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We present computer simulation data for the effective permittivity~in the quasistatic limit! of a
system composed of discrete inhomogeneities of permittivitye1, embedded in a three-dimensional
homogeneous matrix of permittivitye2. The primary purpose of this paper is to study the related
issue of the effect of the geometric shape of the components on the dielectric properties of the
medium. The secondary purpose is to analyse how the spatial arrangement in these two-phase
materials affects the effective permittivity. The structures considered are periodic lattices of
inhomogeneities. The numerical method proceeds by an algorithm based upon the resolution of
boundary integral equations. Finally, we compare the prediction of our numerical simulation with
the effective medium approach and with results of previous analytical works and numerical
experiments. ©1996 American Institute of Physics.@S0021-8979~96!06815-6#

I. INTRODUCTION

In recent years, extensive research has gone into study-
ing the dielectric properties of heterogeneous materials. The
reasons are not hard to find. On the one hand, it provides
fundamental problems which are not completely answered,
e.g. stochastic transport in disordered media, metal insulation
transition.1–3 On the other hand, industries such as aero-
space, electronics and others, have continuously provided the
impetus pushing the development of new materials in a wide
variety of applications. These include fields as diverse as
shielding enclosures, captive video disk units, electromag-
netic absorbing materials, to cite but a few.4 The trend to-
wards a wider variety of applications is almost certain to
continue.

In these materials, an accurate prediction of the macro-
scopic dielectric behavior must account for the detailed in-
ternal structure of the composite, the dielectric and shape
characteristics, the volume fractions and the spatial arrange-
ment of the different components. The analytical solution
requires us to compute the local fields inside the composite
and their distortions caused by the inhomogeneities using a
first principle approach, i.e. Maxwell’s equations. In the gen-
eral case of a spatially random structure, it appears as a for-
midable task to solve analytically this problem and these
difficulties have led numerous groups to study the partial
differential equations for the local fields using different com-
putational techniques.5–11 This originates from the fact that
the effective permittivity of composite materials is basically
an averaged property, where the average is taken over the
ensemble of the realisations of disorder. Somewhat surpris-
ingly, it should be emphasized in this context that numerical

simulations which start from completely different descrip-
tions of randomness may arrive at almost identical results. A
program of investigation is currently underway, whose ulti-
mate goal is to evaluate the effective permittivity of two-
phase composite materials in terms of the constituent prop-
erties and the internal structure of the mixture. The purpose
of this paper is to develop a computer-simulation model
based on the resolution of boundary integral equations with
careful attention paid to the numerical evaluation of the local
field. Although the method can be used to deal with arbitrary
geometric forms of the inclusions and arbitrary spatial ar-
rangements, calculations are confined, in this paper, to the
special but important case of periodic composites. It should
be regarded as a first step towards the ultimate goal outlined
above. Actually, the cross-fertilization between computa-
tional and analytical work in this area is quickly growing.
Extensive theoretical research has been focused in the study
of the effect of microstructure on the effective permittivity in
these materials.13–17

The remainder of the paper is organized as follows. In
Section II, we summarize the context of the problem. In Sec-
tion III, we describe the principle of our numerical analysis.
The boundary integral equation method, which is the corner-
stone of this paper, will be reviewed in this section. In Sec-
tion IV, we present results of different simulations with com-
parison with research reported by other authors. Our primary
purpose is to determine the volume fraction dependence of
the effective dielectric constant~in the quasistatic limit! of a
composite material in which identical structures of constitu-
ent, say 1, are embedded in crystalline fashion in a matrix of
constituent 2. Our secondary purpose is to study the related
issue of the influence of the geometric shape of the constitu-
ents. We pay particular attention to the issue of how the
topological arrangement affects the effective permittivity.
Finally, conclusions of the paper will be presented in
Section V.

a!Also at: UPRESA CNRS 5005.
b!Electronic mail: christian.brosseau@univ-brest.fr
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II. BACKGROUND

The problem of determining the effective dielectric con-
stant of heterogeneous two-phase materials has a long his-
tory. The origins of the modern concept of effective permit-
tivity can be found in the scientific literature of the late
nineteenth and early twentieth centuries. Particularly note-
worthy early and pioneering contributions were made by
Maxwell and Lord Rayleigh. For detailed historical reviews
and discussions of the general subject of effective permittiv-
ity with numerous references inside, the reader may wish to
consult Landauer3 and Tingaet al.14 In more recent times,
important developments are found in the work of Shivola
and Lindell.4 The medium under consideration will be char-
acterized in the static limit, i.e. the spatial variation of the
incident electric field is very large compared to the typical
size of the heterogeneities in the medium. Note that in this
paper, permittivity and dielectric constant are used synony-
mously.

