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Abstract-We present a numerical method based upon the 
resolution of boundary integral equations for the calculation of 
the effective permittivity of a lossless composite structure 
consisting of a two coinpoiieiit mixture, each with its own 
dielectric and shape characteristics. The topological 
arrangements considered are periodic lattices of 
inhomogeneities. Our numerical simulations are compared to the 
effective medium approach and with results of previous works. 

I. INTRODUCTlON 

In recent years industries such as  [he aerospace, 
electronics, and telecommunications have continuously 
supported the developiiieiil of new materials and particularly 
composites for their capability to improve sensitivity and 
selectivity of devices. A wide variety of applications have 
been studied e.g. captivc video disk units, electromagnetic 
absorbing materials, microwave systeins, carbon-black 
polymer to cite but a few. The characterization of 
heterogeneous media requires a rigorous topological analysis. 
The dielectric properties 01' these structures strongly depend 
on the internal structure of the medium i.e. the shape, the 
volume iractions, and the arrangement of the different 
components. At first, this paper describes the effective 
medium approach for the calculation of the dielectric constant 
of composite materials. Wc further present the application of 
boundai-y integral equation method and discuss the obtained 
results for various shape of' the components, Finally, we show 
how the dielectric properties of the composite can be affected 
by the topological arrangcinent of inhomogeneities especially 
for crystalline lattices. 

11. EFFECTIVE MEDIUM APPROACH 

In low frequency modeling of composite materials, the 
concept of effective pci-inittivity can be used t o  describe 
media that are quasi homogeneous to the extent that no 
scattering effects are sigiiil'icaiit as the wave propagates into 
these materials. The spatial vai-iation of the incident electric 
field must be very large compared to the size of the 
inhomogeneities dispel-sed in the medium. The limit for the 
size of the inclusions is about h / 2 n  where h is the 
wavelength of the electric field probing the medium 111. At 
higher frequencies scattering effects take over and the 
concept of effective pcrini(tivity loses its meaning. Consider 
an inhomogeneous mixture consisting of inclusions with 
permittivity einbeddccl i n  a hosL medium of permittivity 
c 2 .  The average displacement vector 5 is related to the 
macroscopic field as lbllows 

i7 = & E =  E2 E + P  (11 

where 

local electric field E, ' 
is the polarization in the matei 

The polarization can be calculded ti on1 the effective oi 

N being the nuinbei- of polarizable inhomogeneities pei uni t  
voluine, o! being the polarisability of the inclusioi 

The effective electric field is the sun1 of the macroscopic 
field E and the depolarization field w h i h  is calculated using 
the decomposition of Y'iglijian [2] .  

- - 
wheie the Source dyadic L depends on the shape 01 the 
inclusions From the p i  evious equations, one can expre 
effective peiinittivity of the medium as iollows. 

I \ - I  

Equation (4) requiicj the calculiition ol the polai i~ab i l i t y  
M This entails solving the inteind and exteind tields of m 
Induvon i.e. to find analytical solutioii to the Laplace'$ 
equalion. Appioxiinate solutions can be lound toi p'ti ticuldi 

shapes of the inhoinogeneitie g. sphci-ical, ellipsoidal, or 
cylindrical pai tides. 

Unfortunately this appioach cannot titkc into account the 
interdction effects between scatleiers and theiefoie is liinited 
to dilute mixtuies. Moieovei, the c 
inhomogeneities cannot be con\ide 
associated to boundaiy cond 

I11 BOUNDARY INTEGRAL EQUATION METHOD 

The solution of the Laplace equation can be computed by 
applying boundary integral equation ( B E )  method. Upon 
using Green's theorem, we can wi-ite the local potential 
V ( M ) ,  inside a spatial region !2, in terms o f  V ( P )  and the 
normal derivative d V ( P ) / & 7 ,  P being any point on the 
boundary C (with no overhangs) of R : 

wheie A denotes the solid angle under which thc point M 
sees the oriented surface C, IZ  is the normal uni t  vector 
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oriented outward to C, cls  is a surface element of C and C is 
the Green function defined in  [3]. 

Considering the property of periodicity of the structure, 
the composite geometry is reduced to a unit cell. The 
constituent of permittivity c l  occupying the volume Q, is 
embedded in the region Q 2  of permittivity E * .  In that case 
( 5 )  reads for the domain i ( i  = I ,  2 ) as 
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v= v2 
1 

Moreover, we have 

(7) 

by the virtue of interface conditions. The implementation of 
the BIE method consists in dividing the boundaries into finite 
elements and for each finite element, the potential and its 
normal derivative arc calculated on the nodes thanks to 
interpolating functions 131. Following this way, integral 
equations are translhrmcd into a matrix equation which is 
solved, from the boundary conditions displayed i n  Fig. I and 
2, using numerical technique e.g. Gauss method. 

