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Convection-diffusion equations 1

The large time behavior of zero-mass solutions to the Cauchy problem for the convectiondiffusion equation u t -u xx + (|u| q ) x = 0, u(x, 0) = u 0 (x) is studied when q > 1 and the initial datum u 0 belongs to L 1 (R, (1 + |x|) dx) and satisfies R u 0 (x) dx = 0. We provide conditions on the size, and shape of the initial datum u 0 as well as on the exponent q > 1 such that the large time asymptotics of solutions is given either by the derivative of the Gauss-Weierstrass kernel, or by a self-similar solution of the equation, or by hyperbolic N -waves.

Comportement asymptotique des solutions d'équations de convection-diffusion

Résumé. Le comportement asymptotique des solutions de masse nulle du problème de Cauchy pour l'équation de convection-diffusion u t -u xx + (|u| q ) x = 0, u(x, 0) = u 0 (x) est étudié lorsque q > 1 et la donnée initiale u 0 appartient à L 1 (R, (1+|x|) dx) et satisfait R u 0 (x) dx = 0. Nous donnons des conditions sur l'amplitude et la forme de la donnée initiale u 0 et sur l'exposant q > 1 sous lesquelles le comportement asymptotique des solutions est décrit par la dérivée première du noyau de Gauss-Weierstrass, ou par une solution auto-similaire de l'équation, ou par une N -onde hyperbolique.

Version française abrégée

Nous étudions le comportement asymptotique, lorsque t → ∞, des solutions de masse nulle du problème de Cauchy pour l'équation de convection-diffusion (1)- [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. II -Uniqueness[END_REF]. Il est clair que cette équation met en jeu une compétition entre le terme de diffusion u xx et le terme de convection non linéaire (|u| q ) x , et le but de notre étude est de déterminer lequel de ces deux termes devient prépondérant lorsque t → ∞. Lorsque la masse totale M = R u 0 (x) dx = 0, ce problème a été considéré en particulier dans [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF][START_REF] Escobedo | Asymptotic behavior and source-type solutions for a diffusion-convection equation[END_REF][START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF]. Lorsque M = 0, les résultats de [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF][START_REF] Escobedo | Asymptotic behavior and source-type solutions for a diffusion-convection equation[END_REF][START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF] se traduisent seulement par la convergence de u(t) vers zéro dans L 1 (R). Nous présentons, dans cette note, des résultats plus précis pour certaines classes de données initiales. En effet, nous exhibons le premier terme dans le développement asymptotique des solutions de (1)-(2) selon les valeurs du paramètre q > 1 et le signe (et éventuellement la taille) de la primitive de la donnée initiale u 0 .

Nous supposons que u 0 vérifie (3) et désignons par u la solution correspondante de (1)- [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. II -Uniqueness[END_REF]. Signalons dès à présent que notre approche est basée sur l'étude de l'équation de Hamilton-Jacobi diffusive ( 7)- [START_REF] Escobedo | Asymptotic behavior and source-type solutions for a diffusion-convection equation[END_REF] qui est naturellement associée à (1)- [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. II -Uniqueness[END_REF]. En effet, la primitive U de u, définie par (6), est solution de ( 7)- [START_REF] Escobedo | Asymptotic behavior and source-type solutions for a diffusion-convection equation[END_REF].

En premier lieu, nous étudions le cas où la diffusion régit le comportement en temps grands.

Théorème 1 Supposons que l'une des trois conditions suivantes soit vérifiée : (i)

U 0 ≥ 0 et q > 3/2, (ii) U 0 ≤ 0 et q ≥ 2, ou (iii) U 0 ≤ 0, q ∈ (3/2, 2) et u 0 satisfait (9). Alors, u ∈ L q (R × (0, ∞)) et lim t→∞ t (1-1/p)/2+1/2 u(t) -I ∞ G x (t) p = 0 , p ∈ [1, ∞] ,
où I ∞ est un réel non nul défini par [START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF] et G est la solution fondamentale de l'équation de la chaleur.

Considérons ensuite le cas où U 0 ≥ 0 et q ∈ (1, 3/2). L'influence des effets convectifs et diffusifs s'équilibre lorsque t → ∞ et on a le résultat suivant : Théorème 2 Si q ∈ (1, 3/2) et U 0 ≥ 0 vérifie la condition de croissance [START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF], alors

lim t→∞ t (1-1/p)/2+a/2 u(t) -W x (t) p = 0 , p ∈ [1, ∞] ,
où a := (2 -q)/(q -1) et W désigne la solution très singulière de [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF].