Despite its effectiveness, the traditional boundary-value
approach does not provide accurate values ofe at high-
volume fraction of the inclusions because it neglects the cor-
relations among the conductive inhomogeneities and does
not contain information about the structure of the material,
e.g. clustering effect. Moreover, this approach is restricted to
nontouching inclusions.

There have already been a number of numerical studies
which have found their way into electrostatics over the years.
These include the random-walk method introduced by
Schwartz and Banavar,7 and the multipole expansion of the
field around inclusions to evaluate the local fields distortions,
studied by Cukieret al.6 For completeness, we also mention
that Felderhofet al.11 have proposed alternatives that use
virial expansions and Torquato and Lado9 have also com-
puted the effective permittivity of composite materials by
applying bounding methods. Our calculations are very much
in the spirit of the recent investigations reviewed by Ghosh
and Azimi.23

III. PRINCIPLE OF THE NUMERICAL APPROACH

Let us turn to a brief presentation of the principle of our
numerical analysis for describing the behavior of the electric
field in composite materials. It is reasonable to start with the
first principles of electrostatics, namely Laplace’s equation,
i.e.DV50 whereV is a potential distribution inside a spatial
domainV with a density of charge equal to zero everywhere.
The solution to this second order differential equation can be
computed by applying the method of boundary integral equa-
tion ~BIE!.18,19 Upon using Green’s theorem, we can write
the local potentialV(MPV) in terms ofV(P) and of the
normal derivative]V/]n(P), with P being any point on the
boundaryS ~with no overhangs! of V:

V~M !52
4p

A E
S
SV~P!

]G

]n
2G

]V

]n
~P! Dds, ~1!

whereA stands for the solid angle under which the pointM
sees the oriented surfaceS, n is the normal unit vector ori-
ented outward toS, ds is a surface element ofS and G
denotes the Green function.

To begin with we refer to the schematic representation
of the configurations displayed in Fig. 1. We consider a two-
component periodic composite that can be divided into el-
ementary cells. The constituent of permittivitye1 occupying
the volumeV1 is embedded in the regionV2 of permittivity
e2. Absence of charge density will be tacitly assumed
through our analysis. Given these assumptions, Eq.~1! leads
to:

V52
4p

A E
S1

S V]G

]n
2G

]V

]nU
1
D ds ~2!

for domain 1, and

V52
4p

A E
S2

S V]G

]n
2G

]V

]nU
2
D ds ~3!

for domain 2. Moreover, we have

e1
]V

]nU
1

5e2
]V

]nU
2

~4!

by virtue of the conservation of the normal component of the
electric displacement at the interface. Consequently, we have
to solve the above two integral equations~2! and ~3! to
evaluate numerically the electrostatic potential distribution.
For that purpose, the implementation of the BIE method con-
sists in dividing the boundaries into finite elements and for
each finite element, the calculation is carried out by interpo-
lation of V and]V/]n with the corresponding nodal values:

FIG. 1. Boundary conditions related to the configurations investigated in the
numerical computation:~a! isolated particle of permittivitye1, ~b! fused
particle of permittivitye1.
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V5(
j

l jVj

~5!
]V

]n
5(

j
l j S ]V

]n D
j

,

wherel j denote the interpolating functions. The generation
of these functions that are suited for our computational re-
quirements and the detailed methodology that we employ in
this work are similar to those reported at length
elsewhere.19,20 Following this way, integral equations are
transformed in a matrix equation which is numerically
solved using the boundary conditions on each side of the unit
cell as displayed in Figures 1a and 1b. Then, the permittivity
is obtained from the knowledge of the potential distribution
and its normal derivative. We distinguish between two types
of configurations for specifying the structure of the compos-
ite material.

In Fig. 1a, we have a single inclusion and thus, the me-
dium of permittivity e1 cannot intercept the sides of the par-
allelepipedic cell. In this case, the effective permittivity, in
the direction corresponding to the applied field, is calculated
using the following relation:

E
S
e2

]V

]nU
2

ds5ez
V22V1

e
S, ~6!

whereV22V1 denotes the slope of potential imposed in the
z-direction,e stands for the composite thickness in the same
direction andS denotes the surface of the unit cell perpen-
dicular to the applied field.

