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Absfrad -The aim of this paper is to discuss the reliability of 
a new algorithm based on the augmented Lagrangian method 
(ALM) coupled with the boundary element method (BEM) for 
design optimization in electromagnetics. These methods, 
implemented as a computer code, have been applied for the 
solution of electrostatic problems. Two analytical problems are 
considered and the convergence of the ALM for different 
starting points has been noted. Also, the algorithm is robust 
with respect to the number of design variables. Moreover, two 
electrostatic problems have been solved and the efficiency of 
the ALM coupled with the BEM has been observed. 

I. INTRODUCTION 

Recently, the application of electromagnetic field analysis 
coupled with optimization methods to solve inverse 
problems has been of increasing interest. Numerical 
methods such as the fmite element method (FEM) and the 
boundary element method for field analysis and an 
optimization method based either on a deterministic or 
stochastic approach have been used. The choice of the best 
algorithm to be used depends on several factors, such as the 
objective function complexity and the number of design 
parameters. 

The BEM possesses certain characteristics, such as the 
discretization only of the boundary, the facility with which 
infinite boundaries can be represented and the high accuracy 
in potential and flux results, that make it appropriate to be 
used for electrostatic optimization problems. 

According to Bellina et al., the stochastic methods, 
especially that of the simulated annealing, are attractive 
when the objective function evaluation is fast. and the 
number of design parameters is large. These methods give a 
good approximation of the global minimum. In the other 
cases, these methods are expensive in time [ 11. 

Usually, in design optimization in electromagnetics the 
objective function is constructed as a function of the flux, 
requiring its evaluation either by BEM or FEM. The number 
of field calculations is thus a very important factor to be 
considered when choosing an algorithm. 

In the last two years, some papers have been dedicated to 
the study of the augmented Lagrangian methods, also called 
the multiplier methods [2], [3]. These methods solve the 
problem by minimizing a sequence of unconstrained 
problems defined using the objective and constraint 
functions. However, these methods have a special structure 
that make them well-suited for handling large optimization 
problems. This special feature is that all implicit constraint 
Manuscript received November 1, 1993. 

functions are collapsed into a transformation function <D 
whose gradient computation involves only one set of back- 
substitutions. Also, the active set strategy offered by the 
ALM can be highly useful when the number of constraints is 
quite large. 

In this paper, the ALM coupled with the BEM for 
optimization in electrostatics is presented. 

11. THE BOUNDARY ELEMENT METHOD FORMULATION 

The electrostatic field problem in the absence of a volume 
charge distribution is represented by the following Laplace 
equation: 

v 2 u  = 0 (1) 

where 
formulation for (1) using Green's theorem gives: 

is the electrostatic potential. The boundary element 

c u  = (q'u-u'q)dl [ 
where g is the normal derivative of g, g* is the fundamental 
solution, g* the normal derivative of this fundamental 
solution and C, a constant. 

The equation system obtained by applying (2), after the 
discretization of the boundary, the substitution of the 
boundary conditions and separating the unknown and known 
variables is given in (3). 

(3) 

In (3), [A] is the coefficient matrix, {x} is a vector of 
unknown values of potential and flux on the boundaries and 
{b} is an independent vector. 

111. THE AUGMENTED LAGRANGIAN METHOD 

The constrained non-linear optimization problem can be 
expressed as: 

min f(P) 
with gi(p)=O i = l , I  

gi(p)<O i = l + l , m  
(4) 
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where f@) and gi@) are the objective and the i-th constraint 
function and p is a vector of design variables. 

In the ALM, all functions in (4) are collapsed into a single 
transformation function a, also called the augmented 
Lagrangian. This function is given in [4] as: 

By solving (9) for each design variable the gradient of the 
objective function can be obtained. If any constraint is a 
function of the flux, its gradient can also be calculated. 

V. ANALYTICAL RESULTS 

Above, r is a vector of penalty parameters and pi=riei is the 
Lagrange multiplier associated with the i-th constraint. 
Values of r and 8 are chosen at the beginning of the 
optimization process and at the end of each unconstrained 
minimization they are updated and the process repeated 
until convergence. 

