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Some remarks on the damage unilateral effect modelling

for microcracked materials

Hélene WELEMANE and Fabrice CORMERY*

Laboratoire de Mécanique de Lille, URA CNRS 1441
Cité Scientifique, 59655 Villeneuve d’Ascq cedeanée

ABSTRACT : This study deals with the macroscopic modellihghe mechanical behaviour of
microcracked materials and particularly with thdateral aspect of such damage which leads, at
the closure of microcracks, to a partial damagectiledion. By means of a micromechanical
analysis, the aim of this article is first to poiotit the influence of the opening-closure of
microdefects on the effective elastic properties ahicrocracked medium. According to these
considerations, a new elastic moduli recovery dimiat damage deactivation is proposed. The
introduction of this condition within the anisotiopdamage model proposed by Halm and
Dragon, 1996 allows to extend its micromechanicatkiground while preserving its main
advantages, in particular the continuity of theesdrstrain response and the symmetry of the

stiffness tensor.

KEY WORDS : damage, brittle materials, microcracks, unilateféct, microcracks opening-
closure, damage activation-deactivation, elasticduiio recovery, anisotropy, stress-strain

response continuity.
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1. INTRODUCTION

The specific mechanical response of quasi-britid¢emials (some rocks, concrete, ceramics...)
has been widely explained by the existence, nuoleaand growth of microcracks at a
microscopic level, see Kranz, 1983. The orientetineaof these microdefects, associated with
the unilateral aspect of the contact (with or withériction) of their lips (microcracks can be
either open or closed according to the loadingadléo a complex irreversible behaviour
characterized in particular by a recovery (paudralotal) of the effective properties at the clasur
of microcracks. This recovery phenomenon, whichcslty reveals the transition between so-
called activated and deactivated state of damagenwhicrocracks are respectively open
and closed, has been experimentally shown by Relhhd984, Mazars et al., 1990 and
Ikogou, 1990.

The description of the damage activation-deactivafprocess, currently called unilateral
effect, as part of macroscopic modelling requiceariswer the both following questions/hen
does the transition between these two states oagaraccur > opening-closure criterion), and
how does damage deactivation affect the elastic ptiggenf the material & recovery
condition) ? This problem still remains a diffic@@haboche, 1992) and open subject of interest

even if two attractive theories have been recenthposed to this end :

- Chaboche, 1993 postulates a modification of ttiness tensor which allows the recovery of
the initial (i.e. of the undamaged material) norst#fness in each of the “principal” damage (or
strain) directions when the related normal straondmes negative. Note that a dual formulation

in stress has also been developed by this author,

- Halm and Dragon, 1996 propose a formulation basethe one hand on the introduction of a
fourth-order tensor parameter controlling damade/atton-deactivation, and on the other hand
on the assumption that a deactivated damage nerdaogtributes to the stiffness degradation in

the related normal direction.

These formulations, which ensure the continuityhaf stress-strain response and the symmetry
of the stiffness tensor during the aforementiomadsdition, yet allow a partial account for the

elastic moduli recovery phenomenon occurring atatgrdeactivation (Chaboche, 1999).



The aim of this paper is first to clarify, througbme micromechanical considerations, the
consequences of the microcracks closure on thecepasperties of a microcracked medium. On
account of this analysis, a new elastic moduli vecp condition is proposed, which is eventually
introduced within the model of Halm and Dragon, 899his model provides indeed an
appropriate framework for the new condition sinoene choices in its formulation are already
motivated by a micromechanical analysis (notably tfee internal damage variable and the
fourth-order control parameter), and it remaingcefht and convenient for structural analysis.
Friction effects, namely blocking and dissipatilidisg of closed microcracks lips, are not taken

into account in this paper.

Usual intrinsic notations are employed throughdwtparticular, the tensor products of two

second order tensoasandb are defined by :
[aob]:x=(b:Xx)a
[aob]:x=axDb’
[aob]:x=aX" T
aob=[aob+aob]/2,

for any second-order tensor We denote byn™® =non---on the p™ tensor product power of

any vectom and byl the unit second-order tensor.

