u ε | N -2 v 2 ε dv g + µ 2 M |u ε | N -2 v 2 dv g + 2λµ M |u ε | N -2 vv ε dv g ≤ 1 + O(ε n-2 4 ). (31) By Lemma 5.7, M u N ε dv g ≤ (Y (u ε )) n 2 M v N ε dv g + µ 1 (M, g) n 2 M v N dv g +C M v N -1 v ε dv g + M v N -1 ε v dv g .
By (24), ( 26), ( 28) and (29), we obtain

M u N ε dv g 2 n ≤ (µ 1 (M, g) n 2 + µ 1 (S n ) n 2 ) 2 n -Cε 2 + O(ε n-2 4 ) + o(ε 2 ). ( 32 
)
Since n-2 4 > 2, we get from (31) and (32) that for ε small enough µ 2 (M, g) ≤ sup

(λ,µ)∈R 2 \{(0,0)} F (u ε , λv ε + µv) ≤ (µ 1 (M, g) n 2 + µ 1 (S n ) n 2 ) 2 n -Cε 2 + O(ε n-2 4 ) + o(ε 2 ) < (µ 1 (M, g) n 2 + µ 1 (S n ) n 2 ) 2 n .
This proves Theorem 5.4 if µ 1 (M, g) > 0.

Now, we assume that µ 1 (M, g) = 0, that (M, g) is not locally conformally flat and that n ≥ 9. For more simplicity, We set

u ε = v ε instead of u ε = Y (v ε ) n-2
4 v ε as above. We proceed exactly as in the case µ 1 (M, g) > 0. We obtain that for (λ, µ) ∈ R 2 \ {(0, 0)}

F (u ε , λv ε + µv) = λ 2 Y (v ε ) λ 2 M v N ε dv g + µ 2 M |v ε | N -2 v 2 dv g + 2λµ M |v ε | N -1 v dv g M v N ε dv g 2 n = λ 2 Y (v ε ) λ 2 + µ 2 M |v ε | N -2 v 2 dv g + 2λµ M |v ε | N -1 v dv g . Let λ ε , µ ε be such that λ 2 ε + µ 2 ε = 1 and such that F (u ε , λ ε v ε + µ ε v) = sup (λ,µ)∈R 2 \{(0,0)} (u ε , λv ε + µv).
If λ ε = 0, we obtain that F (u ε , λ ε v ε + µ ε v) = 0 and the theorem would be proven. Then we assume that λ ε = 0 and we write that

F (u ε , λ ε v ε + µ ε v) = Y (v ε ) 1 + 2x ε b ε + x 2
ε a ε where x ε = µε λε and where, using (29)

b ε = M v N -1 ε v dv g ∼ ε→0 Cε n-2 4 
and

a ε = M v N -2 ε v 2 dv g ∼ ε→0 Cε.
Maximizing this expression in x ε and using (28), we get that

F (u ε , λ ε v ε + µ ε v) ≤ µ 1 (S n ) -C(M )ε 2 + o(ε 2 ) 1 - b 2 ε aε = µ 1 (S n ) -C(M )ε 2 + o(ε 2 ) 1 -O(ε n-4 2 )
.

Since n ≥ 9, n-4 2 > 2 and we get that for ε small,

F (u ε , λ ε v ε + µ ε v) < µ 1 (S n ).
This proves Theorem 5.4.

6. Existence of a minimum of µ 2 (M, g)

The aim of this section is to prove Theorem 1.4.

We study a sequence of metrics (g

m ) m = (u N -2 m g) m (u m > 0, u m ∈ C ∞ (M )
) which minimizes the infimum in the definition of µ 2 (M, g) i.e. a sequence of metrics such that lim

m λ 2 (g m )Vol(M, g m ) 2 n = µ 2 (M, g).
Without loss of generality, we may assume that Vol(M, g m ) = 1 i.e. that M u N m dv g = 1.

