N
N

N

HAL

open science

Complex effective permittivity of a lossy composite
material

Bruno Sareni, Laurent Krahenbtihl, Abderrahmane Beroual, C. Brosseau

» To cite this version:

Bruno Sareni, Laurent Krdhenbiihl, Abderrahmane Beroual, C. Brosseau. Complex effective per-
mittivity of a lossy composite material. Journal of Applied Physics, 1996, 80 (8), pp.4560-4565.

10.1063/1.363438 . hal-00140681

HAL Id: hal-00140681
https://hal.science/hal-00140681
Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00140681
https://hal.archives-ouvertes.fr

Complex effective permittivity of a lossy composite material

B. Sareni, L. Krahenbiihl, and A. Beroual®
Centre de Geie Electrique de Lyon, &le Centrale de Lyon, B. P. 163, 36 avenue Guy de Collongue,
69131 Ecully Cedex, France

C. Brosseau” ) ) )
Departement de Physique, Laboratoire diile des Mateaux, Universitede Bretagne Occidentale,
6 avenue Le Gorgeu, B. P. 809, 29285 Brest Cedex, France

In recent work, boundary integral equations and finite elements were used to stuciedhe
effective permittivity for two-component dense composite materials in the quasistatic limit. In the
present work, this approach is extended to investigate in detail the role of losses. We consider the
special but important case of the axisymmetric configuration consisting of infinite circular cylinders
(assumed to be parallel to tkeaxis and of permittivitye;) organized into a crystalline arrangement
(simple square latticeyvithin a homogeneous background medium of permittivigy=1. The
intersections of the cylinders with the-y plane form a periodic two-dimensional structure. We
carried out simulations takings;=3—-0.03i or ¢=30-0.3i and ¢,=1. The concentration
dependence of the loss tangent of the composite material can be fitted very well, at low and
intermediate concentrations of inhomogeneities, with a power law. In the case at hand, it is found
that the exponent parameter depends significantly on the ratio of the real part of the permittivity of
the components. We argue, moreover, that the numerical results discussed here are consistent with
the Bergman and Milton theoryD. J. Bergman, Phys. Reg3, 377(1978)and G. W. Milton, J.

Appl. Phys.52, 5286(1981)]

I. INTRODUCTION applications. To obtain reliable results for the complex per-
mittivity, one must have theoretically and computationally
Major new applications for aeronautics, space, and telegemanding methods that accurately account for the details of
communications technology using composite materials arghe geometric microstructure of the material. Our own inter-
springing up at an ever-increasing pace. The continued inNQsg; i this problem arose from our studies, based on the reso-
vations in materl_als such as flb(_ar-remforced resins, pOIym_eIrution of boundary integral equations, of the effective dielec-
blends, and multilayered media include the recent impressiv

. ; . ffic constant of composite nonlossy materials in the
performance levels of microwave-absorbing composite de-

vices, i.e., photonic band structurest the same time the quasistatic limi? We showed that the interplay between the

understanding of more fundamental problems, i.e., propagag.eomet.rical §hape and the arrangement in.space of.the ipclu-
tion of electromagnetic waves in periodic and random dielecSIons gives rise to a large variety of behaviors. In this article
tric structures, is of great importance to optimize these maWwe add to these works by investigating the behavior of losses
terials for a given app"ca’[ion and has been a |0ng standin@ detail. For our simulations we use the method of finite
issue?~° One of the more important, yet less frequently dis-elements(FE) which deals with the details of the geometry
cussed, problems in the study of the dielectric properties 0bf the composite in a particularly efficient manner. A sec-
dense composite materials, composed of two or more conendary purpose is to test whether the prediction of analytical
ponents, is the role of losses. By comparison, a great deaheories can be reproduced in these simulations. More spe-
more attention has been given to evaluate(teal) effective  cifically, the Bergman—Milton analysis is discussed in order
dieleCtriC Constant, in the quaSiStatiC I|m|t, Of tWO'Componentto estab"sh a perspective from Wh|Ch to assess our Simu'a_
composites made of a constituent of real permittivifyem- o results and thus help to decide whether our numerical

(k:j)_edded_ In Icrystallm;e falshlon na r;c_)?,ageneous trc‘jreer"nethod is able to correctly describe the effective permittivity
imensional matrix of real permittivity, *~° Most reported ¢ o oo cite materials.

