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In recent work, boundary integral equations and finite elements were used to study the~real!
effective permittivity for two-component dense composite materials in the quasistatic limit. In t
present work, this approach is extended to investigate in detail the role of losses. We conside
special but important case of the axisymmetric configuration consisting of infinite circular cylinde
~assumed to be parallel to thez axis and of permittivitye1! organized into a crystalline arrangement
~simple square lattice!within a homogeneous background medium of permittivitye251. The
intersections of the cylinders with thex–y plane form a periodic two-dimensional structure. We
carried out simulations takinge15320.03i or e153020.3i and e251. The concentration
dependence of the loss tangent of the composite material can be fitted very well, at low
intermediate concentrations of inhomogeneities, with a power law. In the case at hand, it is fo
that the exponent parameter depends significantly on the ratio of the real part of the permittivity
the components. We argue, moreover, that the numerical results discussed here are consisten
the Bergman and Milton theory@D. J. Bergman, Phys. Rep.43, 377~1978!and G. W. Milton, J.
Appl. Phys.52, 5286~1981!#
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I. INTRODUCTION

Major new applications for aeronautics, space, and te
communications technology using composite materials
springing up at an ever-increasing pace. The continued in
vations in materials such as fiber-reinforced resins, polym
blends, and multilayered media include the recent impress
performance levels of microwave-absorbing composite
vices, i.e., photonic band structures.1 At the same time the
understanding of more fundamental problems, i.e., propa
tion of electromagnetic waves in periodic and random diele
tric structures, is of great importance to optimize these m
terials for a given application and has been a long stand
issue.2–5 One of the more important, yet less frequently di
cussed, problems in the study of the dielectric properties
dense composite materials, composed of two or more co
ponents, is the role of losses. By comparison, a great d
more attention has been given to evaluate the~real!effective
dielectric constant, in the quasistatic limit, of two-compone
composites made of a constituent of real permittivitye1 em-
bedded in crystalline fashion in a homogeneous thr
dimensional matrix of real permittivitye2.

2–5 Most reported
calculations for effective dielectric constant consider
simple geometries such as spheres and ellipsoids. Some
nomenological mixture equations have been presented
cause of their potentially useful applications, the fit differin
from material to material.2–8 The characterization of lossy
composite materials is challenging, both experimentally a
theoretically, and is of considerable interest for technologi

a!Electronic mail: beroual@trotek.ec-lyon.fr
b!Electronic mail: christian.brosseau@univ-brest.fr
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applications. To obtain reliable results for the complex pe
mittivity, one must have theoretically and computationall
demanding methods that accurately account for the details
the geometric microstructure of the material. Our own inte
est in this problem arose from our studies, based on the re
lution of boundary integral equations, of the effective dielec
tric constant of composite nonlossy materials in th
quasistatic limit.2 We showed that the interplay between th
geometrical shape and the arrangement in space of the inc
sions gives rise to a large variety of behaviors. In this artic
we add to these works by investigating the behavior of loss
in detail. For our simulations we use the method of finit
elements~FE! which deals with the details of the geometry
of the composite in a particularly efficient manner. A sec
ondary purpose is to test whether the prediction of analytic
theories can be reproduced in these simulations. More s
cifically, the Bergman–Milton analysis is discussed in orde
to establish a perspective from which to assess our simu
tion results and thus help to decide whether our numeric
method is able to correctly describe the effective permittivit
of lossy composite materials.

The remainder of the article is organized in the follow
ing way. Section II provides a brief summary of the overa
theoretical framework of the problem at hand. We also intro
duce some of the details of our model and of our simulatio
Section III presents numerical evaluations of the effectiv
complex permittivity of a simple lossy two-component com
posite material using the FE scheme and compares our fi
ings with the literature. Section IV summarizes the conte
of the article and gives conclusions.
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II. BACKGROUND

In this section we briefly summarize the context of th
problem at hand. To establish notation and terminology,
present a number of relevant definitions and the principle
our numerical approach.