The original problem is replaced by a sequence of 
unconstrained subproblems that need to be solved at each 
iteration. The subproblem at the j-th iteration can be written 
as follows: 

To solve the unconstrained subproblem, a method 
minimizing a quadratic approximation to @ is used. This 
method is derived from Taylor series, and limits the change 
in the design to lie within a certain region of trust. It is 
known as the trust region method [ 5 ] .  

IV. OPTIMIZATION IN ELECTROSTATICS 

To discuss optimization in electrostatics the following 
objective function is considered: 

A computer code based on the ALM was developed and it 
has been tested using two test problems: the Rosen-Suzuki 
problem [3] and that one given by the minimization of the 
Rosenbrock's function f2 (Fig. 1) [6]. 

The first problem is a non-linear constraint minimization 
problem of four design variables p = (PI, p2, p3, p4)T and 
three constraint functions, as shown in (10). 

g3(P) = 2P: +P: + P i  +2PL -PZ -P4 - 5 5  

(10) 

The optimum objective function value for this problem is 
fl@*) = 56 with the optimal design p* = (0, 1, 2, At p* 
the constraints 1 and 3 are active. 

In the second problem, a non-linear function of two 
variables p = (pl , p2 )T is to be optimized. This function is 
given by (1 1). It is obvious that this function has a optimum 
inp* = (1,1) withf2@*) = 0.0. 

min fz(p) = 100(pf -p2)2 +(l-p,)' 

(7) -2.048 I pk 5 2.048 k = 4 2  

where E. and Eoj are respectively the computed and the 
specified normal electric fields at testing point j .  

The total derivative of the objective function with respect 
to the k-th design variable pk can be written as: 

(8) 
~- d f = a f + - -  df a b >  
dPk @ k  'Ix> %k 

where the last derivative on the right hand side may be 
found from differentiating (3): 

(9) A-=--- 
@ k  @ k  @, 

Fig. 1 Rosenbrock's function f2@) 
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TABLE I 
ROSEN-SUZUKI PROBLEM. 

0.0000 3.0000 3.0000 -4.0000 
0.0000 -3.0000 3.0000 -2.0000 

PI 
p2 

p4 

p3 0.0000 0.0000 3.0000 2.0000 

0.0000 5.0000 3.0000 4.0000 

100.0000 178.0000 73.0000 160.0000 f2 
0.0002 -0.0020 -0.0015 -0.0015 
0.9998 0.9991 1.0005 1.0024 

2.0000 1.9993 2.0009 2.0042 

* 
P2 

p4 -1.0000 -1.0021 -0.9988 -0.9837 
p3* 

f2- 56.0002 56.01 11 56.0000 56.0273 

nbcal 69 127 82 76 

TABLE I1 
ROSENBROCK'S FC"CTION F2. 

0.0000 1.0000 -1.0000 2.0000 
0.0000 0.0000 1.0000 -2.0000 

1.0000 100.0000 4.0000 3601.0000 

1.0014 1.0089 0.9885 1.0052 
1.0027 1.0174 0.9769 1.0101 

0.0000 0.0001 0.0001 0.0000 

nbcal 289 285 333 280 

PI 
p2 

f2 

p2 

f2" 

Several computations using different starting points were 
made. The results are shown in Table I and 11, where nbcal 
is the number of objective function calculation. The ALM 
perform well for all tested points. 

VI. ELECTROSTATIC PROBLEMS 

The code that implements the BEM in conjunction with 
the ALM is named BEM2D [7]. Two electrostatic 
optimization problems were chosen to illustrate its 
application. The first problem to optimize is the design of 
the lower comer of the uniform square plates, as shown in 
Fig. 2, and in the second, the design of the HV electrode of 
the insulator shown in Fig. 5 is to be optimized. 