Enfin, nous identifions une classe de données initiales u 0 pour lesquelles le comportement en temps grands est régi par la convection.

Théorème 3 Supposons que q ∈ (1, 2) et que U 0 ≤ 0 vérifie [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF]. Alors lim t→∞ t (1-1/p)/q u(t) -N σ,σ (t) p = 0 , p ∈ [1, ∞) , où σ est le réel strictement positif défini par (15) et N σ,σ est la N -onde hyperbolique définie par [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF].

Lorsque q ∈ (1, 4/(1 + √ 3)), le Théorème 3 est vrai sans la condition de taille (14) sur u 0 et nous conjecturons qu'il reste valable sans cette condition pour tout q ∈ (1, 3/2).

On notera que, lorsque q ∈ (3/2, 2) et selon la taille de la donnée initiale, on peut observer aussi bien un comportement asymptotique où la diffusion domine qu'un comportement où la convection est prépondérante. De plus, il existe des solutions pour lesquelles les deux effets se compensent [START_REF] Ben-Artzi | The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF].

Les preuves des résultats présentés ici, ainsi que des extensions en dimension supérieure, font l'objet de l'article [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF].

Introduction

The large time behavior of zero-mass solutions to the Cauchy problem

u t -u xx + (|u| q ) x = 0, x ∈ R , t > 0 , (1) u(x, 0) = u 0 (x), x ∈ R , (2) 
is investigated when q > 1, under the main assumption

u 0 ∈ L 1 (R, (1 + |x|) dx) ∩ W 1,∞ (R) , u 0 ≡ 0 and R u 0 (x) dx = 0 . (3) 
The equation ( 1) includes two competing effects, namely the diffusion u xx and the nonlinear convection (|u| q ) x , and the main issue in the study of the large time asymptotics is to figure out whether one of these effects dominates for large times. For integrable initial data with non-zero mass, i.e.,

u 0 ∈ L 1 (R) and R u 0 (x) dx = M = 0 ,
this question has already been investigated and the outcome may be summarized as follows: if q > 2, the large time dynamics is dominated by the diffusion and u behaves as the fundamental (or source-type) solution M G to the linear heat equation with G(x, t) = (4πt) -n/2 exp(-|x| 2 /(4t)) for (x, t) ∈ R × (0, ∞), see, e.g., [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF]. If q ∈ (1, 2) and either u 0 ≥ 0 (or u 0 ≤ 0) [START_REF] Escobedo | Asymptotic behavior and source-type solutions for a diffusion-convection equation[END_REF] or

inf x∈R x -∞
u 0 (y) dy ≤ 0 (4) [START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF], the convection term is preponderant for large times and there is σ ∈ R such that u behaves as the N -wave solution N σ,σ+M to the nonlinear conservation law z t + (|z| q ) x = 0. Moreover, σ = 0 if u 0 ≥ 0, σ = -M if u 0 ≤ 0 and σ ≥ 0 under the assumption (4). Recall that the N -wave solution N α,β is given explicitly by

N α,β (x, t) =        sign x • |x| qt 1/(q-1) , -q α q -1 (q-1)/q ≤ x t 1/q ≤ q β q -1 1/(q-1) , 0 otherwise , (5) 
for α ≥ 0 and β ≥ 0 (see, e.g., [START_REF] Smoller | Shock waves and reaction-diffusion equations[END_REF]). When q = 2, there is a balance between the diffusive and convective terms and u behaves as the unique self-similar source-type solution S M to (1), that is, S M is the unique solution to [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF] with initial datum M δ [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF].

The previous results remain of course valid when M = 0. However, when q ≥ 2, they reduce to the convergence of u(t) to zero in L 1 (R), while if q ∈ (1, 2) and ( 4) is fulfilled, the possibility that σ = 0 is not excluded in [START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF]. Obtaining non-vanishing intermediate asymptotics in the zero-mass case thus seems to be more delicate, and is the purpose of this note. On the one hand, we identify conditions under which the constant σ defined previously does not vanish, thus leading to a truly hyperbolic large time behavior. On the other hand, we complete the study performed in [START_REF] Karch | On zero mass solutions of viscous conservation laws[END_REF] where conditions on the initial data u 0 are found for which the diffusion still plays a role in the large time asymptotics. Indeed, under the assumption that there is β ∈ (0, 1) such that sup t≥0 t β/2 e t∆ u 0 1 < ∞ if q ≥ 2 and sup t≥0 t β/2 e t∆ u 0 1 is sufficiently small for q ∈ (1+1/(1+β), 2), the large time asymptotics is dominated by the diffusive term and the asymptotics of solutions to (1)-( 2) is described by self-similar solutions to the heat equation [START_REF] Karch | On zero mass solutions of viscous conservation laws[END_REF]. A balance between diffusion and convection is also observed in [START_REF] Karch | On zero mass solutions of viscous conservation laws[END_REF] in the critical case q = 1 + 1/(1 + β) and, for suitably small initial data, the asymptotics of solutions to (1)-( 2) is described by a new class of self-similar solutions to [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF]. ¿From now on, we assume that u 0 fulfils (3). We denote by u = u(x, t) the corresponding solution to (1)-( 2) and set

