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Some remarks on the damage unilateral effect modelling 

for microcracked materials 

Hélène WELEMANE and Fabrice CORMERY*  
 

Laboratoire de Mécanique de Lille, URA CNRS 1441 
Cité Scientifique, 59655 Villeneuve d’Ascq cedex, France 

ABSTRACT : This study deals with the macroscopic modelling of the mechanical behaviour of 

microcracked materials and particularly with the unilateral aspect of such damage which leads, at 

the closure of microcracks, to a partial damage deactivation. By means of a micromechanical 

analysis, the aim of this article is first to point out the influence of the opening-closure of 

microdefects on the effective elastic properties of a microcracked medium. According to these 

considerations, a new elastic moduli recovery condition at damage deactivation is proposed. The 

introduction of this condition within the anisotropic damage model proposed by Halm and 

Dragon, 1996 allows to extend its micromechanical background while preserving its main 

advantages, in particular the continuity of the stress-strain response and the symmetry of the 

stiffness tensor.  

 

KEY WORDS : damage, brittle materials, microcracks, unilateral effect, microcracks opening-

closure, damage activation-deactivation, elastic moduli recovery, anisotropy, stress-strain 

response continuity.  
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1. INTRODUCTION 

The specific mechanical response of quasi-brittle materials (some rocks, concrete, ceramics...) 

has been widely explained by the existence, nucleation and growth of microcracks at a 

microscopic level, see Kranz, 1983. The oriented nature of these microdefects, associated with 

the unilateral aspect of the contact (with or without friction) of their lips (microcracks can be 

either open or closed according to the loading), lead to a complex irreversible behaviour 

characterized in particular by a recovery (partial or total) of the effective properties at the closure 

of microcracks. This recovery phenomenon, which typically reveals the transition between so-

called activated and deactivated state of damage when microcracks are respectively open 

and closed, has been experimentally shown by Reinhardt, 1984, Mazars et al., 1990 and 

Ikogou, 1990. 

The description of the damage activation-deactivation process, currently called unilateral 

effect, as part of macroscopic modelling requires to answer the both following questions : when 

does the transition between these two states of damage occur (a  opening-closure criterion), and 

how does damage deactivation affect the elastic properties of the material (a  recovery 

condition) ? This problem still remains a difficult (Chaboche, 1992) and open subject of interest 

even if two attractive theories have been recently proposed to this end :  

- Chaboche, 1993 postulates a modification of the stiffness tensor which allows the recovery of 

the initial (i.e. of the undamaged material) normal stiffness in each of the “principal” damage (or 

strain) directions when the related normal strain becomes negative. Note that a dual formulation 

in stress has also been developed by this author,  

- Halm and Dragon, 1996 propose a formulation based on the one hand on the introduction of a 

fourth-order tensor parameter controlling damage activation-deactivation, and on the other hand 

on the assumption that a deactivated damage no longer contributes to the stiffness degradation in 

the related normal direction.  

These formulations, which ensure the continuity of the stress-strain response and the symmetry 

of the stiffness tensor during the aforementioned transition, yet allow a partial account for the 

elastic moduli recovery phenomenon occurring at damage deactivation (Chaboche, 1999).  
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The aim of this paper is first to clarify, through some micromechanical considerations, the 

consequences of the microcracks closure on the elastic properties of a microcracked medium. On 

account of this analysis, a new elastic moduli recovery condition is proposed, which is eventually 

introduced within the model of Halm and Dragon, 1996. This model provides indeed an 

appropriate framework for the new condition since some choices in its formulation are already 

motivated by a micromechanical analysis (notably for the internal damage variable and the 

fourth-order control parameter), and it remains efficient and convenient for structural analysis. 

Friction effects, namely blocking and dissipative sliding of closed microcracks lips, are not taken 

into account in this paper. 

Usual intrinsic notations are employed throughout. In particular, the tensor products of two 

second order tensors a and b are defined by : 

axb xba  ) :(: ][ =⊗  

T :][ bxaxba ⋅⋅=⊗  

TT:][ bxaxba ⋅⋅=⊗  

2/][  bababa ⊗⊗⊗ += , 

for any second-order tensor x. We denote by nnnn    p
⊗⊗=⊗

L  the thp  tensor product power of 

any vector n and by I the unit second-order tensor.  