A considerable amount of reliable work has already be
achieved in the area of electric properties of heterogene
media. The reader can find good introductions to the the
in some review articles5–8 and a list of most relevant refer
ences in Ref. 3. Dielectric mixture theory dates back t
pioneering researches in the late nineteenth century by s
famous physicists as Maxwell and Lorentz, the~mean-field!
results of which could prove to be a useful benchmark
assist those who wish to test computer simulations under
assumption that one of the constituents had much sma
volume than the other~dilute limit!. However, depending on
the geometric shape of the components and the topolog
arrangement in the two-component material, these res
have varying degrees of success at high inclusion concen
tion. Of course, any valid model of the effective dielectr
constant of mixtures must correctly describe the propert
not only at low concentrations, but at high concentrations
well. In fact it turns out that an exact solution of the proble
is possible only for a few specific and geometrically we
defined systems. One can also notice that the problem of
theoretical determination of the effective dielectric consta
of composite materials was also approached on the basi
rigorous variational techniques which lead to upper a
lower bounds for this quantity and also by an analyti
simulation method based on multipolar expansion of t
fields around each inclusion arising from the presence of
other inclusions.9–11

The complex effective dielectric constant, relative to fr
space,e5e82i e9 carries information about the average p
larization in the heterogeneous medium and is defined as
ratio of the average displacement field vector and the app
electric field. We may write this quantity a
Ē2e5(1/V)*Vê u“V u2 dV, whereê is the local permittivity
value,Ē5(1/V)*VEdV denotes the average field which de
pends on the applied potentials,E is the local electric field in
the cell, andV is the volume of the medium. The absolu
complex dielectric constant is obtained by multiplyinge by
the permittivity of free spacee0. Here the imaginary parte9
is due to the absorption since scattering attenuation is ne
gible. The ratio ofe9 to e8 is referred to as the loss tangent o
the material, i.e., tand whered is the loss angle of the ma
terial. The complex effective permittivity will depend on th
permittivity of each constituent in the mixture, their volum
fractions, and eventually on the spatial arrangement in
mixture.

For simplicity we consider a composite medium ma
up of two nonmagnetic~we takem15m251! materials with
dielectric constantse1 and e2. We denote byf the concen-
tration occupied by the inclusions of permittivitye1 periodi-
cally placed within the host material with permittivitye2.
When considering the propagation of an electromagne
wave in heterogeneous media, two length scales are of
portance. The first scale is the wavelengthl of the wave
probing the medium. The second one is the typical sizej of
e
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the inhomogeneities. When the two conditionsk1j!1 and
k2j!1 are met, where we have setki5(e im i)

1/2~2p/l!,
i51,2, the wave cannot resolve the individual scatterers an
thus the material appears homogeneous to the probing wa
In this quasistatic limit, the system can be described by a
effective~average!dielectric constante which is a linear ho-
mogeneous function ofe1 and e2. In the numerical experi-
ments of Sec. III the component 1 is a lossy material, i.e
e1 5 e18 2 i e19 , with e18 @ e19 and the component 2 is a pure
dielectric, i.e.,e2 5 e28 .

Bergman and Milton presented independently an analyt
cal treatment for computing the effective dielectric constan
~or conductivity!of a two-component mixture as a function
of the ratio of the dielectric constants~or conductivities!of
those components.12,13 For our problem, the results of Berg-
man and Milton suggest that if the geometry of the compos
ite is known, the effective permittivitye of the mixture can
be written as a function of a simple complex variable
e/e1511(j51

N @Aj /~sj2s!#, wheres51/@12~e2/e1!#, N is the
number of simple poles determined by the geometry of th
material,Aj andsj denoting respectively the residue and pole
in the real interval@0,1# of the j th term in the summation.
Since the above expression ofe is an analytic function of
@0,1# in the s plane,e can be implicitely determined by the
positions of its zeros and poles in the complex plane. A
discussed in Refs. 10–12, an important feature of th
Bergman–Milton analysis is that the location of the poles i
under the dependence of the geometry of the structure on
and is invariant for all possible values ofe1 ande2. Liu and
Shen have compared the Bergman–Milton simple po
analysis and the Fourier series expansion technique to co
pute the effective dielectric constant of two-component two
dimensional composite materials.14 They found that both
methods give comparable results in predictinge even when
the dielectric constants of the components are complex~this
can be seen in Table IV of Ref. 14!. However, it is important
to observe that most of the numerical experiments of the
authors concern the case of weak contrast ratios between
dielectric constants of the background medium and the incl
sions.