calculations for effective dielectric constant considered . L . .
. . L The remainder of the article is organized in the follow-
simple geometries such as spheres and ellipsoids. Some phe-

nomenological mixture equations have been presented pdd Wa)," Section Il provides a brief summary of the oyerall
cause of their potentially useful applications, the fit differing theoretical framework of the problem at hand. We also intro-

from material to materidl-8 The characterization of lossy duce some of the details of our model and of our simulation.
composite materials is challenging, both experimentally andection Il presents numerical evaluations of the effective

theoretically, and is of considerable interest for technologicaFomplex permittivity of a simple lossy two-component com-
posite material using the FE scheme and compares our find-

SElectronic mail: beroual@trotek.ec-lyon.fr ings Wlth-'[he Ilterat.ure. Sect|on. IV summarizes the content
YElectronic mail: christian.brosseau@univ-brest.fr of the article and gives conclusions.




Il. BACKGROUND the inhomogeneities. When the two conditidkg<1 and
< — (e, 12
In this section we briefly summarize the context of the!‘igle z;l]re met, where Wel havr? skg .(de"ul') (@iN), q
problem at hand. To establish notation and terminology, wd=1.2, the wave cannot resolve the individua scatte_rers an
hus the material appears homogeneous to the probing wave.

present a number of relevant definitions and the principle ofus RN )
our numerical approach. In this quasistatic limit, the system can be described by an

A considerable amount of reliable work has already beergffective (averageﬁielectric constant which is a linear ho.-
achieved in the area of electric properties of heterogeneo809€N€OUs function of, and e;. In the numerical experi-
media. The reader can find good introductions to the theorj"€Nts ,Of Sec. III_the/comBonent 1is a lossy material, i.e.,
in some review articlés® and a list of most relevant refer- €1 = €1~ !€1, W'th, €, > € and the component 2 is a pure
ences in Ref. 3. Dielectric mixture theory dates back theli€IECtric,i.e.e2= ¢;. _ _
pioneering researches in the late nineteenth century by such Bergman and Milton presented independently an analyti-
famous physicists as Maxwell and Lorentz, heean-field) cal treatme.ntl for computing the eﬁectl\{e dielectric con§tant
results of which could prove to be a useful benchmark td©" conductivity)of a two-component mixture as a function
assist those who wish to test computer simulations under th@f the ratio of the dlgalectnc constangsr conductivities)of
assumption that one of the constituents had much smalldfoSe Comp.onen'@: For our problem, the results of Berg-
volume than the othefdilute limit). However, depending on Man and Milton suggest that if the geometry of the compos-
the geometric shape of the components and the topologic&? is known, the effective permittivitg of the mixture can
arrangement in the two-component material, these resul@@ Written as a function of a simple complex variable
have varying degrees of success at high inclusion concentrglei=1+Z_1[Aj/(5—s)], wheres=1/[1—(eJe)], N is the
tion. Of course, any valid model of the effective dielectric Number of simple poles determined by the geometry of the
constant of mixtures must correctly describe the propertie§'aterial,A; ands; denoting respectively the residue and pole
not only at low concentrations, but at high concentrations a§? the real interval0,1] of the jth term in the summation.
well. In fact it turns out that an exact solution of the problemSince the above expression efis an analytic function of
is possible only for a few specific and geometrically well- [0,1]in the s plane, e can be implicitely determined by the
defined systems. One can also notice that the problem of tHeositions of its zeros and poles in the complex plane. As
theoretical determination of the effective dielectric constandiscussed in Refs. 10-12, an important feature of the
of composite materials was also approached on the basis &ergman—Milton analysis is that the location of the poles is
rigorous variational techniques which lead to upper andinder the dependence of the geometry of the structure only
lower bounds for this quantity and also by an ana|ytic_and is invariant for all possible values elfand €. Liu and
simulation method based on multipolar expansion of theShen have compared the Bergman-Milton simple pole
fields around each inclusion arising from the presence of thanalysis and the Fourier series expansion technique to com-
other inclusiong 11 pute the effective dielectric constant of two-component two-