The first problem was optimized using the following 
objective function: 

min f(p) = $ (E; -E:~)~  
(12) J= I 

' Pk 'Pk,, k = 1, ..., nv P ~ m  

where pk is the distance of the k-th point on the movable 
boundary (Fig. 2), either E. and Eoj are the calculated and 
desired normal electric field values at the j-th test point, also 
on the movable boundary. The number of design variables 
nv was made equal to 11, Eoj was kept equal to 1.2 V/m for 
all testing point j and the bounds pkmh and phax were made 
equals to 0.936 and 1.144 m respectwely. It can be seen that 
the initial design is not feasible. 

Fig. 3 displays the normal electric field values at the test 
points on the movable boundary, before and after the 
optimization. As can be seen, the optimization process start 
with an "infinite" value for the electric field on the lower 
comer to obtain a quasi-uniform electric field distribution. 

The boundary evolution during the optimization process is 
shown in Fig. 4. 

f /, ; /, , , 

+ __ -1 - =  
l m  a n  

Fig. 2 Uniform square plate geometry with the design variables and the 
boundary conditions. 
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Fig. 3 Electric field at the test points on the movable boundary. 

Fig. 4 The boundary evolution during the optimization process. 

The second problem to be optimized is an insulator that 
has been used to test differents softwares of electrostatic 
field calculation [8]. The goal is to achieve a maximum 
normal electric field equal to 30 V/m in the region of 
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interest. Five design variables p = (pl, p2, p3, p4, ps)T, which 
shall be optimized, are indicated in Fig. 5 .  The boundary 
conditions were made equals to 1 and 0 V on the higher 
and lower electrodes respectively. 

The following objective function was employed to solve 
this problem: 

min f(p) = (E;,-E;)' 

with g(p)=~,Z-(Eo,,,j,, +Eo,,)Emax + ~ o - ~ o ~ ,  ' 0  
P k m  ' P k  'Pk,, k =1, ..., nv 

(12) 
where Emax is the maximum normal electric field found 
among all testing points on the movable boundary, Eo is the 
desired maximum normal electric field on the region of 
interest and either Eomh and Eo,, are the inferior and 
superior bounds for the normal electric field in the 
constraint function g@). Above, Eomh and Eo,,, were made 
equals to 0.0 and 30.03 Vlm respectively. 

The results are schematically shown in Table I11 and the 
normal electric field before and after the optimization 
process on the higher electrode is displayed in Fig. 6. The 
maximum normal electric field values found before and 
after the optimization were 
respectively. 

V = l  

180;  1 1 
I v = o  

41.54 and 29.997 Vlm 

I \ 

I m 

Fig. 5 Insulator (left) and a zoom of the boundary to be optimized showing 
the five design parameters @1 ,...,~5), where f denotes a fixed point and m a 

mobile point (right). 

TABLE 111 
INITIAL AND FINAL DFSIGN VARIABLE VALUES. 

Design variables Initial geometry Optimized geometry 

P] ("1 10.0 19.4 
P l  (degree) -90.0 -90.0 

P3 ("1 10.0 15.8 

P5 on" 30.0 30.5 

Emax (Vim) 41.54 29.997 

P4 (degree) 0.0 0.0 

0.82 0.8 0,78 0.76 0.74 0.R 0.1 0.68 0.66 8.64 0.62 0,6 

Z (mm) [on the movable boundary] 

Fig. 6 Normal electric field on the higher electrode. 

The result obtained represents a gain of 27.8 YO on the 
maximum normal electric field, which can be considered as 
very good result. 

VII. CONCLUSION 

The augmented Lagrangian method coupled with the 
boundary element method to solve optimization problems in 
electrostatics was presented in this paper. The results 
obtained in the solution of the two test problems show that 
the ALM is reliable and robust with respect to the number of 
design variables as well as with respect to different starting 
points. Its performance is very attractive. Only nine field 
calculations were executed in the insulator optimization. 
The solution of the electrostatic problems shows that the 
ALM-BEM works well and the optimization of electrostatic 
devices offers no problems. 
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