2. SOME MICROMECHANICAL CONSIDERATIONS 

 Consider a representative volume element (RVE) V of an homogeneous isotropic elastic 

linear matrix (Young modulus 0E , Poisson ratio 0ν ) weakened by an array of N randomly 

distributed flat penny-shaped microcracks (unit normal kn , radius ka ), whose radii are very 

small in comparison with the size of the RVE. Assuming non-interaction between microcracks 

and sliding without friction of their lips, the free enthalpy of the microcracked medium is given 

by, see for example Krajcinovic, 1987, Kachanov, 1993 : 
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The Heaviside step function H depending on the normal stress kk
k
n nn ⋅⋅σ = σσσσ  to each microcrack 

is introduced to enable simultaneous consideration of its contribution whether it is open ( 0k
n ≥σ ) 

or closed ( 0k
n <σ ). 

 From the free enthalpy u of the effective medium, one can derive expressions of effective 

generalized elastic moduli : )(E m  the Young modulus related to the direction of unit vector m, 

),( pmν  the Poisson ratio and ),( pmµ  the shear modulus related to orthogonal directions of 

respective unit vectors m and p, defined through (Hayes, 1972) :  
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where 22 /u σσσσ∂∂=S  denotes the effective compliance tensor. According to equation (1) and 

noting )36/()1(16A 0
2
0 ν−ν−= , relevant calculations give rise to the following results : 
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 Relations (3) put forward the intricate effect due to open and closed microcracks in the elastic 

moduli degradation of a microcracked medium. Let examine first for clearness the simple case of 
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a material weakened by a single array of parallel microcracks with unit normal n. Since the 

matrix is assumed to be isotropic, the effective medium exhibits the symmetry associated with 

the geometric shape of microcracks, namely transverse isotropy with the privileged direction n. 

The entire set of elastic moduli (3) is then fully determined by five independent coefficients (see 

Appendix 1) : )(E n , )(E t , ),( tnν , ),( ktν  and ),( tnµ , for any vectors t and k forming with n 

an orthonormal basis of 3Ρ . Their expressions are obtained from (3) :  
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According to relations (4), some important aspects of the unilateral effect of damage can be 

emphasized : 

- Among the aforementioned moduli, the Young modulus )(E n , but also the Poisson ratio 

),( tnν , related to the direction normal to parallel microcracks, are affected by the 

microdefects change of state. In particular, they recover their initial values, i.e. those of the 

undamaged material (that is respectively 0E  and 0ν ), at the closure of microcracks. It can 

notably be noted that the recovery of the Young modulus )(E n  to its initial value 0E  has 

been experimentally shown by Reinhardt, 1984 and Ramtani, 1990 during an uniaxial 

compression test in the direction of n on a concrete specimen previously microcracked 

orthogonally to n by an uniaxial tension test in this same direction. 

- On the other hand, the shear modulus ),(tnµ  remains unchanged by the closure of 

microdefects (partial damage deactivation). Elastic moduli )(E m , ),( pmν  and ),( pmµ  
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related to directions different from the principal axes of the microdefects (n, t, k) are then 

only partially restored when microcracks get closed (except for the shear moduli ),( pmµ  

when 2/1)()( 22 =⋅=⋅ npnm ). 

Figure 1 illustrates these remarks on the example of a concrete weakened by a single array of 

parallel microcracks of normal n, when unit vectors n, m and p are supposed to be coplanar 

(vector m is defined by spherical angles θ and φ in the orthonormal basis ),,( 321 neee =  of 3Ρ ) ; 

owing to the problem symmetry, we have then )(E)(E φ=m , )(),( φν=ν pm  and 

)(),( φµ=µ pm .  

 The particular nature of the microdefects contribution allows easily to extend these 

considerations for an array of N microcracks with different normal vectors : when microcracks of 

normal in  are closed, they no longer contribute to the degradation of Young modulus )(E in  and 

Poisson ratio ),( ii tnν , for any unit vector it  orthogonal to in . On the other hand, other moduli 

)(E it , ),( ii ktν  and ),( ii tnµ , for any unit vector ik  orthogonal to in  and it , remain 

unchanged by the change of state of microcracks of normal in . 

 According to the previous remarks, taking into account the unilateral effect of damage as part 

of macroscopic modelling can no longer be limited to the single restoration of the Young 

modulus in the direction normal to closed microcracks. Indeed, it should be noted that the 

recovery affects also the Poisson ratio related to the same direction. In view of the lack of 

experimental results concerning this last point1, the micromechanical analysis seems to us a 

judicious guide to macroscopic modelling of unilateral effect. The purpose of the next section is 

now to exploit it in the framework of the model proposed by Halm and Dragon, 1996.  