(33)

In particular, the sequence (u m ) m is bounded in L N (M ) and there exists u ∈ L N (M ), u ≥ 0 such that u m ⇀ u weakly in L N (M ). We are going to prove that u = 0 and that the generalized metric u N -2 g minimizes µ 2 (M, g). Proposition 3.2 implies the existence of v m , w m ∈ C ∞ (M ), v m ≥ 0 such that

L g v m = λ 1,m u N -2 m v m (34) 
and

L g w m = λ 2,m u N -2 m w m . (35) 
where λ i,m = λ i (g m ) and such that

M u N -2 m v 2 m dv g = M u N -2 m w 2 m dv g = 1 and M u N -2 m v m w m dv g = 0 (36) 
With these notations and by (33),

lim m λ 2,m = µ 2 (M, g).
Moreover, by the maximum principle, v m > 0. If λ 1,m = λ 2,m then w m would be a minimizer of the functional associated to λ 1,m and by the maximum principle, we would get that w m > 0. This contradicts (36). Hence, λ 1,m < λ 2,m for all m. The sequences (v m ) m and (w m ) m are bounded in H 2 1 (M ). We can find v, w ∈ H 2 1 (M ), v ≥ 0 such that v m (resp. w m ) tends to v (resp. w) weakly in H 2 1 (M ). Together with the weak convergence of the (u m ) m towards u in L N (M ), we get that in the sense of distributions

L g v = µ 1 u N -2 v (37) 
and

L g w = µ 2 (M, g) u N -2 w. (38) 
where

µ 1 = lim m λ 1,m ≤ µ 2 (M, g).
From what we know until now, it is not clear whether v and w are linearly independent, and even if they are, their restrictions to the set M \ u -1 (0) might be linearly dependent.

It will take a certain effort to prove the following claim. Once the claim is proved, we have span(v, w) ∈ Gr u 2 (H 2 1 (M )), and this implies that sup

(λ,µ) =(0,0) F (u, λv + µw) = µ 2 (M, g).
Hence, by equations (37) and (38), the generalized metric u N -2 g minimizes µ 2 (M, g), i.e. Theorem 1.4 is proved.

The first step in the proof of the claim is an estimate that avoids concentration of w m and v m .

Step

1. Let x ∈ M and ε ∈ ]0, N -2 2 [. We choose a cut-off function η ∈ C ∞ such that 0 ≤ η ≤ 1, η(B x (δ)) ≡ 1 (where δ > 0 is a small number) and η(M \ B x (2δ)) ≡ 0, |∇η| ≤ 2/δ. We define W m = η|w m | ε w m . Then, we have M |W m | N dv g 2 N ≤ µ 2 (M, g)(1 -α ε ) -1 µ 1 (S n ) -1 Bx(2δ) u N m 2 n M |W m | N dv g 2 N + C δ . ( 39 
)
where C δ is a constant that may depend on δ but not on ε and where lim ε→0 α ε = 0. Moreover, the same conclusion is true with

V m = η|v m | ε v m instead of W m .
The proof uses classical methods. We will explain the proof for W m . The proof for V m uses exactly the same arguments.

At first, we differentiate the definition of W and obtain

|∇W m | 2 ≥ ∇(|w m | ε w m ) 2 η 2 -2|∇η| |w m | 1+ε ∇(|w m | ε w m ) η + |∇η| 2 |w m | 2+2ε ≥ ∇ |w m | ε w m 2 η 2 - 1 2 ∇(|w m | ε w m )| 2 η 2 + 2|∇η| 2 |w m | 2+2ε + |∇η| 2 |w m | 2+2ε
This leads to

η 2 |∇(|w m | ε w m )| 2 ≤ 2|∇W m | 2 + 2|∇η| 2 |w m | 2+2ε . (40) 
Now, we want to derive lower bound for