2. SOME MICROMECHANICAL CONSIDERATIONS

Consider a representative volume element (RVE)f\ao homogeneous isotropic elastic
linear matrix (Young modulu€,, Poisson ratiov,) weakened by an array of N randomly
distributed flat penny-shaped microcracks (unitnmar n,, radius a, ), whose radii are very
small in comparison with the size of the RVE. Asgugmon-interaction between microcracks
and sliding without friction of their lips, the feenthalpy of the microcracked medium is given

by, see for example Krajcinovic, 1987, Kachano\93.9
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The Heaviside step function H depending on the absiesso =n, [& [, to each microcrack

is introduced to enable simultaneous consideratiots contribution whether it is opewf > 0)

or closed ¢ <0).

From the free enthalpy u of the effective mediume can derive expressions of effective

generalized elastic moduliE(m) the Young modulus related to the direction of weittorm,
v(m,p) the Poisson ratio and(m p, the shear modulus related to orthogonal directimins

respective unit vectors andp, defined through (Hayes, 1972) :

E(m)

[m”%:S:m™?]™
v(m,p) = —E(m) [m"?:S:p"?] (2)
p(m,p) = [4mop:S:mop]™

where S=0°u/dc” denotes the effective compliance tensor. Accordmgquation (1) and

noting A =16 (1-v3)/(6-3v, ), relevant calculations give rise to the followisgults :

E(m) = Eo[ue Y a (m M, )?(2-[2- (2-vo)H(@:)I(m mk)Z)]

k=1

v(m,p) =v, = {1+ A3 ail2- @-voH(EIm m, )’ (P mk)ﬂ (3)
_ N (m,)* +(p ) B
“(m’p)‘”{ v 2 (2[2—(2—vo)H(oﬁ)](mmk)Z(pmk)ZH

Relations (3) put forward the intricate effect daepen and closed microcracks in the elastic

moduli degradation of a microcracked medium. Letraie first for clearness the simple case of



a material weakened by a single array of parall@ranracks with unit normah. Since the
matrix is assumed to be isotropic, the effectivediom® exhibits the symmetry associated with
the geometric shape of microcracks, namely trassvisotropy with the privileged direction
The entire set of elastic moduli (3) is then fudgtermined by five independent coefficients (see

Appendix 1) :E(n), E(t), v(n,t), v(t,k) andpu 6t ) for any vectors andk forming withn

an orthonormal basis d¥ *. Their expressions are obtained from (3) :

E(n) =E, {1+%i ax (2—vo)H(0ﬁ)]

k=1

v (n,t) :v{1+€i ax (2—v0)H(0E)]
E(t) =Eo (4)
v (t,k) =vq

_ A ST
H(n,t) —uo[1+ vV ak}

k=1

According to relations (4), some important aspextshe unilateral effect of damage can be

emphasized :
- Among the aforementioned moduli, the Young moduli), but also the Poisson ratio

v(n,t), related to the direction normal to parallel maexks, are affected by the
microdefects change of state. In particular, trepover their initial values, i.e. those of the
undamaged material (that is respectivély andv,), at the closure of microcracks. It can
notably be noted that the recovery of the Young whegl E () to its initial valueE, has

been experimentally shown by Reinhardt, 1984 anchtRiai, 1990 during an uniaxial
compression test in the direction nfon a concrete specimen previously microcracked

orthogonally tan by an uniaxial tension test in this same direction

- On the other hand, the shear modulusn t ( tefmains unchanged by the closure of

microdefects (partial damage deactivation). Elastioduli E(m), v(m,p) and p(m p)



related to directions different from the princigades of the microdefects,(t, k) are then

only partially restored when microcracks get clogexicept for the shear modyli(m,p)

when (m)? = (ph)? = 1/2.

Figure 1 illustrates these remarks on the exampke @oncrete weakened by a single array of
parallel microcracks of normal, when unit vectors, m andp are supposed to be coplanar
(vectorm is defined by spherical angl@sandgin the orthonormal basig;,e,,e; =n) of P°®) ;

owing to the problem symmetry, we have thda(m)= ¢E(y(m,p)=v(¢) and
H(m,p) = K(g).

The particular nature of the microdefects contithu allows easily to extend these
considerations for an array of N microcracks wittfledent normal vectors : when microcracks of

normal n; are closed, they no longer contribute to the diggran of Young modulu&(n;) and
Poisson ratiov (n;,t;), for any unit vectort; orthogonal ton;. On the other hand, other moduli
E(t;), v(ti,k;) and p(n;,t;), for any unit vectork; orthogonal ton; and t;, remain

unchanged by the change of state of microcrackewhaln; .