                                                           
1 The recovery of Poisson ratios to their initial value can yet be observed on initially anisotropic composites during 
an uniaxial tension-compression test (cf. for example Allix et al., 1993). 
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3. A NEW RECOVERY CONDITION : 
APPLICATION TO AN ANISOTROPIC DAMAGE MODEL 

 The three-dimensional formulation proposed by Halm and Dragon, 1996 postulates the 

existence of a thermodynamic potential w, namely the Helmholtz free energy, built upon the 

following assumptions : 

(i) Evolution of damage by microcrack growth is supposed to be the only dissipative 

mechanism, occurring in small strain, rate-independent and isothermal conditions. A symmetric 

second-order tensor d is chosen as the single damage internal variable to account for orientation 

and extent of microcracks : 

 2
k

k
k )S(d ⊗∑= n d  (5) 

kn  represents the unit normal to the set k of parallel microcracks and )S(dk  a dimensionless 

scalar function characterizing the related density of microcracks. According to spectral 

decomposition, tensor d can be written in its principal axes :  

 ∑
=

⊗=
3

1i

2
iid vd  (6) 

where iv  and id  are respectively the eigenvectors and eigenvalues of tensor d. Given the 

previous decomposition, any damage configuration is thus equivalent to three mutually 

orthogonal sets of parallel microcracks.  

(ii) In the undamaged state, materials are supposed to be isotropic and linear elastic (with 0λ  

and 0µ  the Lamé constants). The potential is taken linear in d, which corresponds to the 

hypothesis of a dilute density of non-interacting microcracks, and at most quadratic in εεεε, as 

multilinear elasticity is assumed at constant damage. Residual effects due to damage (Acker, 

1987) are eventually represented by a linear term in εεεε, indifferent to damage activation-

deactivation.  

(iii) The thermodynamic potential (1) of micromechanics introduces a fourth-order tensorial 

quantity whose influence, that can be neglected when microcracks are open, is crucial when 
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microcracks are closed (Kachanov, 1993). In order to account for this aspect within a simple and 

efficient formulation, Halm and Dragon, 1996 use a tensorial parameter built upon the 

eigenvalues and eigenvectors of d :  

 ∑
=

⊗=
3

1i

4
iid vD  (7) 

According to these assumptions, Halm and Dragon, 1996 propose a thermodynamic potential 

holding two forms depending on whether microcracks are open or closed (for clearness, only a 

single set of parallel microcracks of unit normal v is first considered, thus 2d ⊗= vd ) : 

 

εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε

εεεεεεεεεεεεεεεεεεεεεεεεεεεε
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Ddddd
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ww
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 (8) 

where )(tr)tr()2/1()( 0
2

00 εεεεεεεεεεεεεεεε ⋅µ+λ=w  is the free energy of the virgin material, g a constant 

characterizing residual effects, and α, β, and γ constant coefficients related to elastic properties 

degradation due to damage. The coefficients closα , closβ  and γ depend on the recovery condition 

selected in the modelling and on the mathematical restrictions imposed to the thermodynamic 

potential in order to ensure the continuity of the stress-strain response at the transition between 

open and closed microdefects states.  

 After a preliminary discussion on the recovery condition initially postulated by the authors, we 

propose subsequently to introduce in this model a new elastic moduli recovery condition at the 

closure of microcracks, which refers to the micromechanical considerations developed in 

Section 2. To this end, we will follow the process introduced by Halm and Dragon, 1996, with 

the determination of conditions imposed first by the recovery and then by the continuity. The 

question of damage evolution will however not be treated here, as this part of the formulation 

proposed by Halm and Dragon, 1996 is not concerned by the recovery condition introduced in 

this section.  
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(a) Recovery condition 

 The recovery condition proposed by Halm and Dragon, 1996 is based on the assumption that 

the stiffness in the direction normal to closed microcracks is equal to its initial value, i.e. :  

  2
0

22clos2 :::: ⊗⊗⊗⊗ = vCvvCv  (9) 

where 2
0

2
0 / εεεε∂∂= wC  denotes the initial stiffness tensor and 2clos2clos / εεεε∂∂= wC  its form when 

the material is weakened by closed microcracks. This condition imposes the form of the 

coefficient closclos 2β−α−=γ  related to the control parameter D  and leads in particular to the 

following expressions for elastic moduli )(E v  and ),( tvν  when microcracks are closed (for any 

unit vector t orthogonal to v) :  

 

)(2

d
),(

)d(
2)(E

00

clos
0

00

2clos
0

00

µ+λ
α+λ=ν

µ+λ
α+λ−µ+λ=

tv

v

 (10)  

The clear dependence of these elastic moduli on closα  emphasizes the incomplete character of 

their recovery whose intensity depends on this parameter value. Besides it requires to restrict the 

choice of this coefficient to a validity domain ( 0clos ≥α ) in order to ensure the physical 

admissibility of Young modulus )(Ev , which cannot indeed take a higher value than initial one. 