The complex effective dielectric constant, relative to freedimensional composite materidfs.They found that both
space,e=€ —i€” carries information about the average po- methods give comparable results in predictingven when
larization in the heterogeneous medium and is defined as tHBe dielectric constants of the components are com(ites
ratio of the average displacement field vector and the appliedan be seen in Table IV of Ref. L14However, it is important
electric field. We may write this quantity as to observe that most of the numerical experiments of these
E2e=(1/Q)f \A% |2 dQ, wheree is the local permittivity — authors concern the case of weak contrast ratios between the
value,E=(1/Q) [ ,Ed( denotes the average field which de- dielectric constants of the background medium and the inclu-
pends on the applied potentials s the local electric field in  sions.
the cell, andQ) is the volume of the medium. The absolute Now we describe the simulation procedure as follows.
complex dielectric constant is obtained by multiplyiadgpy =~ The calculation of the effective dielectric constant of com-
the permittivity of free space,. Here the imaginary pad’  posite materials from the known properties of the pure, ho-
is due to the absorption since scattering attenuation is neglinogeneous components is an electrostatics problem which
gible. The ratio ofe’ to €' is referred to as the loss tangent of involve the resolution of partial differential equations and
the material, i.e., tad@ where é is the loss angle of the ma- taking into account boundary conditions defined on domains
terial. The complex effective permittivity will depend on the with given geometries. Here we give only some of the most
permittivity of each constituent in the mixture, their volume important details of the model investigated and the essential
fractions, and eventually on the spatial arrangement in théeatures of the simulation. More details can be found in Ref.
mixture. 2. We assume a system as displayed in Fig. 1, where an

For simplicity we consider a composite medium madearbitrarily shaped homogeneous inclusion with permittivity
up of two nonmagnetiéwe take u,=u,=1) materials with ¢, is embedded in a homogeneous matrix with permittivity
dielectric constantg; and e,. We denote byf the concen- ¢,. The solution of Laplace’s equation is computed with the
tration occupied by the inclusions of permittiviey periodi-  field calculation packageLux2p,'® using the FE method. Its
cally placed within the host material with permittivits. implementation consists in dividing the domarinto trian-
When considering the propagation of an electromagnetigular finite elements and for each element, the calculation is
wave in heterogeneous media, two length scales are of incarried out by interpolation of the potentidland its normal
portance. The first scale is the wavelengtiof the wave derivative ¢V/on with the corresponding nodal values
probing the medium. The second one is the typical §ip¢ =~ V=2;\;V; and dV/an=%;\;(dV/dn);, where \; denotes
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FIG. 2. Notation relating to the configuration of the two-component periodic
composite materia(simple square lattigeinvestigated in this study. The

. . . . . . geometry is symmetrical in both theandy directions. The unit cell con-
FIG. 1. Schematic drawing of the two-dimensional composite mediumgjgis of a square of side=1 containing an infinite circular cylinder, of

made of arbitrarily shaped homogeneous inclusions with permittiyigm- radiusr, along thez direction and of permittivitye; . The dielectric constant
bedded in a homogeneous matrix with permittiviy On the boundary of 4t e remaining space is,.

each celliwith sides of length. ande) the potential is kept constafi, or
V,) on the top and bottom faces and its normal derivafiVéon is equal to

zero along the vertical walls. L 1 2 . .
mittivity is p=3€"(Sy/e) o(V2—V1)“. With these consider-

ations in mind, we now turn to the presentation of the results

of our numerical experiments.
interpolating functions® The field and potential distributions

are obtalneglf;om the bpundary conFJ|t|0ns using the Gglerl-“_ NUMERICAL RESULTS AND DISCUSSION
kin method®” and solving the matrix equations resulting

from the discretization procedure by standard numerical Let us consider the details of Fig. 2 with Cartesian spa-
techniques, e.g., the Gauss methdeHaving computed the tial coordinatesx, y, andz. This figure represents the axi-
potential and its normal derivative on each node of the meshsymmetric unit cell of the two-component structure under
the electrostatic energy study. It has been chosen for purpose of comparison with the
N2 [ aV)2 results of Liu and Shet The structure consists of an infinite
_— + _—