(∇(η 2 |w m | 2ε w m ), ∇w m ) = |∇W m | 2 -∇(η|w m | ε ) 2 |w m | 2 (41) 
For the second summand on the right hand side in (41) we have the bound where α ε → 0 when ε → 0 and where C > 0 is a constant independent of ε. This relations shows that From (39), and the fact µ 2 (M, g) < µ 1 (S n ), we get that for ε small enough, there exists a constant K < 1 such that

|∇(η|w m | ε )| 2 |w m | 2 = |∇η| 2 |w m | 2+2ε + 2(∇η, ∇|w m | ε ) η|w m | 2+ε + η 2 ∇(|w m | ε ) 2 w 2 m ≤ 2|∇η| 2 |w m | 2+2ε + 2η 2 ∇(|w m | ε ) 2 w 2 m ≤ 2|∇η| 2 |w m | 2+2ε + 2η 2 ε 2 (1 + ε) 2 ∇(|w m | ε w m ) 2 ≤ (2 + 4ε 2 (1 + ε) 2 )|∇η| 2 |w m | 2+2ε + 4ε 2 (1 + ε) 2 |∇W m | 2 .
M |W m | N dv g 2 N ≤ K Bx(2δ) u N m 2 n M |W m | N dv g 2 N + C δ .
Since Bx(2δ) u N m ≤ 1, the sequence M |W m | N dv g is bounded. This implies that (w m ) m is bounded in L N +ε (B x (δ)) and since x is arbitrary in L N +ε (M ). Weak convergences w m → w in H 2 1 (M ) implies strong convergence w m → w in L N -ε (M ). The Hölder inequality yields then strong convergence in L N (M ). After passing to a subsequence we obtain that (w m ) m tends to w strongly in L N (M ). This implies that we can pass to the limit in (36) and hence that u N -2 2 v and u N -2 2 w are linearly independent. The claim follows in this case.

In the following, we assume that µ 1 (M, g) > 0 and that µ 2 (M, g) < µ 1 (M, g)

n 2 + µ 1 (S n ) n 2 2 n .
We define the set of concentration points

Ω = x ∈ M ∀δ > 0, lim sup m Bx(δ) u N m dv g > 1 2 .
Since M u N m dv g = 1, we can assume -after passing to a subsequence -that Ω contains at most one point.

We now prove that:

Step 3. Let U be an open set such that U ⊂ M \ Ω. Then, the sequence (v m ) m (and (w m ) m resp.) converges towards v (and w resp.) strongly in H 2 1 (U ).

Without loss of generality, we prove the result only for w. For any x ∈ M \ Ω we can find δ > 0 with lim sup m Bx(2δ)

u N m dv g ≤ 1 2 .

Using µ 2 (M, g) < (µ 1 (M, g)

n 2 + µ 1 (S n ) n 2 ) 2 n ≤ 2 2 n µ 1 (S n
) we obtain for a small ε > 0

µ 2 (M, g)(1 -α ε ) -1 µ 1 (S n ) -1 Bx(2δ) u N m 2 n ≤ K < 1
for almost all m. Together with inequality (39), this proves that M |W m | N dv g is bounded. This implies that (w m ) m is bounded in L N +ε (B x (δ)). As in last step, this proves that up to a subsequence, (w m ) m tends to w strongly in L N (U ). Using equation ( 35 Step 4. There exists a sequence (w m ) m (w m ∈ S m ) and w ∈ S such that w m tends to w strongly in H 2 1 (M ).

By theorem 4.1, there exists λ m , µ m such that λ 2 m + µ 2 m = 1 and such that

Claim 6. 1 .

 1 The functions u N -2 2 v and u N -2 2 w are linearly independent.

  Here, we used (40) in the last line. Coming back to (41), we obtain that(∇(η 2 |w m | 2ε w m ), ∇w m ) ≥ (1α ε )|∇W m | 2 -C|∇η| 2 |w m | 2+2ε .