One may also note that, according to continuity conditions that will be detailed later on, Poisson 

ratio value ),( tvν  remains in fact unchanged, namely degraded, at the closure of microcracks.  

 The recovery condition postulated by Halm and Dragon, 1996 hence does not provide in the 

general case a satisfactory description of the unilateral effect of damage if we refer to the 

micromechanical analysis. Accordingly, we suggest to introduce a new recovery condition which 

assumes, at the closure of microcracks of unit normal v, the total recovery of the Young modulus 

in the direction given by v and of the Poisson ratio related to orthogonal directions of vectors v 

and t, for any unit vector t, that is : 
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where 0E  and 0ν  are respectively the Young modulus and the Poisson ratio of the virgin 

material. From the thermodynamic potential (8), one derives the following expressions for 

effective elastic moduli )(Ev  and ),( tvν  when microcracks of unit normal v are closed : 
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for any unit vector t orthogonal to v. The recovery assumption (11) implies consequently the 

necessary and sufficient conditions on the model parameters that follow :  

 








β−=γ

=α

clos

clos

2
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 (13) 

One can remark that the new recovery condition (11) on Young modulus )(Ev  and Poisson ratio 

),( tvν  implies the full restoration postulated by Halm and Dragon, 1996 of the normal stiffness 

in the direction given by v. 

(b) Continuity and opening-closure criterion 

 The continuity of the stress-strain response at the transition between the two states of damage 

(division of the strain space into two distinct subdomains separated by boundary H) imposes to 

the thermodynamic potential to be of class 1C . This property is satisfied provided the stiffness 

tensor discontinuity closopen][ CCC −=  (with 2open2open / εεεε∂∂= wC ) takes such a form :  

 2s][ ⊗= NC  (14) 
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where s is a continuous scalar function and N is the unit normal to the hyperplane H (Curnier et 

al., 1995). Then ][C  must be singular and in particular of rank one. According to relations (13), 

this is verified if and only if : 

 




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

=α

β=β

0

clos

 (15) 

 At this time, it only remains to establish the opening-closure criterion for microcracks, i.e. the 

equation of the hyperplane H defined by 0: =εεεεN . As conditions (13) and (15) lead to 

4d4][ ⊗β= vC , we obtain the following criterion :  

 0=⋅⋅ vv εεεε   (16) 

The set of microcracks of unit normal v is considered as active (respectively partially inactive) if 

the related normal strain vv ⋅⋅=ε εεεεv  is positive (respectively strictly negative). Although the 

recovery conditions employed are different, we can remark herein that we obtain the same 

opening-closure criterion as Halm and Dragon, 1996.  

 The spectral decomposition of d eventually provides the form of the thermodynamic potential 

for any damage configuration, that is : 

 ]:d)-(H:)(tr[2)(trg)(),(
3

1i

4
ii

i
v0 εεεεεεεεεεεεεεεεεεεεεεεεεεεε ∑

=

⊗ε−⋅⋅β+⋅+= vddd ww  (17) 

with ii
i
v vv ⋅⋅=ε εεεε  the normal strain to the thi  equivalent set of microcracks. Figure 2 presents a 

simulation of elastic moduli )(E m , ),( pmν  and ),( pmµ  of a sandstone weakened by a single 

set of parallel microcracks of normal v, when unit vectors v, m and p are supposed to be coplanar 

(vector m is defined by spherical angles θ and φ in the orthonormal basis ),,( 321 veee =  of 3Ρ ) ; 

owing to the problem symmetry, we have then )(E)(E φ=m , )(),( φν=ν pm  and 

)(),( φµ=µ pm . 
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4. DISCUSSION 

(a) The formulation (17) allows a characterization of the damage unilateral effect in better 

accordance with the micromechanical analysis, nevertheless it leads to a particular form for the 

stiffness tensor : in the basis ( 321 ,, vvv ) built upon the eigenvectors of d, damage affects only 

the diagonal components of the representative matrix of this tensor (see Appendix 2). This leads 

in particular to a constant value of the Poisson ratio ),( tvν , namely its initial value 0ν , during 

an uniaxial tension test of axis v (cf. figure 2). The introduction of the recovery condition (11) 

within the approach proposed by Halm and Dragon, 1996 consequently restricts the range of the 

modelling applications to a particular kind of quasi-brittle materials. 