(5415

dx dy circular cylinder(e;, uy=1) of radiusr and with generator
for each triangular element is evaluated, whefeand S,

parallel to thez axis embedded in a host matik,, u,=1),
denote the real part of the permittivity and the surface of th

i.e., the intersections of the cylinders with they plane

é‘orm a periodic two-dimensional structug@mple square lat-
kth triangular element, respectively. Thus, the total energy o?'cz of d§|deg=1). Thc;s syrﬂmetncal structure in both Frxe
the entire composite can be written by summation over th@ndy directions renders the two-component composite ma-

n elements such ag/, = EEk:;Lévve(k)- In the problem at terial to be both translationally and rotationally invariant. We

. . . . . denote byf the fractional occupancy of constituent 1:
hand, we consider a portion of the composite material wh|ct}_ 712 below the percolation threshol@<r<2, nonover
= <r<}, .

is the filler of a parallel-plate capacitor. In this manner we . :
obtain the real part of the complex effective permittivity lapping cylindersand
from the electrostatic energy stored in such a capacitor, i.e.,
W, = 1e'(S4/e) (V2 — V1Y when a given potential difference
is applied across the platésee Fig. 1),Sq=Ld stands for
the surface of the plates with side of lendth(for the two-
dimensional structures considered below we tdkel unit
of length). Now, we must relate the dielectric losses to th
imaginary part ofe. To do so, the dielectric losses are evalu-
ated on each element of the mesh as
V2
5

1
SWe(k) =5 JS ek
k

f=ar?—4r? arcos

1 ) >
or +V4r<—1
beyond the percolation threshold<r<1/2, overlapping
cylinders). Ther =3 case is special because the symmetry of
ethe structure provides that we can exclude in our numerical
calculations the four sections of the component of permittiv-
ity €, exceeding from the unit square cell.
To facilitate the comparison with the results of Ref. 14,
we first use the following set of parameteeg=1-3i and
(5 €,=5-8i. In Fig. 3 we show a comparison of the effective
permittivity computed for the two-pole approximation
where tand, is the loss tangent of thieth element andv is  (Bergman—Milton theoryand the FE method versus the ra-
the angular frequency of the electric field. The total losses 0fjjus of the circular cylinder. Figures® and 3(b)are for the
the entire Composite are then obtained by summation OV&ieal part and imaginary part of, respective|y_ As can be
the n, elements such gs = EE":lﬁp(k) and finally its con-  recognized from these figures, in the range daivestigated,
nection with the imaginary part of the complex effective per-the effective complex permittivity obtained from the

2

+ dx dy,

1
Sp(k)= > fs we, tan
X
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of the area fractionf of the inclusion phase. Inclusion@ermittivity
,=3—0.03) are placed in a host matrix material of permittivity=1. (b)
FIG. 3. (a) Comparison of the real part of the complex effective dielectric The imaginary part of the effective permittivity is shown as a function of the
constant evaluated by the finite-element meti@ and the two-pole  aréd fractlo_n‘ of the |nc|us_|on pha_se. Inclusm_r(pe_rmltnwty €=3-0.03)
Bergman—Milton approximatiofiX, Ref. 14 as a function of the radius of ~are placed in a host matrix material of permittivigy=1.
the circular cylinder. The dielectric constants of the two-component com-
posite material are;=1—3i and ,=5—8i. (b) Comparison of the imagi-
nary part of the complex effective dielectric constant evaluated by the finite- . .
element method®) and the two-pole Bergman—Milton approximatior, Having checked the FE method for the computation of