In Fig. 1b the inclusion is allowed to intercept the sides
of the parallelepipedic cell. In that case we must take into
account the electric displacement flux through the areaS1
associated to the medium of permittivitye1 to calculate the
effective permittivity in the direction corresponding to the
applied field. Then Eq.~6! is turned into

E
S2

e2
]V

]nU
2

ds1E
S1

e1
]V

]nU
1

ds5ez
V22V1

e
~S11S2!,

~7!

whereS1 andS2 are the surfaces resulting from the intersec-
tion of the volumic regions of permittivitye1 ande2 respec-
tively with the upper side of the unit cell, perpendicular to
the applied field.

It should be noted that the BIE method gives an accurate
description of the electric potential by taking into account
edge and proximity effects even at low and high concentra-
tions of inhomogeneities. Therefore, this numerical tech-
nique does not suffer from the disadvantages of the tradi-
tional boundary-value approach.

IV. RESULTS AND DISCUSSION

We turn now to a discussion of numerical results con-
cerning the static effective permittivity of periodic composite
media as a function of the permittivities and the volume
fraction of the constituent materials. Comparison with other

numerical simulations and analytical equations for calculat-
ing the permittivity in heterogeneous media will be dis-
cussed.

The different geometries of the three-dimensional peri-
odic composites, consisting of two lossless materials with
dielectric constantse1 ande2, that we consider in this study
are displayed in Fig. 2. The first subsection deals with effec-
tive permittivity of periodic arrays of dielectric spheres. The
second concerns regular systems of dispersed ellipsoid. The
third considers inclusions with cylinder shape~rods and
discs!. Finally, we examine how the effective permittivity
can be affected by the type of the periodic arrangement.

A. Composite with spherical inclusions

Consider equal-sized spheres fixed in a simple cubic ar-
ray,a being the radius of the spheres. Figure 2a shows a unit
cell of the structure. For the purpose of simplicity, we as-
sume, in the following, that all the lengths (l ,a) are dimen-
sionless and that the side of the cell has the specific value
l52. It is worth noting that ifa!1 the particles act like
isolated ones: they will experience only the external field and
not the fields induced by the other particles. We call this case
the isolated particle regime. Then, the permittivity of the
medium can be described by the Maxwell–Garnett equation:

e5e2
e112e212 f ~e12e2!

e112e22 f ~e12e2!
, ~8!

wheref5pa3/6 is the volume fraction of the scatterer phase
in the mixture~see Fig. 2a!. It is a relatively simple exercise
to show that Eq.~8! can be also written in the Clausius–
Mossoti form:

e2e2
e12e2

5 f
e12e2

e112e2
. ~9!

What occurs when increasing the concentrationf? The
distance of separation between two spheres decreases and
particles will experience the local fields induced by other
particles. The volume fractionf p5p/6>0.523 correspond-
ing to the limit of touching spheres (a51) is the maximum
packing threshold. Beyond that concentration, the geometry
can be described according to Shenet al.21 excluding six
segments of sphere from the unit cell. In this fused particle
regime, the volume fraction is analytically calculated for a
value of the radiusa in the range 1<a<&:

f5
pa3

6
2

p

4
~a21!2~2a21!. ~10!

By taking into account the symmetry of the unit cell in
the two regimes described above, the geometry is further
reduced to one-eighth of the microstructure for calculations
by the BIE method. Our results are compared with those
derived from Eq.~8! and with numerical data obtained by
Mc Phedran5 et al. and Taoet al.8 for e153 ande251 ~Fig-
ure 3!. In that case, it appears that the values ofe computed
by the BIE method agree satisfactorily with these previous
calculations. One might argue that the agreement of the nu-
merical data with Eq.~8!, for f. f p , is somewhat fortuitous.
This is confirmed by Fig. 4 which shows the limits of the
Maxwell–Garnett theory for volume fractionsf higher than
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0.4, when the ratio of the constituent permittivities is higher
~we takee1530 ande251!. It is further interesting to note
that our results are very close to those obtained by a Fourier
expansion technique over the entire range of volume fraction
f .8,21

B. Composite with ellipsoidal inclusions

We examine now a system of ellipsoidal inclusions~Fig.
2b! which are regularly dispersed in a host medium. The unit
cell can be described using the one obtained for spherical
inclusions thanks to a tridimensional homothecy of ratio
( l ,w,h), wherel , w andh denote respectively the lengths of

the sides of the parallelepipedic cell displayed in Fig. 2b. As
can be seen in Fig. 2b, the medium is anisotropic and the
effective permittivity componente i in the directioni5x,y,z
can be written as

e i5e21
na i

12Li
na i

e2

, ~11!

whereLi anda i are the depolarization factor and the polar-
izability in the direction characterized by the indexi .

