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Abstruct - In this paper the simulated annealing algorithm 
coupled with the tabu search method for continuum 
optimization problems is presented. Basically, the new 
algorithm is obtained by assembling certain characteristics of 
the tabu search method into the standard simulated annealing. 
The numerical performance of the new algorithm is discussed 
based on the optimization of some classical test functions. 
Finally, an insulator geometry is optimized using this 
algorithm coupled with the boundary element method in order 
to test it in electromagnetics. 

effort. On the other hand, a higher rate means that many 
moves are accepted and the search was made in a region too 
small also wasting computational time. In other words, this 
strategy searches to obtain a state of quasi-equilibrium for 
each temperature in analogy with the physical process of 
annealing. They proposed two equations to update the step 
vector h as given bellow: 

hi'=hi[I+ci(pi-0.6)/0.4] i f p i  > .6 

The simulated annealing algorithm (SA) was first 
proposed in the area of combinatorial optimization, that is; 
when the cost function is defined in a discrete domain [ 11. In 
this case, the design variables are discrete and the random 
moves correspond to permutations in the list of possible 
moves. It happens as in the traveling salesman problem, 
where the random moves correspond to permutations in the 
list of cities to be visited. Therefore, many important 
problems are defined as functions of continuous variables 
and the application of the SA requires an efficient strategy 
to choose the random step h. This strategy must be problem 
independent and self-regulatory to allow SA algorithm to be 
implemented efficiently and reliably. 

Some authors, e.g., Vanderbilt and Louie [2] and Corana 
et al. [ 3 ]  have proposed strategies to deal with this problem. 
The former chose the step as 

h = Qu (1) 

where the matrix Q controls the step distribution and u is a 
vector of random numbers (uI,u2 ,....., un). Each ui is chosen 
independently. This matrix can be generated as an isotropic 
distribution with an RMS average step length. The strategy 
suggested by Corana et al to adjust the step vector is based 
on the ratio of accepted to rejected moves. This idea consists 
in changing the step to keep the ratio close to one. A lower 
rate means that many moves are rejected and the search was 
made in a too large region, thus misusing computational 

where pi is the ratio of the number of accepted moves to the 
number of proposed ones and ci is a control parameter for 
the i-th direction. Using the equations above, a self- 
regulatory strategy is obtained. In the initial process, Corana 
et al. used the value of hi = 0.5@, - ad, where ai and bi are 
the inferior and superior bounds for the i-th step. 

In the solution of some analytical problems using this last 
strategy, it is remarked that the results obtained presented 
some dependency from the starting temperature. The 
principal cause is due to the difficulty to adjust the step 
length h. 

This paper examines how the characteristics of the tabu 
search algorithm assembled into the standard simulated 
annealing improves it. The principal idea is to deal with a 
vector of different step lengths in place of only one step. 

TABU SEARCH ALGoRITHM 

The Tabu Search method (TS), initially proposed for 
combinatorial optimization by Glover, was extended to 
continuous variables by Hu [4]. Glover's idea, as 
summarized by Hu, is as follows: 
0 For the given point x and the given step h, let N(x,h) be 

the neighbour of x, defined as N(x,h) = (x : /x-yI I h ) .  
0 For the step h and the direction r, let y be the move from 
x, i.e., y = x+rh, where r is a random number that belongs 
to (-1,l). 
Given the set H={k,, h2, ...., hnd), the list of inactive steps 
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then save y as the current solution x and add its 
corresponding step h to T. When T is full, T is updated 
empty and the total process is reiterated, otherwise the 
above procedure is repeated for the next active step. 

In global optimization problems, the moves in neighbours 
of different sizes prevent the search from trapping at a local 
optimum. 

THE METHOD 

The flow chart of the modified simulated annealing 
algorithm (MSA) is given bellow. Basically, it is the SA 
algorithm proposed by Corana et a1 (as applied by Simkin & 
Trowbridge [ 5 ] )  with some characteristics of the TS 
algorithm incorporated [6].  

Initialise c 

Met-alg 

1 0  I"-% I Yes r-" P < f o  

c 

j = j +  

~ 

close to 1.  ensures that only the violated constraint fhction is 

ND: number of steps 
NC: number of auxiliar cycles 
LIM: limiie of success m s  
i: i-th continuous variable 
j: j-th auxiliar cycle 
k: k-th step 
U: wh success 
temp: temperature 
5 improved solntian 

f = f o  

end 

Fig. 1. Flow chart of the MSA algorithm. 

The main difference between the MSA proposed here and 
the SA is that in the former the vector of steps h is replaced 
by ND vectors of steps, which are stored in matrix H. Also, 
NC auxiliary cycles are executed for each active vector h, k 
E f l , .  . .,ND]. After NC*ND cycles or if U > LIM, matrix H is 
adjusted, using the same criteria as in [3] and the 
temperature in the SA is reduced by a factor smaller but 
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The MSA starts with a given initial point and a succession 
of them is generated by changing the value of one variable 
at time with the rule xi = xi +rhj,k.  In this equation i 
denotes the i-th variable, k the k-th step and r is a number 
whose values could be randomly +1 or -1. The last 
suggestion is proposed in [7]. 