Ref. 14)as a function of the radius of the circular cylinderThe dielectric ~ the complex effective permittivity of a lossy composite me-
constan?s of the two-component composite material grel—3i and dium, we now investigate what the relative importancelof
&=58l. ande, is. Under many physically interesting conditiofesg.,
polymer carbon-black composijeshe dielectric constant of
the matrix material is much smaller than the dielectric con-
Bergman—Milton theory are quantitatively very similar to the stant of the inhomogeneities. In our simulations we take
ones presented in this work. The only thing that changes i§;=3—0.03ior ¢,=30—0.3iande,=1, i.e., tans;=10 2 and
that the values ok’ and €’ are slightly higher than those tand,=0. The differences in physical behavior can only arise
given by the two-pole approximation. These results confirmfrom a difference in the value of the ratig/e; since the
the usefulness of the FE algorithm as an efficient tool forphysical structure and losses of both components are invari-
computing the complex effective permittivity of lossy com- ant in this study. In Figs. 4 and 5 we present the results for
posite media. Liu and Shen’s method is based on a Fourighe real and imaginary parts efversus the concentration
expansion techniqu¥.As discussed in Ref. 14 this compu- for the two values of; investigated. Naturally, for the area
tation technique is costly in computer time even in the two-fraction value f=1, the complex effective permittivitye
dimensional case considered here. By contrast, our method éguals the inclusion permittivity;. From these figures it is
not time consuming. The CPU time for calculating the per-of interest to observe that foe;=30—0.3i the real and
mittivity of a typical two-dimensional configuration is of the imaginary parts of the permittivity increase smoothly but dis-
order of a few seconds. As an aside, we note ¢sat; when  play a sharp increase at a concentration close to 0.7. Note,
r is close to 0.65, for both cases. however, that this phenomenon is absentdger3—0.03i
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IV. CONCLUSIONS
€' 0150 |- . _ _
In summary, we have continued our comprehensive
0400 L * analysis of the dielectric properties of composite materials.
In contrast to our earlier article in which we mainly concen-
0.050 L trated on the investigation of the real effective permittivity of
. composite materials, we have described here a numerical
0.000 —b o o o o ° | scheme to compute the complex effective permittivity of a
0.00 0.20 0.40 f 0.60 0.80 1.00 lossy composite material in the quasistatic limit. Our compu-

tational tool for studying this problem, i.e., the FE method,
provides an accurate approach to evaluate this quantity. The
FIG. 5. (a) The real part of the effective permittivity is shown as a function present analysis has been carried out in a circular cylinder
of the area fractionf of the inclusion phase. Inclusiongermittivity geometry. Similar consideration can be readily applied to
€,=30-0.3) are placed in a host matrix material of permittivity=1. (b)  gther axisymmetric geometries. One goal of our investiga-
The imaginary part of the effective permittivity is shown as a function of the _. . . . .
area fractionf of the inclusion phase. Inclusiotigermittivity e;=30—0.3i) tion was to test if the Bergman—Milton theory is able to give
are placed in a host matrix material of permittivity=1. a correct description of the effective complex dielectric con-
stant of a lossy two-component composite medium. In this
respect, we would like to point out that numerical experi-
ments discussed here are consistent with the Bergman and
An important insight can be obtained by examining theMilton theory. The conclusions reached in this article, being
concentration dependence of the tangent of losses of th&rictly valid for the case of periodic two-dimensional con-
composite samples in the logarithmic plot shown in Fig. 6.figurations, are also guidelines in general context, i.e., peri-
Most interestingly we find that the electric loss factor in- odic composites with deliberate introduction of imperfec-
creases, at low and intermediate concentrations of inhomdions. It is hoped that this work will stimulate experimental
geneities, with increasing concentration of inhomogeneitiesnterest in these problems. For reasons of mathematical anal-
as a power law, taA~f® with an exponent parameter ogy, these results are also valid for the magnetic permeabil-
a~1.07 fore,=3-0.03ianda~1.31 fore;=30—0.3i. Thus, ity of two-component composite materials. We conclude this
we find that the exponent parameteris not constant but study reminding the reader that all the simulation results pre-
depends on the actual values &f; in fact it will depend, sented here must be regarded as simply preliminary attempts
here, on the ratio of the real part of the permittivity of the to identify the major features of the modeling of the effective
two components. This behavior changes strongly when weermittivity of real composite materials. In particular the
go to a higher concentration of inhomogeneities. We makeresent work should be extended in several directions. First,
the additional observation that the dielectric losses are higheand in the light of this work and results presented in Refs. 3,
(by a factor of 8 for ¢=3—0.03i compared to the case 19-22 it would be of great interest to study the effect of
€,=30-0.3j, while at high concentration they tend to be frequency of the applied field on the effective permittivity in
close for both cases. It is also seen in Fig. 6 that the two ploterder to check explicitly theories aiming at elucidating the
of tand vs f intersect at a concentration close ftb==/4  mechanism of dielectric relaxation, e.g., the scaling behav-
where the cylinders touch. iors proposed by JonschErAn even more formidable chal-
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