A standard result of electrostatics gives

FIG. 2. The configurations investigated in the boundary element model computation. The volume fraction of materiale1 is f : ~a! sphere,~b! ellipsoid, ~c!
cylinder, ~d! disc.

1691J. Appl. Phys., Vol. 80, No. 3, 1 August 1996 Sareni et al.



Lx5
abc

2 E
0

1` du

~u1a2!A~u1a2!~u1b2!~u1c2!
, ~12!

wherea, b andc denote the semiaxes of the ellipsoid. Note
that Ly andLz can be evaluated by interchangingb anda,
andc anda respectively.4

If the scatterers are sufficiently distant from each other,
their polarizability can be deduced from the solution of the
internal field of a dielectric ellipsoid in a quasistatic field

a i5y0~e12e2!
e2

e21~e12e2!Li
, i5x,y,z, ~13!

wherey05 4
3pabc is the volume of the ellipsoid.4

By substituting Eq.~13! into ~11!, the effective permit-
tivity of the medium can be expressed as

e i5e2S 11
~e12e2! f

e21~e12e2!~12 f !Li
D i5x,y,z, ~14!

where f5ny05 4
3pabc/ lwh is the volume fraction of the

constituent 1~See Fig. 2b!. To simplify further the analysis,
we first chooseb5c5a/4 ~prolate spheroid! and we take the
dimensions of the elementary cell as:l58 andw5h52.
Figures 5 and 6 show a comparison of the numerical results

FIG. 3. Volume fraction dependence of the effective permittivity of the
three-dimensional periodic composite displayed in Fig. 2a. Inclusions~per-
mittivity e153! are spherical and of volume fractionf in a matrix of per-
mittivity e251. The full circles are obtained by the BIE method. The solid
line is obtained from the results of Mc Phedranet al. ~see Ref. 5! (x) are
results of Taoet al. ~see Ref. 8!. The dashed curve corresponds to the
Maxwell Garnet equation~Eq. ~8!!.

FIG. 4. Volume fraction dependence of the effective permittivity of the
three-dimensional periodic composite displayed in Fig. 2a. Inclusions~per-
mittivity e1530! are spherical and of volume fractionf in a matrix of per-
mittivity e251. The full circles are obtained by the BIE method. The solid
curve corresponds to the Maxwell–Garnet equation~Eq. ~8!!.

FIG. 5. Volume fraction dependence of the effective permittivity in thex
direction of the three-dimensional periodic composite displayed in Fig. 2b.
Inclusions ~permittivity e1530! are ellipsoid (b5c5a/4) and of volume
fraction f in a matrix of permittivitye251. The full circles are obtained by
the BIE method. The solid curve corresponds to Eq.~14! with a depolariza-
tion factorLx50.0754~Eq. ~12!!.

FIG. 6. Volume fraction dependence of the effective permittivity in thez
direction of the three-dimensional periodic composite displayed in Fig. 2c.
Inclusions ~permittivity e1530! are ellipsoid (b5c5a/4) and of volume
fraction f in a matrix of permittivitye251. The full circles are obtained by
the BIE method. The solid curve corresponds to Eq.~14! with a depolariza-
tion factorLz50.4623~Eq. ~12!!.
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obtained by the BIE method for the effective permittivity of
the medium in thex and z directions respectively,~e1530
and e251! and those obtained from Eq.~14!. They clearly
show the limits of the analytical model for volume fractions
f higher than 0.2 particularly; the gap being important in the
x direction for which the interaction effect is stronger.