According to the previous remarks, taking intocast the unilateral effect of damage as part
of macroscopic modelling can no longer be limitedtihe single restoration of the Young
modulus in the direction normal to closed microksacindeed, it should be noted that the
recovery affects also the Poisson ratio relatedhto same direction. In view of the lack of
experimental results concerning this last ppitihe micromechanical analysis seems to us a
judicious guide to macroscopic modelling of unitateeffect. The purpose of the next section is

now to exploit it in the framework of the model posed by Halm and Dragon, 1996.

! The recovery of Poisson ratios to their initialugacan yet be observed on initially anisotropimposites during
an uniaxial tension-compression test (cf. for exenddlix et al., 1993).



3. ANEW RECOVERY CONDITION::
APPLICATION TO AN ANISOTROPIC DAMAGE MODEL

The three-dimensional formulation proposed by Hanmd Dragon, 1996 postulates the
existence of a thermodynamic potentmgl namely the Helmholtz free energy, built upon the

following assumptions :

(i) Evolution of damage by microcrack growth is supplode be the only dissipative
mechanism, occurring in small strain, rate-indeemndnd isothermal conditions. A symmetric
second-order tensaris chosen as the single damage internal variabéetount for orientation

and extent of microcracks :

d=>d. ©n.” (®)

n, represents the unit normal to the set k of pdratierocracks andd, () a dimensionless

scalar function characterizing the related densfy microcracks. According to spectral

decomposition, tensaf can be written in its principal axes :
d= z div? (6)

where v; and d; are respectively the eigenvectors and eigenvatdietensord. Given the
previous decomposition, any damage configurationthes equivalent to three mutually

orthogonal sets of parallel microcracks.

(i) In the undamaged state, materials are supptsdx isotropic and linear elastic (wibkh
and U, the Lamé constants). The potential is taken linead, which corresponds to the
hypothesis of a dilute density of non-interactingcnocracks, and at most quadratic gnas
multilinear elasticity is assumed at constant damaesidual effects due to damage (Acker,

1987) are eventually represented by a linear temng,iindifferent to damage activation-

deactivation.

(i) The thermodynamic potential (1) of micromeales introduces a fourth-order tensorial

guantity whose influence, that can be neglectednwinérocracks are open, is crucial when



microcracks are closed (Kachanov, 1993). In ordexccount for this aspect within a simple and
efficient formulation, Halm and Dragon, 1996 usetemsorial parameter built upon the

eigenvalues and eigenvectorsdaf

D=ZdiViD4 (7)

According to these assumptions, Halm and Drago@6 J8opose a thermodynamic potential

holding two forms depending on whether microcraates open or closed (for clearness, only a

single set of parallel microcracks of unit normas first considered, thud = dv"?) :

wP (g, d) =w,(e) +g tr(eld) +a tre tr(e[dl) + 23 tr (e (& [d)

8
W (g,d) =wy () +g tr(eld) +a® tre tr(eld) + 2B tr(e[€[d) +ye:D:e

where wy (€) = (U2)A, (tre)* + o tr (2 ) is the free energy of the virgin material, g a stant
characterizing residual effects, aad3, andy constant coefficients related to elastic propsrtie
degradation due to damage. The coefficiemt®’, B andy depend on the recovery condition

selected in the modelling and on the mathematiestrictions imposed to the thermodynamic
potential in order to ensure the continuity of gteess-strain response at the transition between

open and closed microdefects states.

After a preliminary discussion on the recoveryditian initially postulated by the authors, we
propose subsequently to introduce in this modetwa alastic moduli recovery condition at the
closure of microcracks, which refers to the microhamical considerations developed in
Section 2. To this end, we will follow the processoduced by Halm and Dragon, 1996, with
the determination of conditions imposed first bg ttecovery and then by the continuity. The
guestion of damage evolution will however not keated here, as this part of the formulation
proposed by Halm and Dragon, 1996 is not concehyethe recovery condition introduced in

this section.



(a) Recovery condition

The recovery condition proposed by Halm and Drad®96 is based on the assumption that

the stiffness in the direction normal to closednmicacks is equal to its initial value, i.e. :
VDZ:Cclos:VDZZVDZ:CO:VDZ (9)

where C, = d%w, /0&? denotes the initial stiffness tensor aB&™ = 92w /d¢? its form when

the material is weakened by closed microcrackss Tdandition imposes the form of the
coefficient y = —a®° — 23* related to the control parametBr and leads in particular to the
following expressions for elastic modwti(v) andv { t)when microcracks are closed (for any

unit vectort orthogonal to/) :

()\0+(Xdosd)2
E(V) =Ao+2Up
(v) 0 Ho Mo + 1o
(10)
clos
v(v,t)=—)\°+a d
2(Ao +Ho)

The clear dependence of these elastic modula8i emphasizes the incomplete character of
their recovery whose intensity depends on thismpatar value. Besides it requires to restrict the
choice of this coefficient to a validity domaira{>*=> ) 0n order to ensure the physical

admissibility of Young modulus B/( ,)which cannot indeed take a higher value thaminine.