Now we describe the simulation procedure as follows
The calculation of the effective dielectric constant of com
posite materials from the known properties of the pure, ho
mogeneous components is an electrostatics problem whi
involve the resolution of partial differential equations and
taking into account boundary conditions defined on domain
with given geometries. Here we give only some of the mos
important details of the model investigated and the essent
features of the simulation. More details can be found in Re
2. We assume a system as displayed in Fig. 1, where
arbitrarily shaped homogeneous inclusion with permittivity
e1 is embedded in a homogeneous matrix with permittivity
e2. The solution of Laplace’s equation is computed with th
field calculation packageFLUX2D,15 using the FE method. Its
implementation consists in dividing the domainS into trian-
gular finite elements and for each element, the calculation
carried out by interpolation of the potentialV and its normal
derivative ]V/]n with the corresponding nodal values
V5( jl jVj and ]V/]n5( jl j (]V/]n) j , where lj denotes
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interpolating functions.16 The field and potential distributions
are obtained from the boundary conditions using the Ga
kin method16,17 and solving the matrix equations resultin
from the discretization procedure by standard numeri
techniques, e.g., the Gauss method.18 Having computed the
potential and its normal derivative on each node of the me
the electrostatic energy

dWe~k!5
1

2 E
Sk

«k8F S ]V

]x D 21S ]V

]y D 2Gdx dy

for each triangular element is evaluated, whereek8 and Sk
denote the real part of the permittivity and the surface of t
kth triangular element, respectively. Thus, the total energy
the entire composite can be written by summation over
nk elements such asWe 5 (k51

nk dWe(k). In the problem at
hand, we consider a portion of the composite material wh
is the filler of a parallel-plate capacitor. In this manner w
obtain the real part of the complex effective permittivit
from the electrostatic energy stored in such a capacitor,
We5

1
2e8(Sd/e)(V22V1)2 when a given potential difference

is applied across the plates~see Fig. 1!,Sd5Ld stands for
the surface of the plates with side of lengthL ~for the two-
dimensional structures considered below we taked51 unit
of length!. Now, we must relate the dielectric losses to t
imaginary part ofe. To do so, the dielectric losses are eval
ated on each element of the mesh as

dr~k!5
1

2 E
Sk

vek8 tan dkF S ]V

]x D 21S ]V

]y D 2Gdx dy,

where tandk is the loss tangent of thekth element andv is
the angular frequency of the electric field. The total losses
the entire composite are then obtained by summation o
thenk elements such asr 5 (k51

nk dr(k) and finally its con-
nection with the imaginary part of the complex effective pe

FIG. 1. Schematic drawing of the two-dimensional composite medi
made of arbitrarily shaped homogeneous inclusions with permittivitye1 em-
bedded in a homogeneous matrix with permittivitye2. On the boundary of
each cell~with sides of lengthL ande! the potential is kept constant~V1 or
V2! on the top and bottom faces and its normal derivative]V/]n is equal to
zero along the vertical walls.
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mittivity is r51
2e9(Sd/e)v(V22V1)2. With these consider-

ations in mind, we now turn to the presentation of the resul
of our numerical experiments.