 The predictive ability of the model may yet be enlarged to a larger class of quasi-brittle 

materials by modifying the thermodynamic potential (8) initially proposed by Halm and Dragon, 

1996. In agreement with the basic assumptions, we suggest to introduce the additional invariant 

2)tr(tr εεεεd  in the two forms of w, that is for a single set of parallel microcracks of unit normal v :  

 

εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε

εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε
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2closclosclos
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clos
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open

Dddddd

ddddd
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ww
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 (18) 

Note that such an invariant appears notably in the dual expression obtained by means of a 

Legendre transform of the thermodynamic potential (1) of micromechanics (Krajcinovic, 1989).  

 A similar reasoning as carried out before allows to establish the conditions imposed to the 

parameters closα , closβ , γ and closδ  by the recovery postulate (11) and by the stress-strain response 

continuity. From the thermodynamic potential (18), one obtains the following expressions for the 

elastic moduli )(Ev  and ),( tvν  when microcracks are closed : 
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for any unit vector t orthogonal to v. The full recovery of these moduli is thus ensured by the 

following necessary and sufficient conditions : 

 

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On the other hand, the continuity of the stress-strain response is systematically satisfied if and 

only if :  
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According to relations (20) and (21), parameters closα , closβ , γ and closδ  must then be solution of 

the following linear system : 
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for any coefficients α, β and δ. One distinguishes two cases for which this system has a solution :  

(i) Parameters α, β and δ are such that 0)21()21(2 0
2

0 ≠αν−+δν−+β  ; the system is then 

fully determined, i.e. of rank four. The unique solution is : 
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)8()21(

0
2

0

2
clos

0
2

0

2
0

clos

0
2

0

2
0clos

 (23) 

(ii)  Parameters α, β and δ are related by 0)21()21(2 0
2

0 =αν−+δν−+β  and 082 =δβ−α  (or 

equivalently )21(4 0ν−β−=α  and 2
0 )21(2 ν−β=δ ) ; the system (22) is then undetermined 

with one parameter, i.e. of rank three. With closα , closβ  and γ as principal unknowns, the system 

has consequently a unique solution : 

 















δν−+β−=γ

β=β

δν−−=α

clos2
0

clos

clos
0

clos

)21(2

)21(2

 (24) 

for any value of closδ .  

One may note that when coefficients α, β and δ verify 0)21()21(2 0
2

0 =αν−+δν−+β  and are 

such that 082 ≠δβ−α , the system (22) has no solution. In the subsequent part of this paper, it 

is assumed that the validity domain of these parameters excludes such an eventuality. 

 According to relations (23) and (24), the stiffness tensor discontinuity takes the form : 

  2
2

2
1 )KK(d][ ⊗⊗ +Λ= IvC  (25) 
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where coefficients Λ, 1K  and 2K  are defined in table 1. This leads consequently to a new 

expression for the microcracks opening-closure criterion : 

 0trKK 21 =+⋅⋅ εεεεεεεε vv  (26) 

The set of microcracks of normal v is considered as active (respectively partially inactive) if the 

value of εεεεtrKK 2v1v +ε=∈  is positive (respectively strictly negative). 

 According to the spectral decomposition and noting εεεεtrKK 2
i
v1

i
v +ε=∈ , the form of the 

thermodynamic potential for any damage configuration is eventually given by : 

 

εεεεεεεε

εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε

:]KK[d)-(H:
2

)tr(tr)(tr2)(trtr)(trg)(),(

3

1i

2
2

2
i1i

i
v

2
0

∑
=

⊗⊗ +∈Λ−

δ+⋅⋅β+⋅α+⋅+=

Iv

ddddd ww

 (27) 

under the conditions recapitulated in table 1. 

 Compared with the thermodynamic potential (17), the formulation (27) provides many 

advantages : 

- A more general expression for the stiffness tensor where damage affects also the non-

diagonal terms of its representative matrix (see Appendix 3). It allows then a more realistic 

description of the evolution of some elastic moduli, like for example the decrease of the 

Poisson ratio ),( tvν  during an uniaxial tension test with axis v, which is typical of some 

quasi-brittle materials like concrete (cf. for example Ramtani, 1990). Figure 3 illustrates the 

improvements provided by this new approach on the example of a concrete weakened by a 

single set of parallel microcracks of unit normal v (as in section 3, elastic moduli )(E m , 

),( pmν  and ),( pmµ  are studied in directions for which unit vectors v, m and p are 

coplanar).  