One may also note that, according to continuitydttions that will be detailed later on, Poisson

ratio valuev ¢ { )remains in fact unchanged, namely degraded, atitiseire of microcracks.

The recovery condition postulated by Halm and Bradl996 hence does not provide in the
general case a satisfactory description of theaterl effect of damage if we refer to the
micromechanical analysis. Accordingly, we suggesttroduce a new recovery condition which
assumes, at the closure of microcracks of unit abwthe total recovery of the Young modulus
in the direction given by and of the Poisson ratio related to orthogonadtions of vectors

andt, for any unit vectot, that is :



E(v) =E,
(11)
v(v,t) =v,

where E, and v, are respectively the Young modulus and the Poigatio of the virgin
material. From the thermodynamic potential (8), alezives the following expressions for

effective elastic moduli B{ andv { t )when microcracks of unit normelare closed :

(}\0 + aclos d)2

E(V) =Ao+2Ho +2(a% +2p% +y)d -
Ao +Ho

(12)
)\0 +a clos d

v = 2(Ao +Ho)

for any unit vectort orthogonal tov. The recovery assumption (11) implies consequehiy

necessary and sufficient conditions on the modedrpaters that follow :

a clos = 0
(13)
y =-2 Bclos

One can remark that the new recovery condition ¢hlYoung modulus B{ jand Poisson ratio
v (v,t) implies the full restoration postulated by Halnmdddragon, 1996 of the normal stiffness

in the direction given by.
(b) Continuity and opening-closure criterion

The continuity of the stress-strain response atirinsition between the two states of damage

(division of the strain space into two distinct damains separated by boundatyimposes to
the thermodynamic potential to be of cla®s This property is satisfied provided the stifffies

tensor discontinuityC] = C**" — C®* (with C°*" = 9?w°**"/d¢&?) takes such a form :

[C]=sN"? (14)

10



where s is a continuous scalar function &hi the unit normal to the hyperplakie(Curnier et

al., 1995). TherjC] must be singular and in particular of rank oneca@kding to relations (13),

this is verified if and only if :

(15)

At this time, it only remains to establish the 0ipg-closure criterion for microcracks, i.e. the

equation of the hyperplankl defined by N:g= 0 As conditions (13) and (15) lead to

[C]=4Bdv"*, we obtain the following criterion :
vielv=0 (16)

The set of microcracks of unit normals considered as active (respectively partialgctive) if

the related normal straia, = vI[g [V is positive (respectively strictly negative). Adgh the

recovery conditions employed are different, we camark herein that we obtain the same

opening-closure criterion as Halm and Dragon, 1996.

The spectral decomposition @feventually provides the form of the thermodynapuotential

for any damage configuration, that is :

w(g,d) =wy(e) +gtr(e@) +2B[tr(eE ) —€: > H(-e,)d v :g] 17)

3
i=1

with €}, =v; [V, the normal strain to the" equivalent set of microcracks. Figure 2 presents a
simulation of elastic modulE(m ,)v(m,p) and p(m p ) of a sandstone weakened by a single
set of parallel microcracks of normaglwhen unit vectors, m andp are supposed to be coplanar
(vectorm is defined by spherical angl@sandgin the orthonormal basig,,e,,e; = v) of P®) ;

owing to the problem symmetry, we have théa(m)= ¢E(yY(m,p)=v(¢) and
H(m,p) = H(g).

11



4. DISCUSSION

(&) The formulation (17) allows a characterization bé tdamage unilateral effect in better
accordance with the micromechanical analysis, rlegksss it leads to a particular form for the

stiffness tensor : in the basig,(Vv,,Vv,) built upon the eigenvectors df damage affects only

the diagonal components of the representative xatrihis tensor (see Appendix 2). This leads

in particular to a constant value of the Poissdio ra(v,t), namely its initial valuev,, during

an uniaxial tension test of axis(cf. figure 2). The introduction of the recovemndlition (11)
within the approach proposed by Halm and DragoA61l&nsequently restricts the range of the

modelling applications to a particular kind of gulasttle materials.