The procedure used to calculate matrix H [4], is: 
- First, consider that the objective function is defined as 
a function of n continuous variables xi, i E f l ,  ..., n], and 
eachxj E faj,bif. 
- Now, the ND vectors of N can be calculated as follows: 

hil = (bj -aye 
h , ,  = hj,,/c 

= hi,nd-l'C 
where c is a factor greater than 1, for example c=2. 

The condition when the number of success moves U is less 
than LLM in the MSA is used as a supplementary test. It 
enables the algorithm to update matrix H and the 
temperature TEMP, when the number of success moves 
reaches the limit imposed. This condition save 
computational time because of the total number of auxiliary 
cycles that is not completely iterated. 

The deviation between two or more consecutive values of 
the objective function, in addition to the test if the value of 
the temperature is less than a small number, say TOLTEhW, 
and a limit in the number of function evaluations can be 
used as a stop criteria. 

COUPLING THE MSA WITH A CODE OF ELECTROMAGNETIC 
FIELD CALCULATION 

A code based on the finte element method or boundary 
element method can be coupled with the MSA algorithm via 
the objective function. The constrained non-linear 
optimization problem in electromagnetics generally involves 
problems of the form: 

(3) 

where &(x) is the objective function, g&x) is the 1-th 
constraint function and x=(xI,x 2...xJ is the vector of n 
degrees of freedom (x can be either a vector of geometric 
parameters and/or electrical field or other electrical 
quantity that can be implicitly function of the geometric 
parameters). 

Using a transformation as in the penalty methods, the 
original problem stated above can be rewritten as an 
unconstrained minimization problem, as shown in (4). 

(4) 
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considered. Now, the transformed problem can be solved by 
the MSA algorithm. 

RESULTS 

Analytical Results 
A computer code which was developed based on the MSA 

algorithm was tested using the same two test functions 
reported in [8] They are the "exponential" functionfi and 
the Rastrigin's functionfi 

The functionh is a continuous, bimodal function of two 
variables x = (xl,xU)' 

f , ( x )  = 20-e(-Z:(XI-'5?+') +e( -Z : (X , -25 )2+1 .0~J  

( 5 )  (-C(X,-3 5)2+1 I )  -e 
O s x ,  < I O  i=1,2 

This function has two local minima. The global minimum 
can be found at x*= (3.59585;3.59585)T to give 
fi(x*) = 17.30889. 

(8) (b) 

Fig. 2 (a)."Exponential" function fl(x) and @) Rastrigin's function f2(x). 

The second functionf2 is a continuous, multimodal test 
function of n continuous variables. For xi E {O, IO) there are 
10" local minima and the global minimum can be found at 
x*= (2.5; ...; 2.5)* giving fi(x*)=O. 

@astrigin's function), TEMPt+l = 0,95*TEMPf, 
TOLTEMP=O.OOl and C = 2. 

The results are shown in TABLE I and 11, where 
ql* = f i ( x J  - f i (x*)  and q2* = f2(xJ.  The number of function 
evaluations is denoted by NEE. Note that the total number 
of possible cycles at each temperature NC*ND were made 
constant and equal to 1 O*n, where n is the number of design 
variables. These computation were performed using simple 
precision. 

TABLE I 
"EXPONENTIAL" FUNCTION F1. 

Point ND 1 5 10 15  20 
A NBC 909 1102 855 751 842 

q,* 0.18334 0.00037 0.00003 0.00014 0.00006 
B NBC 811 1097 832(*) 724 724 

q, * 0.03072 0.00076 0.28051 0.00033 0.00033 
C NBC 712 1091 921 763 834 

q,* 0.07934 0.00059 0.00017 0.00003 0.0001 1 
D NBC 758 1056 880 763 777 

a . *  0.49174 0.00026 0.00016 0.00019 0,00011 
(*) Local minimum. 

TABLE I1 
RASTRKGDJS F'UNCTIONF~. 

~ 

Point ND 1 5 10 15 20 
A' NBC 4825(*) 7738 7534 6311 5504 

q,* 18.07629 0.32427 0.00920 0.00468 0.00539 
B' NBC 3345(*) 7145 7453 5919 5450 

q7* 10.52338 0.54167 0.00784 0.00360 0.00636 
c' NBC 4679(*) 8145 7864 6242 5692 

q,* 5.40686 0.20988 0.01038 0.00281 0.00237 
D NBC 2166(*) 7382 7219 5617 5282 

q7* 10.52417 0.00000 0.01090 0.00634 0.00000 
(*)No convergence. 

The performance comparison in terms of accuracy and the 
number of function evaluations, for several values of ND, 
using three points generated randomly, is presented in 
Fig. 3.  It was used the same parameter values as before 
except for TOLTEMP, which it was made equal to 1E-5. f i ( x )  = I O n + z [ ( x i  -2.5)' -10cos2x(xi -2.5?] 

iaaa i=l 

n = 10 x = ( x , , . . , x ~ ~ J ~  o I xi 5 I O  

Several computation using different start points and ND 
values were executed. The start points A, B, C and D for the 
first function and A', B', C' and D' for the second one were 
used: 

A={ 1.0,9.0)T 

C=(4.0,1.0}T 
D={7.0,9.0}T 
A'=(0.5,0.2,0.3,0.4,5.0,9.0,8.2,2.0,4.0,3.2>T 
B'=( 1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0}T 

D'={O.0,l0.0,O.0,l0.0,O.0,1O.0,0.O,10.0,0.O,lO.0>T. 