C. Composite with cylindrical and discoidal inclusions

We first consider the periodic composite displayed in
Fig. 2c. By taking into account the symmetries of the unit
cell, we need only to evaluate the permittivity in thex andz
direction sinceey5ex . The dielectric constant in the perpen-
dicular direction to the cylinder axes is given by the Ray-
leigh’s formula

ex5e2
e11e21 f ~e12e2!

e21e22 f ~e12e2!
. ~15!

Using Eq. ~14! for prolate spheroid with
Lx5Ly5( 122d) andLz52d whered!1 Van Beek13 derived
a general expression for the effective permittivity in the di-
rection which is parallel to the cylinder axes

ez5e21
1

3

~e12e2!~5ea1e1!

ea1e2
, ~16!

whereea denotes the apparent permittivity of the medium,
i.e. ‘‘seen’’ outside by an inclusion. Its value differs from the
permittivity of the host medium but must lie in the range
e2<ea<ez .

To make our simulation simpler, the geometry of the
unit cell was characterized by a single parametera by taking:
H58a, D5a, l5w51, andh58 ~see Fig. 2c!. The corre-
sponding volume fraction of the constituent 1 is given by
f5pa3/4. Figures 7 and 8 show data computed with the BIE
method. At this point, a number of comments are in order. It
is first interesting to observe that numerical data concerning

ex are well represented by Eq.~15! for inclusions of low
permittivity ~e153!, while for high permittivity we have
noted a significant departure from Eq.~15! at high concen-
tration levels. As concernsez we observe that numerical data
for inclusions of low permittivity~e153! are well described
by Eq. ~16!, taking an apparent permittivity identical to the
effective permittivity in the parallel direction to the cylinder
axis.

We turn next to the case of discoidal inclusions embed-
ded in the host medium. The structure of the periodic com-
posite has for unit cell the geometry of Fig. 2d.

In this case, it has been suggested that the components of
the effective permittivity can be evaluated from the Wiener’s
formulae considering a periodic array of thin lamellae;3,13,14

ez is obtained by connecting the constituents in series.

1

ez
5

f

e1
1
12 f

e2
~17!

while ex is deduced by connecting the constituents in parallel

ex5 f e11~12 f !e2 . ~18!

As in the first part of this subsection, the geometry of the
unit cell is characterized by a single parameter:H5a,
D510a, l5w510, andh51. The corresponding volume
fraction of the constituent 1 is again given byf5pa3/4. The
values of the effective permittivity obtained by the BIE
method for inclusions of permittivity~e153! are displayed in
Figs. 9 and 10. We can deduce from these figures that neither
Eq. ~17! nor Eq.~18! is able to correctly evaluate the permit-
tivity of these structures.

D. Lattices

Up to now, we have only considered a simple cubic~sc!
arrangement of the inclusions in the host matrix. Here, we
discuss the influence of other types of cubic arrangements:

FIG. 7. Volume fraction dependence of the effective permittivity in thex
direction of the three-dimensional periodic composite displayed in Fig. 2c.
Inclusions~permittivity e153! are cylindrical and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The solid curve is obtained from Eq.~15!.

FIG. 8. Volume fraction dependence of the effective permittivity in thez
direction of the three-dimensional periodic composite displayed in Fig. 2c.
Inclusions~permittivity e153! are cylindrical and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The dashed and the solid lines are obtained from Eq.~16! with the
apparent permittivitiesea5e2 andea5e respectively.
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body centered~bcc! and face centered~fcc!. We shall also
consider crystalline lattices composed of perfectly conduct-
ing spheres~s1→1`! of radius a, the permittivity of the
host medium beinge251. The volume fraction of the par-
ticles can be written as

f5n0
4

3

pa3

y0
, ~19!

wheren0 is the number of particles per unit of internal struc-
ture andy0 denotes the volume of the internal structure. The
main characteristics of the different types of cubic lattices
investigated are summarized in Table I. By computing the

effective permittivity using the BIE method, we obtain iden-
tical results to those reported by Mc Phedran5 et al. and
Doyle12 with an accuracy of 1023.

Next we turn to the case of hexagonal lattices composed
of perfectly conducting spheres of radiusa embedded in a
host medium of permittivitye251. The geometry of the unit
cell is displayed in Fig. 11. The number of particles per unit
of internal structure isn051, and the volume of the internal
structure isy05 l 2h)/2. This type of composite is aniso-
tropic (exÞez) and we observe from the Fig. 12 that the
permittivity strongly depends on the specific ratioh/ l for
volume fractionsf higher than 0.1.