III. NUMERICAL RESULTS AND DISCUSSION

Let us consider the details of Fig. 2 with Cartesian spa
tial coordinatesx, y, and z. This figure represents the axi-
symmetric unit cell of the two-component structure unde
study. It has been chosen for purpose of comparison with t
results of Liu and Shen.14 The structure consists of an infinite
circular cylinder~e1, m151! of radiusr and with generator
parallel to thez axis embedded in a host matrix~e2, m251!,
i.e., the intersections of the cylinders with thex–y plane
form a periodic two-dimensional structure~simple square lat-
tice of sidee51!. This symmetrical structure in both thex
and y directions renders the two-component composite ma
terial to be both translationally and rotationally invariant. We
denote by f the fractional occupancy of constituent 1:
f5pr 2 below the percolation threshold~0<r<1

2, nonover-
lapping cylinders!and

f5pr 224r 2 arcosS 12r D1A4r 221

beyond the percolation threshold~ 12<r<1/&, overlapping
cylinders!. Ther> 1

2 case is special because the symmetry o
the structure provides that we can exclude in our numeric
calculations the four sections of the component of permittiv
ity e1 exceeding from the unit square cell.

To facilitate the comparison with the results of Ref. 14
we first use the following set of parameters:e15123i and
e25528i . In Fig. 3 we show a comparison of the effective
permittivity computed for the two-pole approximation
~Bergman–Milton theory!and the FE method versus the ra-
dius of the circular cylinder. Figures 3~a!and 3~b!are for the
real part and imaginary part ofe, respectively. As can be
recognized from these figures, in the range ofr investigated,
the effective complex permittivity obtained from the

um

FIG. 2. Notation relating to the configuration of the two-component periodi
composite material~simple square lattice! investigated in this study. The
geometry is symmetrical in both thex andy directions. The unit cell con-
sists of a square of sidee51 containing an infinite circular cylinder, of
radiusr , along thez direction and of permittivitye1. The dielectric constant
of the remaining space ise2.
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Bergman–Milton theory are quantitatively very similar to th
ones presented in this work. The only thing that changes
that the values ofe8 and e9 are slightly higher than those
given by the two-pole approximation. These results confi
the usefulness of the FE algorithm as an efficient tool
computing the complex effective permittivity of lossy com
posite media. Liu and Shen’s method is based on a Fou
expansion technique.14 As discussed in Ref. 14 this compu
tation technique is costly in computer time even in the tw
dimensional case considered here. By contrast, our metho
not time consuming. The CPU time for calculating the pe
mittivity of a typical two-dimensional configuration is of the
order of a few seconds. As an aside, we note thate>e1 when
r is close to 0.65, for both cases.

FIG. 3. ~a! Comparison of the real part of the complex effective dielectr
constant evaluated by the finite-element method~d! and the two-pole
Bergman–Milton approximation~3, Ref. 14! as a function of the radius of
the circular cylinderr . The dielectric constants of the two-component com
posite material aree15123i and e25528i . ~b! Comparison of the imagi-
nary part of the complex effective dielectric constant evaluated by the fin
element method~d! and the two-pole Bergman–Milton approximation~3,
Ref. 14!as a function of the radius of the circular cylinderr . The dielectric
constants of the two-component composite material aree15123i and
e25528i .
e
is

rm
for
-
rier
-
o-
d is
r-

Having checked the FE method for the computation o
the complex effective permittivity of a lossy composite me
dium, we now investigate what the relative importance ofe1
ande2 is. Under many physically interesting conditions~e.g.,
polymer carbon-black composites!, the dielectric constant of
the matrix material is much smaller than the dielectric con
stant of the inhomogeneities. In our simulations we tak
e15320.03ior e153020.3iande251, i.e., tand151022 and
tand250. The differences in physical behavior can only aris
from a difference in the value of the ratioe18/e28 since the
physical structure and losses of both components are inva
ant in this study. In Figs. 4 and 5 we present the results f
the real and imaginary parts ofe versus the concentrationf
for the two values ofe1 investigated. Naturally, for the area
fraction value f51, the complex effective permittivitye
equals the inclusion permittivitye1. From these figures it is
of interest to observe that fore153020.3i the real and
imaginary parts of the permittivity increase smoothly but dis
play a sharp increase at a concentration close to 0.7. No
however, that this phenomenon is absent fore15320.03i.