The predictive ability of the model may yet beagged to a larger class of quasi-brittle
materials by modifying the thermodynamic poten{&linitially proposed by Halm and Dragon,
1996. In agreement with the basic assumptions,uggest to introduce the additional invariant

trd (tre)® in the two forms ofy, that is for a single set of parallel microcraoksinit normalv :

wo"(g,d) =W, (€) +g tr(e[d) +o tre tr(ed) + 2B tr (e [2[d) + S trd (tre)?
(18)
W (g,d) =W (€) +g tr (e [d) + o tre tr(e[d) + 23 tr (g[8 [d) +°*° trd (tre)* +ye:D:g

Note that such an invariant appears notably indbal expression obtained by means of a

Legendre transform of the thermodynamic poteniinbf micromechanics (Krajcinovic, 1989).
A similar reasoning as carried out before allowsestablish the conditions imposed to the
clos

parameterst®®, B,y and 8 by the recovery postulate (11) and by the stressasesponse

continuity. From the thermodynamic potential (1&)e obtains the following expressions for the

elastic moduli EY )andv ¢ t ) when microcracks are closed :

+ (G clos + 26c|03)d]2
)\0 + “O + 26CIOSd

E(V) =)\0+2Ho+2(GCIOS+ZBCIOS+6C|OS+y)d—[)\0

(19)
)\0 +(aclos +26cl05)d
2(Ao +Ho +237°d)

v(v,t) =

12



for any unit vectoit orthogonal tov. The full recovery of these moduli is thus ensubgdhe

following necessary and sufficient conditions :

aclos + 2(1—2V0) 6clos =0
(20)
(1—2V0) aclos +4Bclos +2y =0

On the other hand, the continuity of the stresshstresponse is systematically satisfied if and

only if :

Bclos - B
(21)
(a _GCIOS)Z + 4y(6_6C|OS) =0

According to relations (20) and (21), parametef§®, 3, y and 8 must then be solution of

the following linear system :
aclos + 2(1_2VO) 6c|os =0

(1_ 2V0) aclos + 4Bclos + 2y: 0
(22)
Bclos = B

2[2B+ (@1-2Vv,)2 0+ (@L-2v,)a]a®™ = (L-2v,) (a? -83p)

for any coefficientst, B andd. One distinguishes two cases for which this sydtama solution :

() Parameters, B andd are such thalB+(1l-2v,)?d+(1-2v,)a# O the system is then

fully determined, i.e. of rank four. The uniqueldan is :

13



(1-2v,)(a® -8B D)
2[2B+ (L-2V0)? 8+ (1-2v,) ]

clos

Bclos — B
(23)
_ [4B+(L-2v,) a]?
A4[2B+ (L-2V,)2 8+ (L-2v,)0a]

y =

(a* -8BJ)
4[2B+ (L-2Vo)2 3+ (L-2v,)a]

clos — _

(i) Parameters, B andd are related by2B+ (1-2v,)?d+(1-2v,)a= @Gndoa’-8Bd= 0 (or
equivalently a =-4B/(1-2v,) and 6=2[3/(1—2v0)2) ; the system (22) is then undetermined
with one parameter, i.e. of rank three. WitA*, B andy as principal unknowns, the system

has consequently a unique solution :
aclos = _2(1_ 2VO) 6clos
B =p (24)

y=-2B+(1-2v,)* 5%

for any value of®®>,

One may note that when coefficientsB andd verify 2B+ (1-2v,)*8+ (1-2v,)a =0 and are

such thata® -8B &# Q the system (22) has no solution. In the subsecuam of this paper, it

is assumed that the validity domain of these par@mmexcludes such an eventuality.

According to relations (23) and (24), the stiffaésnsor discontinuity takes the form :

[Cl=Ad (K, VP2 +K, 1)72 (25)

14



where coefficients\, K, and K, are defined in table 1. This leads consequently toew

expression for the microcracks opening-closurecan :

K, VBV +K, tre=0 (26)

The set of microcracks of normalis considered as active (respectively partialpctive) if the

value of(J,= K, €, + K, tre is positive (respectively strictly negative).

According to the spectral decomposition and notifigr K, €}, + K, tre, the form of the

thermodynamic potential for any damage configuratsoeventually given by :

w(g,d) =wy(e)+gtr(el@)+atretr(ed) + 2R tr(e&[@) +dtrd (tre)?
(27)
SN e STHET) A (K, v 4K, 1] e

i=1

under the conditions recapitulated in table 1.