  ) and (38), we easily obtain thatlim m U |∇w m | 2 dv g = U |∇w| 2 dv g .Together with the weak convergence of (w m ) m to w, this proves the step. Now, we set for all m, S m = {λv m + µw m |λ 2 + µ 2 = 1} and S = {λv + µw|λ 2 + µ 2 = 1}.

Since w -resp. w + are some multiples of w on Ω -resp. Ω + , they satisfy the same equation as w. Hence, we get that

. Now, for any real non-negative numbers a, b ≥ 0, the Hölder inequality yields

We apply this inequality with a = Ω-u N dv g

N . Using (19), we obtain

We obtain λ 2 ≥ 2 2 n µ(S n ). Since λ 2 = I(u, span(v 1 , v 2 )), this ends the proof of Theorem 4.1.

4.3. Proof of Corollaries 4.2 and 4.3. It is well known that B 0 (S n ) equals to the scalar curvature of S n , i.e. B 0 (S n ) = n(n -1). Replacing B 0 (S n ) by its value and taking the infimum over u, V , the right hand term of inequality (S 1 ) is exactly the variational characterization of µ 2 (S n ) (see equation ( 2)). This proves that µ 2 (S n ) ≥ 2 2/n µ 1 (S n ). Corollary 4.2 then follows from Theorem 5.4. Since R n is conformal to S n \ {p} (p is any point of S n ), we can use the conformal invariance to prove Corollary 4.3.

5. Some properties of µ 2 (M, g) 5.1. Is µ 2 (M, g) attained? Let (M, g) be an n-dimensional compact Riemannian manifold. The Yamabe problem shows that µ 1 (M, g) is attained by a metric g conformal to g. Some questions arise naturally concerning µ 2 (M, g):

1-Is µ 2 (M, g) attained by a metric?

2-Is it possible that µ 2 (M, g) is attained by a generalized metric?

In this section, we give answers to these questions. The first result we prove is the following:

Proposition 5.1. Let S n ∪S n be the disjoint union of two copies of the sphere equipped with their standard metric. Then, µ 2 (S n ∪S n ) = 2 2/n µ 1 (S n ) and it is attained by the canonical metric.

Proof. One computes

Now, let g be an arbitrary smooth metric on S n ∪S n . We write S n 1 for the first S n and S n 2 for the second

), and obviously we have the same for λ 2 (S n 2 , g). Summing λ 1 (S n i , g) n/2 ≥ µ 1 (S n ) n/2 Vol(S n i , g) over i ∈ {1, 2}, we obtain the remaining inequality max{λ 1 (S n 1 , g), λ 1 (S n 2 , g)} Vol(S n ∪S n , g) 2/n ≥ 2 2/n µ 1 (S n ), and the proposition is proved.

Let δ > 0 be a small fixed number. In the following, o(1) denotes a sequence of real numbers which tends to 0, however we do not claim that the convergence is uniform in δ. By step 5 and the Hölder inequality,

Applying Sobolev inequality (S), we get that

Using equations ( 34), ( 35), (37), (38) and the fact that

By (48), in the limit δ → 0, this gives

This is false by assumption. Hence, the claim is proved, and Theorem 1.4 follows.

7. The invariant µ k (M ) for k ≥ 3

A natural question is: Can we do the same work for µ k (M ) with k ≥ 3? This problem is still open but seems to be hard. Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Using the variational characterization of

It is natural to conjecture that one has equality if M is the round sphere i.e. that µ k (S n ) = k 2 n µ 1 (S n ). However, the following result shows that is false:

Proof: Let us study S n with its natural embedding into R n+1 . We have L g (1) = n(n -1). Hence,

. This shows that

As one can check, for n ≥ 7

This ends the proof of Proposition 7.1.