U (x, t) = x -∞ u(y, t) dy = - ∞ x u(y, t) dy , (6) 
the second inequality being true since the integral of u(t) over R vanishes for each t ≥ 0 by [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF]. Owing to (3), it is easy to see that

U 0 := U (0) belongs to L 1 (R) ∩ L ∞ (R) with R U 0 (x) dx = - R xu 0 (x) dx ,
and it readily follows from (1) that U is a solution to the viscous Hamilton-Jacobi equation

U t -U xx + |U x | q = 0, x ∈ R, t > 0, (7) U (x, 0) = U 0 (x), x ∈ R . ( 8 
)
This observation is the basis of our approach towards the study of the large time behavior of zero-mass solutions to (1)-( 2), since we will actually investigate the large time dynamics of U and then deduce corresponding results for u.

Diffusion-dominated case

We begin with the case when the diffusive term is preponderant for large times.

Theorem 1 Assume that u 0 fulfils (3) and that one of the following assertions hold true:

(i) U 0 ≥ 0 and q > 3/2, (ii) U 0 ≤ 0 and q ≥ 2, (iii) U 0 ≤ 0, q ∈ (3/2, 2), and

R xu 0 (x) dx u 0 2q-3 ∞ is sufficiently small. (9)
Then, u ∈ L q (R × (0, ∞)), the constant I ∞ defined by

I ∞ := -lim t→∞ R xu(x, t) dx = - R xu 0 (x) dx - ∞ 0 R |u(x, s)| q dx ds (10) is well-defined with I ∞ > 0 if U 0 ≥ 0 and I ∞ < 0 if U 0 ≤ 0, and 
lim t→∞ t (1-1/p)/2+1/2 u(t) -I ∞ G x (t) p = 0 for every p ∈ [1, ∞] . (11) 
A result similar to Theorem 1 is also valid for U [1, Theorems 2.1 & 2.3]. The proof of Theorem 1 splits in two steps: first, the fact that u ∈ L q (R × (0, ∞)) and I ∞ ∈ R \ {0} under the assumptions of Theorem 1 follows from [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF] in the case (i) and [START_REF] Ph | Souplet On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF] in the case (ii) and (iii). Next, the proof of ( 11) and its analogue for U relies on the representation of U by the Duhamel formula and L ∞ -and L q -estimates on ∂ x U = u established in [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF] and [START_REF] Ph | Souplet On the growth of mass for a viscous Hamilton-Jacobi equation[END_REF], respectively, from which the estimates

sup t>0 t 1/2 u(t) 1 + sup t>0 {t u(t) ∞ } < ∞
follow. Classical properties of the heat semi-group e t∆ then allow us to complete the proof of Theorem 1.

Convergence towards very singular solutions

Our next theorem is devoted to the case q ∈ (1, 3/2) and U 0 ≥ 0 where there is a balance between the diffusive and convective effects, and a particular self-similar solution of (1) appears in the large time asymptotics.

Theorem 2 Suppose that u 0 fulfils (3). If q ∈ (1, 3/2) and U 0 is nonnegative and satisfies

lim |x|→∞ |x| a U 0 (x) = 0 with a = 2 -q q -1 , (12) 
then lim t→∞ t (1-1/p)/2+a/2 u(t) -W x (t) p = 0 (13)

for every p ∈ [1, ∞],
where W is the very singular solution to [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF] and enjoys the self-similarity property

W (x, t) = t -a/2 W (xt -1/2 , 1) for (x, t) ∈ R × (0, ∞).
Note that a > 1 for q < 3/2, hence the convergence rate towards the self-similar profile in ( 13) is faster than the rate in [START_REF] Karch | On zero mass solutions of viscous conservation laws[END_REF].