- The particular form of the opening-closure criterion whose modular character allows an 

enriched description of the damage unilateral effect. For example during an uniaxial 

compression-tension test, the damage activation-deactivation process may occur for a non-

zero lateral strain. One can note that we obtain the criterion 0=⋅⋅ vv εεεε  of the previous 
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section when parameters α, β and δ are such that 0)21()21(2 0
2

0 ≠αν−+δν−+β  and 

0)21(2 0 =δν−+α . 

 An other key aspect of the formulation (27) concerns the stiffness tensor whose non-diagonal 

terms of its representative matrix in the basis ( 321 ,, vvv ) are affected by the damage activation-

deactivation process (see Appendix 3), while the symmetry of this tensor and the continuity of 

the stress-strain response remain preserved. One may note that this feature is directly owed to the 

new recovery condition (11). 

(b)  It can also be interesting to examine the modelling proposed by Chaboche, 1993, which 

assumes, in the case of a strain formulation, the following form for the effective stiffness tensor 

C of the material :  

 ∑
=

⊗⊗ −εη+=
3

1i

4
i0

4
i

i
v :]

~
[:)-(H

~
vCCvCC  (28) 

where C
~

 denotes the stiffness tensor for fully active conditions (all microcracks are open), iv  

represents a “principal” direction of damage (or strain) and η is a material parameter aimed at 

characterizing the recovery intensity ( 10 ≤η≤ ). This formulation, based on the exclusive 

modification of diagonal terms of the representative matrix of C in the “principal” directions of 

damage, is introduced in order to avoid any discontinuity of the stress-strain response and 

dissymetry of the stiffness tensor.  

 As the formulation proposed by Halm and Dragon, 1996, this approach accounts only for a 

partial elastic moduli recovery at damage deactivation. For example, if we apply the condition 

(28) to the thermodynamic potential proposed in (18) ( 2open2 /
~ εεεε∂∂= wC ), with, for iv , the 

eigenvectors of tensor d and 1=η  (maximum recovery), we obtain the following expression for 

the thermodynamic potential : 

 

εεεεεεεε

εεεεεεεεεεεεεεεεεεεεεεεεεεεεεεεε

:]trd)2[()-(H:

)tr(tr)(tr2)(trtr)(trg)(),(

3

1i

4
ii

i
v

2
0

∑
=

⊗δ+β+αε−

δ+⋅⋅β+⋅α+⋅+=

vd

ddddd ww

 (29) 
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which leads, in the case of a single set of closed parallel microcracks of unit normal v 

( 2d ⊗= vd ), to the elastic moduli )(E v  and ),( tvν  that follow : 

 

)d2(2

d)2(
),(

d2

]d)2([
2)(E

00

0

00

2
0

00

δ+µ+λ
δ+α+λ=ν

δ+µ+λ
δ+α+λ−µ+λ=

tv

v

 (30) 

for any unit vector t orthogonal to v. The single condition (28) is then not sufficient to 

corroborate the results derived from micromechanics. Indeed, it must be completed by some 

additional conditions ( 0=δ=α ) which lead in such a case to the formulation (17) also obtained 

from the approach proposed by Halm and Dragon, 1996. 

(c) In the recovery condition (11), perfect microcracks closure is implicitly assumed. An 

alternative form of this condition may be proposed in order to account for an uncompleted 

microdefects closure.  

Let consider a medium weakened by a single set of parallel microcracks of unit normal v. At the 

closure of microcracks, the following elastic moduli recovery condition is postulated (for any 

unit vector t orthogonal to v) : 

  2

d0

d0

]1,0[),(

),()1(),(

)(E)1(E)(E

∈ϕφ








ν∆ϕ−+ν=ν

∆φ−+=

tvtv

vv

 (31) 

where )(Ed v∆  and ),(d tvν∆  represent the damage contribution in the expressions respectively 

of the Young modulus )(Ev  and of the Poisson ratio ),(tvν  when microcracks are open, and 

coefficients φ and ϕ characterize the intensity of their recovery. In particular, when parameters φ 

and ϕ are such that 1=ϕ=φ , the recovery condition (31) is the one postulated in (11). 