Compared with the thermodynamic potential (17) formulation (27) provides many

advantages :

A more general expression for the stiffness tengbere damage affects also the non-
diagonal terms of its representative matrix (seeefalix 3). It allows then a more realistic
description of the evolution of some elastic modlike for example the decrease of the
Poisson ratiov (v,t) during an uniaxial tension test with axiswhich is typical of some

quasi-brittle materials like concrete (cf. for exgenRamtani, 1990). Figure 3 illustrates the
improvements provided by this new approach on tteenple of a concrete weakened by a
single set of parallel microcracks of unit normva(as in section 3, elastic moduti(m , )

v(m,p) and p(m p) are studied in directions for which unit vectorsm and p are
coplanar).

The particular form of the opening-closure cidar whose modular character allows an
enriched description of the damage unilateral efféor example during an uniaxial

compression-tension test, the damage activationtgd@tion process may occur for a non-

zero lateral strain. One can note that we obtaen diiterion vie [v = 0 of the previous

15



section when parametecs 3 and & are such tha2B+ (1-2v,)?d+ (L-2vy)a # Oand

a+2@1-2vy)6=0.

An other key aspect of the formulation (27) consehe stiffness tensor whose non-diagonal

terms of its representative matrix in the basig, ¢,,v,) are affected by the damage activation-

deactivation process (see Appendix 3), while thamsgtry of this tensor and the continuity of
the stress-strain response remain preserved. Oyp@aota that this feature is directly owed to the

new recovery condition (11).

(b) It can also be interesting to examine the rlimdeproposed by Chaboche, 1993, which
assumes, in the case of a strain formulation, ahewing form for the effective stiffness tensor

C of the material :
- 3 , -
C=C+n ) H(e)Vvi*:[Co~-C]:v{"* (28)
i=1

where C denotes the stiffness tensor for fully active abads (all microcracks are openy;

represents a “principal” direction of damage (omisf) andn is a material parameter aimed at

characterizing the recovery intensitY £n<1). This formulation, based on the exclusive

modification of diagonal terms of the representativatrix ofC in the “principal” directions of
damage, is introduced in order to avoid any didoaity of the stress-strain response and

dissymetry of the stiffness tensor.

As the formulation proposed by Halm and Dragorf6l&his approach accounts only for a

partial elastic moduli recovery at damage deadtwmatFor example, if we apply the condition
(28) to the thermodynamic potential proposed in) (¢Q~3=02W°pe”/082), with, for v;, the
eigenvectors of tensar and n = 1(maximum recovery), we obtain the following exsies for

the thermodynamic potential :

w(g,d) =wy(e)+gtr(el@)+atretr(eld)+ 2B tr(e& @) +dtrd (trg)?
(29)

—s:i H(-e\)[(a +2B)d; +dtrd] v7* : ¢

i=1

16



which leads, in the case of a single set of clopadhllel microcracks of unit normat

(d =dv"?), to the elastic modulE(v) andv { {)that follow :

_[Ao +(a+28)d])?
Ao + 1o +20d

E(V) =Ao + 21,

(30)
Ao +(a+20)d

v(v,t)=
(.0 2(Ag + o +20d)

for any unit vectort orthogonal tov. The single condition (28) is then not sufficieot
corroborate the results derived from micromechaningeed, it must be completed by some
additional conditionsqd =3=0) which lead in such a case to the formulation @%p obtained

from the approach proposed by Halm and Dragon, 1996

(¢) In the recovery condition (11), perfect microcraaesure is implicitly assumed. An
alternative form of this condition may be proposedorder to account for an uncompleted

microdefects closure.

Let consider a medium weakened by a single seadllel microcracks of unit normal At the
closure of microcracks, the following elastic madcovery condition is postulated (for any

unit vectort orthogonal tov) :

E(V) =Eo+{1-@AE4(V)

(@) 0[01)? (31)
v(V,t)=ve+@-9)Avg (v, 1)

where AE4(v) and Avq(v,t) represent the damage contribution in the expraesgiespectively
of the Young modulus BA xand of the Poisson ratie v { , Wwhen microcracks are open, and

coefficientsg and¢ characterize the intensity of their recovery. &mtgular, when parameteqs

and¢ are such thag=¢ = ]1the recovery condition (31) is the one postulated.1).