E. Comparison with previous approaches

The above developments show that the BIE method can
be used at high volume fractions, even for large permittivity
contrast ratios between the background and the inclusions,
i.e. when the mean-field analytical approaches are irrelevant
to evaluate the effective permittivity of a composite material.
We also made the comparison of our results with previously
published analytical mixtures equations derived from heuris-
tic assumptions which may be adapted for some composites

FIG. 9. Volume fraction dependence of the effective permittivity in thex
direction of the three-dimensional periodic composite displayed in Fig. 2d.
Inclusions~permittivity e153! are discoidal and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The solid line is obtained from Eq.~19!.

FIG. 10. Volume fraction dependence of the effective permittivity in thez
direction of the three-dimensional periodic composite displayed in Fig. 2d.
Inclusions~permittivity e153! are discoidal and of volume fractionf in a
matrix of permittivity e251. The full circles are obtained by the BIE
method. The solid curve is obtained from Eq.~18!.

TABLE I. The main characteristics of the different types of cubic lattices.
The internal structure, the number of particles per unit of internal structure
n0 , the volume fractionf of the conducting spheres of radiusa, the radius
ap and the concentrationf p corresponding to the maximum packing thresh-
old are function of the type of cubic lattices i.e. simple cubic~sc!, body-
centered cubic~bcc! and face-centered cubic~fcc!.

FIG. 11. Hexagonal lattice structure.
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but do not hold generally. We found that, for certain geom-
etries, ranges of volume fraction and values of the dielectric
constants of the two components, the differences between the
BIE results and these equations may be small~e.g., Figs. 3
and 7!, or not small~e.g., Figs. 4 and 6!. Our method of
calculation has three advantages. First, it is based on first
principles so it can serve as a test for other approximate
methods. Second, the BIE method can be easily realized in a
computer algorithm. We made our calculations on a
Hewlett–Packard 715/80 workstation. Third, it is not com-
putationally time consuming. The CPU time for calculating
the permittivity of a composite material with a certain con-
centration of inhomogeneities is about 20 minutes.

V. CONCLUSIONS

In summary, we have outlined an efficient and powerful
computer-aided solution procedure based on the boundary
integral equation method for the analysis of the static effec-
tive permittivity of two-constituent lossless media. Our nu-
merical technique can be easily extended to multiphase
structures of any shape.

Using such a framework, we have compared our results,
in the range of permittivities investigated, with those given
by mean-field approximations. Let us add that the numerical
simulations have shown the limits of standard analytical
models for high volume fractions of the dispersed phase,
particularly when the ratio of the constituent permittivities is
high. This is a most desirable development since in number
of technological applications, the permittivitye1 of inclu-
sions is much larger than that of the matrix, e.g. carbon-black
filled polymer composites. In this case interactions between
particularly proximate neighbors cannot be neglected. These
computations have also underlined the strong dependence of
the geometric shape of the components and their spatial ar-
rangement on the dielectric properties of the composite.

The calculated results have significant implications in
the modeling of natural composites such as snow or reservoir
rocks. While the results presented here seem to us encourag-
ing, they represent only a first step in understanding how to
describe the dielectric constant of these media. The code is
currently being extended to treat composites with random
distributions of inclusions. These capabilities will allow in-
vestigation of the technological problems that involve such
randomness. Although we have confined ourselves, in this
paper, to the static limit~the spatial correlation length of the
material is smaller than the wavelength of the electric field!,
our ultimate goal is to investigate the range of absorption
spectrum to provide an even finer discrimination among the
geometries of heterogeneities. The study considered here can
be extended to the case of complex dielectric constant
~e(v)5e8(v)2 i e9(v), wherev is the angular frequency of
the electromagnetic wave! to use the angular frequency for
exploring the typical length scalej of inhomogeneities. A
complete description will be given in a forthcoming paper.
Experiments dealing with the electromagnetic response of
inhomogeneous materials have uncovered a varied phenom-
enology, whose interpretation presents challenging theoreti-
cal problems. It is also clear, that in order to deal with the
issue of magnetodielectics, it is necessary to attack the full
problem, i.e.m1Þ1, m2Þ1. In closing we also mention that
since the differential equations for electrostatics and magne-
tostatics are identical, i.e. Laplace’s equation for the poten-
tial, similar conclusions apply for the permeability of com-
posite materials.
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