ic

-

ite-

FIG. 4. ~a!The real part of the effective permittivity is shown as a function
of the area fractionf of the inclusion phase. Inclusions~permittivity
e15320.03i! are placed in a host matrix material of permittivitye251. ~b!
The imaginary part of the effective permittivity is shown as a function of th
area fractionf of the inclusion phase. Inclusions~permittivity e15320.03i!
are placed in a host matrix material of permittivitye251.
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An important insight can be obtained by examining th
concentration dependence of the tangent of losses of
composite samples in the logarithmic plot shown in Fig.
Most interestingly we find that the electric loss factor in
creases, at low and intermediate concentrations of inhom
geneities, with increasing concentration of inhomogeneit
as a power law, tand;f a, with an exponent paramete
a'1.07 fore15320.03ianda'1.31 fore153020.3i. Thus,
we find that the exponent parametera is not constant but
depends on the actual values ofe81; in fact it will depend,
here, on the ratio of the real part of the permittivity of th
two components. This behavior changes strongly when
go to a higher concentration of inhomogeneities. We ma
the additional observation that the dielectric losses are hig
~by a factor of 8! for e15320.03i compared to the case
e153020.3i, while at high concentration they tend to b
close for both cases. It is also seen in Fig. 6 that the two p
of tand vs f intersect at a concentration close tof *5p/4
where the cylinders touch.

FIG. 5. ~a!The real part of the effective permittivity is shown as a functio
of the area fractionf of the inclusion phase. Inclusions~permittivity
e153020.3i! are placed in a host matrix material of permittivitye251. ~b!
The imaginary part of the effective permittivity is shown as a function of t
area fractionf of the inclusion phase. Inclusions~permittivity e153020.3i!
are placed in a host matrix material of permittivitye251.
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IV. CONCLUSIONS

In summary, we have continued our comprehens
analysis of the dielectric properties of composite materia
In contrast to our earlier article in which we mainly conce
trated on the investigation of the real effective permittivity
composite materials, we have described here a nume
scheme to compute the complex effective permittivity of
lossy composite material in the quasistatic limit. Our comp
tational tool for studying this problem, i.e., the FE metho
provides an accurate approach to evaluate this quantity.
present analysis has been carried out in a circular cylin
geometry. Similar consideration can be readily applied
other axisymmetric geometries. One goal of our investi
tion was to test if the Bergman–Milton theory is able to gi
a correct description of the effective complex dielectric co
stant of a lossy two-component composite medium. In t
respect, we would like to point out that numerical expe
ments discussed here are consistent with the Bergman
Milton theory. The conclusions reached in this article, be
strictly valid for the case of periodic two-dimensional co
figurations, are also guidelines in general context, i.e., p
odic composites with deliberate introduction of imperfe
tions. It is hoped that this work will stimulate experiment
interest in these problems. For reasons of mathematical a
ogy, these results are also valid for the magnetic permea
ity of two-component composite materials. We conclude t
study reminding the reader that all the simulation results p
sented here must be regarded as simply preliminary attem
to identify the major features of the modeling of the effecti
permittivity of real composite materials. In particular th
present work should be extended in several directions. F
and in the light of this work and results presented in Refs
19–22 it would be of great interest to study the effect
frequency of the applied field on the effective permittivity
order to check explicitly theories aiming at elucidating t
mechanism of dielectric relaxation, e.g., the scaling beh
iors proposed by Jonscher.19 An even more formidable chal

n

he

FIG. 6. Behavior of tand5e9/e8 as a function of the area fractionf of the
inclusion phase. Inclusions~permittivity e1! are placed in a host matrix
material of permittivity e251. Crosses ~solid circles! correspond to
e15320.03i ~e153020.3i!. The solid line is a fit according a power law
tand;f a.
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lenge will be to investigate the random spatial arrangeme
of the aggregate topology. Work is in progress to meet the
next challenges and full details of the above calculations w
be given elsewhere.
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