(d) In the approach for the unilateral effect pregabin (17) and (27), the shear moduluy t ( , )

of a medium weakened by a single set of parallatraeracks of unit normal/ remains

unchanged by the closure of microdefects (cf. kaneple figures 2 and 3). This result is directly
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owed to the basic assumption of non-dissipativairgdi of closed microcracks lips ; microdefects
lips are indeed implicitly assumed to be perfetilyricated. This modulus recovery, which has
been clearly experimentally shown by Pecqueur, 88%a rock and Maire and Pacou, 1996 for
a composite, would imply to take into account thetibn on the microdefects lips. The theory
proposed in this aim by Halm, 1997, Halm and Dragb898 would then constitute an

appropriate framework to include the recovery cbadi(11) or (31), allowing consequently the

recovery of the whole elastic modui(v), v (v,t) andpu § { ) related to the direction normal to

microcracks. Note that a formulation accounting tfee shear modulus recovery has also been

proposed by Boursin et al., 1996 and Pottier, 1998.

5. CONCLUSION

In spite of recent advances in the macroscopicatting of unilateral effect - which solve in
particular the continuity problems arising whenuoed anisotropy is simultaneously described
(Chaboche, 1993, Halm and Dragon, 1996) -, thistije still remains an open research field. In
view of the lack of exhaustive experimental resohlisthis subject, the aim of this paper was to
establish, by means of a micromechanical analyises,influence of the microdefects opening-
closure on the effective elastic properties of @rodracked medium. The evidence of some
inconsistencies between derived results and egistiacroscopic theories has induced us to
propose a new elastic moduli recovery conditiorthat closure of microcracks. This original
postulate, which has been introduced in the ampardamage model of Halm and Dragon,
1996, allows to extend the physical background ho$ tmodel, while preserving its initial
advantages. An improved version of this model hss been studied, which enlarges the scope
of its applications and allows a better agreemeith wome experimental results. Further
investigations need now to be conducted in ordeviuate the both aspects presented in this
paper, namely the recovery conditioHo(w? and the microcracks opening-closure criterion
(When?, by means of an extensive experimental study amous materials and for different

loading paths.
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H(€)/ Ko

E, =3500MPa,v, = 0.2

V’SD

1 3
—>a =01
vk2=1k

Figure 1. Generalized elastic moduli normalized by theitiahvalues
of a concrete weakened by a single array of pamallerocracks of unit normai

(—— open microcrackss— closed microcracksy- unit circle).
- Thermodynamic potential (1) -
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H(€)/ Ko

E, =21000MPa, v, = 032

B = -14280MPa

d=0.1

Figure 2. Generalized elastic moduli normalized by theitiahvalues
of a sandstone weakened by a single set of panaitebcracks of unit norma
(—— open microcrackss— closed microcracksy- unit circle).

- Thermodynamic potential (17) -
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V’SD

23

Eo, =3500MPa, v, = 0.2

o =-8420MPa, 3 =-18800MPa
0=-1250MPa

d=01

Figure 3. Generalized elastic moduli normalized by theitiahvalues
of a concrete weakened by a single set of pamali@ocracks of unit normal
(—— open microcrackss— closed microcracksy- unit circle).

- Thermodynamic potential (27) -



() a, B, d such that

2B+ (L-2V,)28+ (1-2vo) a 2 0

(i) a, B, o such that

2B+ (L-2v,)?*0+(@1-2vy)a =0
ando®-8B86=10

/\ 1 2[3 clos
5 2[———5 -0
2[2B + (L-2v,)2 8+ (L- 2V,) a] (1-2v,)
Ky 4B+(1-2v,)a 1-2v,
K> a+2(1-2v,) 8 -1

Table 1. CoefficientsA, K, andK,.
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APPENDIX 1

Generalized moduli expression for a transversayrapic material with axe. (n,t,k) is an
orthonormal basis oP * andm andp two unit orthogonal vectors :

1+2v(n,t)+ 1 1 )
E(N)  E®M) uht)
2v(n,t)+ 2 1 1 ]

- )+
E() E® u®mt) ™ EQ)

E(m) =[ (mm)*(

—(mm)* (

1+2v(n,t)+ 1 1 )
E(n)  E@®) p(nt)

~(min)+ (eI VE(?:)) i Vét(’tl;) ) Vét(’tl;) ]

v(m,p)= —E(m)[ (mm)® (pm)* (

1+2vt), 1 1
E(n) E(t) u(nt)
20+v(tk) 1 | 2@+v(tk)) E

E(t) H(n.t) : E(t)

u(m,p)=[ 4mm)?® (pm)* (

—((mm)* +(pm)*) (
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APPENDIX 2

Expression of the representative matrix of thdretgs tensor associated with formulation (17) in

the orthonormal basisv/(,v,,V,) built upon the eigenvectors of tensbf\Voigt notation) : case

of a material weakened by a single set of paraiiefocracks of unit norma, (d =dv;?).