We recall that a very singular solution W to ( 7) is a classical solution to [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF] in R × (0, ∞) which has a singular behavior as t → 0, namely lim t→0 {|x|≥r} W (x, t) dx = 0 and lim t→0 {|x|≤r} W (x, t) dx = ∞ for each r > 0. The existence and uniqueness of the very singular solution to [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF] are established in [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption. II -Uniqueness[END_REF][START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption I. Existence[END_REF]. The proof of Theorem 2 relies on a rescaling method together with some estimates from [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption I. Existence[END_REF]. More precisely, introducing the sequence of rescaled functions U k (x, t) := k a U (kx, k 2 t), k ≥ 1, an easy computation shows that U k is a solution to [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF] while it follows from [START_REF] Benachour | Very singular solutions to a nonlinear parabolic equation with absorption I. Existence[END_REF] that sup t>0 t (a-1)/2 u(t) 1 + t a/2 U (t) ∞ + t (a+1)/2 u(t) ∞ < ∞ .

Owing to these estimates, one can show that a subsequence of (U k ) converges towards W in L p (R) for every p ∈ [1, ∞]. The uniqueness of the very singular solution to [START_REF] Escobedo | Large time behavior for convection-diffusion equations in R N[END_REF] and the use of the Duhamel representation formula allow to extend the previous convergence to the whole sequence (U k ) and also to its first derivative, thus completing the proof of Theorem 2.

Hyperbolic-dominated case

We end up with the case when the large time behavior is ruled by the convection term and is given by self-similar solutions to the nonlinear conservation law z t + (|z| q ) x = 0. Theorem 3 Consider q ∈ (1, 2). Assume that u 0 fulfils (3) and that U 0 is non-positive and such that

U 0 ∞ u 0,x 1-2/q ∞ is sufficiently large. ( 14 
) Then σ := lim t→∞ u(t) ∞ ∈ (0, ∞) (15)
and lim t→∞ t (1-1/p)/q u(t) -N σ,σ (t) p = 0 (16) for every p ∈ [1, ∞), N σ,σ being the N -wave solution to z t + (|z| q ) x = 0 defined by [START_REF] Ben-Artzi | Decay of mass for a semilinear parabolic equation[END_REF].

In addition, if q ∈ (1, 4/(1 + √ 3)), the previous result is valid without the condition ( 14) on u 0 .

As a consequence of Theorems 1 and 3, we realize that, when q ∈ (3/2, 2), both diffusion-dominated and hyperbolic-dominated large time behaviors are possible, according to the size of u 0 . In addition, when q ∈ (3/2, 2), there are non-positive initial data for which the large time behavior is governed by a balance beween the diffusive and convective effects: indeed, self-similar solutions to (7) of the form t -(2-q)/(2(q-1)) V (|x|t -1/2 ) are constructed in [START_REF] Ben-Artzi | The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces[END_REF] and V and its derivatives are smooth and decay exponentially as |x| → ∞.

The main step of the proof of Theorem 3 is to show (15). For that purpose, we use the unilateral estimate U xx (x, t) = u x (x, t) ≤ min u 0,x ∞ , C(q) U 0

(2-q)/q ∞ t -2/q . (17) This inequality can be seen as a weak form of the Oleinik gradient estimate for scalar conservation laws and is also derived in [START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF] (see also [START_REF] Feireisl | The L 1 -stability of constant states of degenerate convection-diffusion equations[END_REF] for related estimates). We however establish a version of (17) in a multi-dimensional setting involving the Hessian matrix of U [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF]. The proof of (17) follows from (1) by the maximum principle and the L ∞ -estimate u(t) ∞ ≤ C(q) U 0 1/q ∞ t -1/q [START_REF] Benachour | Global solutions to viscous Hamilton-Jacobi equations with irregular initial data[END_REF][START_REF] Gilding | The Cauchy problem for u t = ∆u + |∇u| q[END_REF]. Once (15) is established, the proof of ( 16) is performed by a classical rescaling method [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF][START_REF] Kim | An Oleinik type estimate for a convection-diffusion equation and convergence to N -waves[END_REF].

Remark 1. (a) Though the conditions ( 9) and ( 14) do not involve the same quantities, it can be shown by an application of Gagliardo-Nirenberg inequalities that, if ( 9) is fulfilled, the quantity involved in ( 14) is also small. (b) We believe that the condition ( 14) is not necessary when q ∈ (1, 3/2) for Theorem 3 to hold true but have only been able to prove it for 1 < q < 4/(1 + √ 3) < 3/2.

The proofs of the results presented in this note, together with their extension to higher space dimensions are to be found in [START_REF] Benachour | Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations[END_REF].
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