The case of manifolds whose Yamabe invariant is negative

We let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. Then, we have:

Proof: After a possible change of metric in the conformal class, we can assume that λ k (g) < 0. This implies that we can find some smooth functions

for all i ∈ {1, • • • , k} and such that M v i v j dv g = 0 for all i, j ∈ {1, • • • , k}, i = j. Let v ε be defined as in the proof of Theorem 5.4. We define u ε = v ε + ε to obtain a positive function. We set

Since λ i < 0, it is then easy to see that sup v∈V F (v ε , v) = -∞. Together with the variational characterization of µ k (M, g), we get that µ k (M, g) = -∞. This result proves for example that if the Yamabe invariant of (M, g) is negative, then µ 1 (M, g) = -∞. This is the reason why we restricted in this article to the case of non-negative Yamabe invariant. Many of our results and proofs remain valid in the case µ 2 (M ) ≥ 0. However, if the Yamabe invariant of (M, g) is non-positive, there are other ways to find nodal solutions of Yamabe equation. Indeed, Aubin's methods [START_REF] Aubin | Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire[END_REF] can be applied to avoid concentration phenomenom. See for example [START_REF] Djadli | Nodal solutions for scalar curvature type equations with perturbation terms on compact Riemannian manifolds[END_REF], [START_REF] Jourdain | Solutions nodales pour des équations du type courbure scalaire sur la sphère[END_REF], [START_REF] Holcman | Solutions nodales sur les variétés riemanniennes[END_REF] for such methods. Here, we present very briefly one new method in this case. We just sketch it since it is not the purpose of our paper to find solutions of Yamabe equation with Aubin's type methods.

At first, for any metric g conformal to g, we let λ + 1 (g) be the first positive eigenvalue of Yamabe operator. We then define λ

where the infimum is taken over the conformal class of g. Then, proceeding in a way analogous to [START_REF] Ammann | A variational problem in conformal spin Geometry[END_REF][START_REF] Ammann | The smallest Dirac eigenvalue in a spin-conformal class and cmc-immersions[END_REF], one shows that

M uL g u dv g where the infimum is taken over the smooth functions u such that M uL g u dv g > 0.

Then, one shows using test functions that λ + ≤ µ 1 (S n ). If the inequality is strict, then we can find a minimizer for the functional above which is a solution of the Yamabe equation. If the Yamabe invariant is positive, this solution is a Yamabe metric and hence is positive. However, if the Yamabe invariant is non-positive, this solution has an alternating sign.

A. Appendix: Proof of Lemma 3.1 Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3 and let v ∈ H 2 1 (M ), v ≡ 0 and u ∈ L N + (M ) be two functions which satisfy in the sense of distributions

We define v + = sup(v, 0). We let q ∈]1, n n-2 ] be a fixed number and l > 0 be a large real number which will tend to +∞. We let β = 2q -1. We then define the following functions for x ∈ R:

x ≥ l and

It is easy to check that for all x ∈ R,

and

Since F l and G l are uniformly lipschitz continuous functions, F l (v + ) and G l (v + ) belong to H 2 1 (M ). Now, let x 0 ∈ M be any point of M . We denote by η a C 2 non-negative function supported in B x0 (2δ) (δ > 0 being a small number to be fixed) such that 0 ≤ η ≤ 1 and such that η(B x0 (δ)) = {1}. Multiply equation (Eq) by η 2 G l (v + ) and integrate over M . Since the supports of v + and G l (v + ) coincide, we get:

Let us deal with the first term of the left hand side of (52). In the following, C will denote a positive constant depending possibly on η, q, β, δ but not on l. We have

Using (49), ( 50) and (51), we get

Using the Sobolev embedding H 2 1 (M ) into L N (M ), there exists a constant A > 0 depending only on (M, g) such that

Together with (53), we obtain

Independently, we choose δ > 0 small enough such that

.

Relation (50) and Hölder inequality then lead to (ηF (v + )) N dv g < +∞.

This proves that v + ∈ L qN (B x0 (δ)). Since x 0 is arbitrary, we get that v + ∈ L qN (M ). Doing the same with sup(-v, 0) instead of v + , we get that v ∈ L qN (M ). This proves Lemma 3.1.
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