(d) In the approach for the unilateral effect proposed in (17) and (27), the shear modulus ),(tvµ  

of a medium weakened by a single set of parallel microcracks of unit normal v remains 

unchanged by the closure of microdefects (cf. for example figures 2 and 3). This result is directly 
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owed to the basic assumption of non-dissipative sliding of closed microcracks lips ; microdefects 

lips are indeed implicitly assumed to be perfectly lubricated. This modulus recovery, which has 

been clearly experimentally shown by Pecqueur, 1995 for a rock and Maire and Pacou, 1996 for 

a composite, would imply to take into account the friction on the microdefects lips. The theory 

proposed in this aim by Halm, 1997, Halm and Dragon, 1998 would then constitute an 

appropriate framework to include the recovery condition (11) or (31), allowing consequently the 

recovery of the whole elastic moduli )(E v , ),( tvν  and ),( tvµ  related to the direction normal to 

microcracks. Note that a formulation accounting for the shear modulus recovery has also been 

proposed by Boursin et al., 1996 and Pottier, 1998. 

5. CONCLUSION 

 In spite of recent advances in the macroscopic modelling of unilateral effect - which solve in 

particular the continuity problems arising when induced anisotropy is simultaneously described 

(Chaboche, 1993, Halm and Dragon, 1996) -, this question still remains an open research field. In 

view of the lack of exhaustive experimental results on this subject, the aim of this paper was to 

establish, by means of a micromechanical analysis, the influence of the microdefects opening-

closure on the effective elastic properties of a microcracked medium. The evidence of some 

inconsistencies between derived results and existing macroscopic theories has induced us to 

propose a new elastic moduli recovery condition at the closure of microcracks. This original 

postulate, which has been introduced in the anisotropic damage model of Halm and Dragon, 

1996, allows to extend the physical background of this model, while preserving its initial 

advantages. An improved version of this model has also been studied, which enlarges the scope 

of its applications and allows a better agreement with some experimental results. Further 

investigations need now to be conducted in order to evaluate the both aspects presented in this 

paper, namely the recovery condition (How?) and the microcracks opening-closure criterion 

(When?), by means of an extensive experimental study on various materials and for different 

loading paths. 



 

19 
 

REFERENCES 

Acker P. 1987. “Comportement mécanique du béton : apports de l’approche physico-chimique,” 

Ph. D.-thesis, Ecole Nationale des Ponts et Chaussées. 

Allix O., C. Cluzel, A. Gasser and P. Ladevèze 1993. “Modélisation des Composites Céramique-

Céramique à Différentes Echelles,” Revue des Composites et des Matériaux Avancés, 

3 (HS) : 277-297. 

Boursin A., J. -L. Chaboche and F. Roudolff 1996. “Mécanique de l’endommagement avec 

conditions unilatérales et stockage d’énergie élastique,” C. R. Acad. Sci., Paris, 

323 (Série IIb) : 369-376.  

Chaboche J. -L. 1992. “Damage induced anisotropy : on the difficulties associated with the 

active/passive unilateral condition,” Int. J. Damage Mech., 1 : 148-171. 

Chaboche J. -L. 1993. “Development of continuum damage mechanics for elastic solids 

sustaining anisotropic and unilateral damage,” Int. J. Damage Mech., 2 : 311-329. 

Chaboche J. -L. 1999. “Continuum damage mechanics : initial and induced anisotropy in 

composite materials,” in Mechanics of heterogeneous materials, Conf. to the memory of Prof. 

J. -P. Boehler, Grenoble, France, Ed. Darve F. and B. Loret . 

Curnier A., Q. -C. He and P. Zysset 1995. “Conewise linear elastic materials,” J. Elasticity, 

37 : 1-38. 

Halm D. 1997. “Contribution à la modélisation du comportement unilateral et du frottement dans 

les matériaux mésofissurés,” Ph. D.-thesis, Université de Poitiers-ENSMA. 

Halm D. and A. Dragon 1996. “A model of anisotropic damage by mesocrack growth ; unilateral 

effect,” Int. J. Damage Mech., 5 : 384-402. 

Halm D. and A. Dragon 1998. “An anisotropic model of damage and frictional sliding for brittle 

materials,” Eur. J. Mech., A/Solids, 17 : 439-460. 

Hayes M. 1972. “Connections between the moduli for anisotropic elastic materials,” J. Elasticity, 

2 : 135-141. 

Ikogou S. 1990. “Etude expérimentale et modélisation du comportement d’un grès,” Ph. D.-

thesis, Université des Sciences et Techniques de Lille 1. 

Kachanov M. 1993. “Elastic solids with many cracks and related problems,” in Advances in 

applied mechanics, Ed. Hutchinson J. and Wu T., New York, 30 : 259-445. 