. Open microcrackgey, = v, 8V, 20) :
[Ao+2u+4Bd A, Ao 0 0 0 |
Ao Mo+2le Ao O O 0
Ao Ao Mo*24o O O 0
0 0 0 W O 0
0 0 0 0 pe+Bd O
I 0 0 0 0 0 po+pd]
. Closed microcrackgey = v, BV, <0) :
Mo+2Ho Ao A O O 0 ]
Ao Mo*2lo As O O 0
Ao Ao Aot+24u, O O 0
0 0 0 W O 0
0 0 0 0 po+pd O
0 0 0 0 0 po+pd]
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APPENDIX 3

Expression of the representative matrix of thdretgs tensor associated with formulation (27) in

the orthonormal basisv/(,v,,V;) built upon the eigenvectors of tensb{\Voigt notation) : case

of a material weakened by a single set of paraiiefocracks of unit norma, (d =dv;?).

(i) a,petdare suchthaB+ (L-2vy)?d+(@1-2v,)a# 0

. Open microcrackg =K, v, 8, +K, tre =0) :
Ao +2Uo+2(0+2B+8)d Ag+(a+28)d Ay +(a+28)d 0 0 0 i
Ao +(0+20)d Ao +2 20d Ao +20d
o +(a+29) otdHo + ot 0 0 0
Ao +(a +28)d Ao+25d  Ao+2o+28d O O 0
0 0 0 W O 0
0 0 0 0 We+Bd O
I 0 0 0 0 0 po+pd]
. Closed microcrackg, =K, v;[8[V; +K, tre <0) :
i A2 Ao Ao ]
Ao+2Ug————Xd Ap— d Ag— d
oo ()\o"'uo)zx ’ )\0+on ° )\o"'uox 0 0 0
Ao— Ao x d Ao +2U,—-Xd Ao —Xd
0 Ao +1lo ot 2o =X 0~X 0 0 0
Ao
o~ Xd )\O_Xd )\0+2“0_Xd O O O
Ao +Ho
0 0 0 W O 0
0 0 0 0 w+pd O
I 0 0 0 0 0 po+pd
2 (2
with y = (ho +1o)* (o> ~8B?)

2[2(No +Ho) B+UES+Ho (Ao +Ho)a]
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(i) a, B etd are such thaB+ (1-2v,)?d+(1-2v,)a= Gnda® -8B &= 0 (or equivalently

a=-4p/1-2v,) andd=2B/(1-2v,)?) :

. Open microcrackgy =K, v, 8V, +K, tre =0) :
i 4N B 4o (Ao +Ho)B 4ho (Mo +Ho)B 1
Ao +2 d A +——m——d A +————————d
T AR T 0o 0 0
2 2
)\0+4)\0()\02+u0)Bd )\0+2u0+4()\0+50) Bd )\0+4()\0+50) Bd
Mo Mo Mo 0 O 0
2 2
)\0+4)\0()\02+L10)Bd )\0+4()\o+zuo) Bd )\0+2u0+4()\o+zuo) Bd 0 0 0
Ho Ho Ko
0 0 0 Mo 0 0
0 0 0 0 Mo+pd 0
i 0 0 0 0 0 Ho +Pd |
. Closed microcrackgl, =K, v,[8 [V, +K, tre <0) :
B 2 sclos clos clos ]
Ao+ 211 + 2N\5 0 : )\0+2)\06 q )\0+2)\06 q
(Ao +Ho) Ao +Ho Ao +Ho 0 0 0
2)\060|OS
)\ + d + + clos + clos
0 Mo +pie Ao+ 2, +28°°d Ao +20°d 0 0 0
clos
)\O+Md Ao +28%°d Ay +2u,+25°°d 0 0 0
Ao +Ho
0 0 0 Ho 0 0
0 0 0 0 uo+Bd 0
i 0 0 0 0 0 Ho+fd
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