B={O.O,l.O}T 

e={ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0>~ 
The termination criteria used was only the test on the 
temperature value. The main parameters used were: 
ND={1,2 ,.., 201, NC=lO*n/ND, LIM=MIN(n,ND), 
TEMP0=O. 1 ("Exponential" function), TEMPO=l.O 

iaa 
io izooa 

a,i 9w0 

1 

% 001 $! 
0,001 6w0 

o,ooa1 
o maai 3000 

a wDam 
a oaawoi a 

1 3 5 7 9 11 13 15 17 19 

nd 

I- A _ _ _  B C - N B C A - - - " B C _ B - - - - -  NBC-C 

Fig 3 Rastngm's function f (x) with ten variables generated randomly 

The MSA works quite well for all ND values. It has been 
noted that the best results are given by using a number of 
steps greater than ten (NO > IO). For ND=l,  the algorithm 
works as the standard SA. It is interesting to point out that 
for ND=l ,  the number of function evaluations necessary to 
reach the optimal result is large, and the results are 
dependent upon the starting temperature in the SA. 
Changing the test U < LMin the MSA to U < 5*LIM, after 
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to U < lO*LIM and U < lOO*LIM, for the point A', the 
standard SA reaches a point near the global minimum only 
for the last case. In this test, the number of field evaluations 
was 8224, 10380 and 17218 respectively. The values of the 
objective function in this three cases were 4.28085, 8.38059 
and 2.09673 in the same order. 

Electrostatic Insulator 

The goal in this problem is to find a maximum normal 
electrical field on the lower electrode equal to E,. The 
optimization problem was formulated in the following way: 

2 min f (x) = (Ema - 
with xmiq xi xmq i = 1,. , . ,5 (7) 

where x is the vector of design variables (Fig. 4). Emax and 
E,  (E, = 13G V/m) are respectively the maximum calculated 
and the desired normal electric fields on the movable 
boundary. 

to optimize 
Fig. 4. Insulator for distribution lines (left) and a zoom of the boundary to be 
optimized showing the design parameters. 

Two optimization are presented for Merent values of 
ND, in order to show the power and the applicability of the 
new algorithm. The parameter values used in the MSA to 
solve this problem were: ND = {lo, 201, NC = 1 6 W D ,  LA4 

The termination criterion used in this case was simply the 
test on the number of function evaluations, after each cycle 
of temperature. This choice was made to prevent a great 
number of field analysis. Using this test, the number of 
cycles of temperature performed were only one for the first 
case and two for the second one. 

The results are shown in TABLE 111, where the optimized 
parameters for ND = 10 and ND = 20 are denoted by Xopt,, 
and XopbO, respectively. The maximum normal electric 
field calculated before the optimization was 188.61 V/m. 

The optimized parameters for the two simulation cases 
are approximately equals. Note that the parameter x3 
reaches its maximum value in both the cases. Also, these 
results show that MSA can be used to optimize real 
problems. 

Fig. 5 shows the normal electric fields for the initial and 
the optimized geometries for the different optimizations as 
functions of the ordinate z along the movable boundary. 

The result obtained represents a considerable gain on the 
maximum normal electric field, which can be considered a 
satisfactory result. 

- - 8%, TlD4Pt+l = O.95*lEWt, TEMPo = 0.1 and C = 2. 

TABLE 111 

Parameters Xinit Xmin Xmax Xopt,, Xoph, 
radius x, (m) .019 .010 .025 ,01736 .01719 
angle xI) 48.0 40 60 54.88 54.73 

~ A N I ) F I N A L D E s I ~ V A R I A B L E V A L U E F O R N D = { ~ ~ , ~ ~ ) .  

radius x2 (m) .0025 .002 .010 .010 .010 
angle x1 -10.0 -20 0 -18.11 -1869 

. ,  
NRC XO 138 

0,11 0,l 0.09 0,08 0.07 0,06 0,OS 

z (m) 

Fig. 5 .  Normal electric field on thc movable houndary fin the initial and the 
optimized gcomctries (h / )= ( /  0,201). 

CONCl ,L'SIOK 
A new simulated annealing algorithm couplcd with the 

tabu search method for design optimiyation was presented in 
this paper. Thc analytical results have shown that MSA can 
bc applied to solve complex global optimimtion problems. 
Among thc advantages of MSA, it can be mentioned that no 
calculation of gradient is nccessary and also that its 
implementation is very simple. Whcn solving a real 
problem, if the main interest is to find an improved solution, 
the number of function evaluations can bc uscd to prevent 
numerous clectromagnctic ficld computation. Moreover, a 
small number of auxiliary cycles in addition to a small 
TEMP valuc will also work in the samc wag. 
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