 

20 
 

Krajcinovic D. 1987. “Micromechanical basis of phenomenological models,” in Continuum 

Damage Mechanics, Theory and Applications, Ed. Krajcinovic D. and J. Lemaitre, Wien, 

195-206.  

Krajcinovic D. 1989. “Damage mechanics,” Mech. Mater., 8 : 117-197. 

Kranz R. L. 1983. “Microcracks in rocks : a review,” Tectonophysics, 100 : 449-480. 

Maire J.F. and D. Pacou 1996. “Essais de traction-compression-torsion sur tubes composites 

céramique-céramique,” 10èmes Journées Nationales sur les Composites, Paris, France. 

Mazars J., Y. Berthaud and S. Ramtani 1990. “The unilateral behaviour of damaged concrete,” 

Eng. Fracture Mech., 35 : 629-635. 

Pecqueur G. 1995. “Etude expérimentale et modélisation du comportement d’une craie et d’un 

grès en torsion,” Ph. D.-thesis, Université de Lille I. 

Pottier T. 1998. “Modélisation multiéchelle du comportement et de l’endommagement de 

composites à matrice métallique,” Ph. D.-thesis, Ecole Nationale des Ponts et Chaussées. 

Ramtani S. 1990. “Contribution à la modélisation du comportement multiaxial du béton 

endommagé avec description du caractère unilatéral,”  Ph. D.-thesis, Université de Paris VI. 

Reinhardt H. W. 1984. “Fracture mechanics of elastic softening materials like concrete,” 

Heron 29 (2). 



 

21 
 

   

φ
0E/)(E φ

 

 

0/)( νφνφ

 

0/)( µφµ
φ

 

 

 φ

1e

m

 θ

ne =3

2e

p

 

1.0a
V

1

2.0,MPa35000E

N

1k

3
k

00

=

=ν=

∑
=

 

Figure 1. Generalized elastic moduli normalized by their initial values 

of a concrete weakened by a single array of parallel microcracks of unit normal n 

(  open microcracks,  closed microcracks,  unit circle). 

- Thermodynamic potential (1) -  
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Figure 2. Generalized elastic moduli normalized by their initial values 

of a sandstone weakened by a single set of parallel microcracks of unit normal v  

(  open microcracks,  closed microcracks,  unit circle). 

- Thermodynamic potential (17) - 
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Figure 3. Generalized elastic moduli normalized by their initial values 

of a concrete weakened by a single set of parallel microcracks of unit normal v 

(  open microcracks,  closed microcracks,  unit circle). 

- Thermodynamic potential (27) - 
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 (i)  α, β, δ such that  

0)21()21(2 0
2

0 ≠αν−+δν−+β  

(ii)  α, β, δ such that 

0)21()21(2 0
2

0 =αν−+δν−+β  

and 082 =δβ−α  

Λ 
])21()21(2[2

1

0
2

0 αν−+δν−+β
 ]

)21(

2
[2 clos

2
0

δ−
ν−
β

 

1K  αν−+β )21(4 0  021 ν−  

2K  δν−+α )21(2 0  1−  

Table 1. Coefficients Λ, 1K  and 2K . 
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APPENDIX 1 

Generalized moduli expression for a transversely isotropic material with axe n. ),,( ktn  is an 

orthonormal basis of 3Ρ  and m and p two unit orthogonal vectors : 
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APPENDIX 2 

Expression of the representative matrix of the stiffness tensor associated with formulation (17) in 

the orthonormal basis ( 321 ,, vvv ) built upon the eigenvectors of tensor d (Voigt notation) : case 

of a material weakened by a single set of parallel microcracks of unit normal 1v  ( 2
1d ⊗= vd ).  

• Open microcracks )0( 11
1
v ≥⋅⋅=ε vv εεεε  : 
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APPENDIX 3 

Expression of the representative matrix of the stiffness tensor associated with formulation (27) in 

the orthonormal basis ( 321 ,, vvv ) built upon the eigenvectors of tensor d (Voigt notation) : case 

of a material weakened by a single set of parallel microcracks of unit normal 1v  ( 2
1d ⊗= vd ).  

(i)  α, β et δ are such that 0)21()21(2 0
2

0 ≠αν−+δν−+β  : 
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(ii)  α, β et δ are such that 0)21()21(2 0
2

0 =αν−+δν−+β  and 082 =δβ−α  (or equivalently 

)21(4 0ν−β−=α  and 2
0 )21(2 ν−β=δ ) : 
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