Hence, the effective permittivity of the medium is 
obtained froin the potential and its normal derivative by 
considering two types of configuration: 

1) Inclusions are isolated (sparse mixture). The medium 
of permittivity cannot intercept the sides of the 
parallelipipedic cell (sec Fig. I ) .  In that case, the effective 
permittivity in the direction corresponding to the applied field 
is calculated using the following relation: 

where V, - V, denotes the slope of potential imposed in the z 
direction, e the thickncss in the same direction, and S the 
side surface of the unit cell perpendicular to the applied field. 

2) Inclusions are allowed to fused each other (densc 
mixture). The region of permittivity can intercept the sides 
of the uni t  cell (see Fig. 2). In that case, we have to take into 
account the electric displxenient tlux through the area SI for 
the calculation of the effective permittivity in the direction 
corresponding to the applied field: 

In these two configurations, the cffective permittivity in 
the other directions (x and y) can be found similarly by 
modifying the boundary conditions in  the unit cell. 

IV. RESULTS 

We turn now to a presentation of our numerical results 
concerning the effective permittivity of a composite a s  a 
function of the permittivities and the volume fraction of the 

. 

8 - c  

. 

8 - c  

Fig. I .  Boundary conditions in the unit cell of a sparse coniposire 

v= V? 
1 

Fig. 2. Boundary conditions in the unit cell of a densc coinposite. 

constituents. In the subsequent sections, we consider different 
shapes of inhomogeneities and compare the data obtained by 
the BIE method with standard analytical calculations resulting 
from the effective medium approach. Finally, we examine 
how the effective permittivity can be affected by the 
crystalline arrangement of the periodic structure. 

A. Composite with splieric~al inclusions 

Consider a periodic composite with spherical inclusions of 
permittivity cl  embedded in a crystalline fashion (simple 
cubic lattice) in a homogeneous matrix of permittivity E., . 
The material can be described by a unit cell consisting in a 
spherical inclusion of radius Y centered in cube of unit side. 
Beyond the touching spheres condition ( Y  > O S ) ,  the sphere 
is allowed to grow and intercept spheres in  adjacent cells 
according to [4]. The unit cell structure is described in Fig. 3. 
The effective permittivity of the medium is calculated from 
the polarizability of the inhomogeneities 

- - - -  - -  
and the dyadic source L =  I I3  ( I  being the unit tensor) by 
substituting these values in (4). This leads to Rayleigh 
formula [5]: 
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where ,f denotes the volume fraction of the inclusions. The 
values of the effective permittivity resulting from our 
numerical simulations are coinpared to those computed by a 
Fourier expansion technique [4] and deduced from ( 1  1). (see 
Fig. 4). The data obtained by the BIE method and in [4] are 
quite similar in the entire range of the volume fraction of 
inhomogeneities except in the region of percolation 
( f  = 0.523). The stanclard analytical model of Rayleigh is 
limited to low values of the inclusion concentration. 

B. Corriposite with cubic i n c  lu ions  

Now, we consider the efkctive permittivity of composite 
with cubic inclusions. The geometry of the unit  cell consists 
of a cubic particle of' permittivity E ,  centered in a cubic 
region of permittivity E., as described in [6] .  Since for cubic 

inclusions L = I / 3, the permittivity of the medium can be 
also approached with Rayleigh formula. The results obtained 
by the BIE method are shown in Fig. 5. The behaviour of the 
effective permittivity at high concentration of 
inhomogeneities is rather different limn that observed in  Fig. 
4. We explain this observation from the fact that, due to the 
particular geometry, inclusions cannot intercept each other 
over the entire range of ,f . Therefore, the electric field is 
always concentrated in the I-egion of low permittivity. 

- -  - -  

C. Conzpos ite with e 1 lipso i h  I inclusions. 

For periodic mixtures of ellipsoidal inclusions, the 
effective permittivity is calculated by Si 1 lars formula resulting 
from the effective medium approach [5]. Since ellipsoidal 
inclusions are spatially dissymmetric, the medium is 
anisotropic. The effective permittivity is described by a 
diagonal tensor composed of three components corresponding 
to the permittivity in the directions x, y and z 

where ,f' is the volume fraction of the ellipsoidal inclusions 
and pij their depolarization factor in the i direction [5]. 
For our simulations, we consider an array of prolate 
spheroids ( h  = c = U / 4 )  oi-icnted in the x direction. The 
numerical data computed by the BIE method are compared to 
those calculated with (12) (see Fig. 6). The great deviation 
between these two models, particularly in the x direction, can 
be explained by the fact that Sillars formula is unable to take 
into account the local field intensilication (edge effect) at the 
extremity of the ellipsoidal particle and the effect of 
proximity of the inclusions. The BIE method does not suffer 
from these disadvantagcs. 

D. Conzpnsite with cylindricnl inclusions. 

We examine now the elfective permittivity of a composite 
with cylindrical inclusions. 

Fig. 3. A inesh of the spherical inclusion in the uni t  cell of the coinposite 
beyond the touching spheres condition. 
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The unit cell of the material consists in a cylindrical 
particle of radius r ,  length h and permittivity E, embedded 
in a parallelipipedic region of permittivity E ? .  We distinguish 
between two types of' configurations: Inclusions can be 
assimilated to discs ( r  >> h ) or rods ( r << h ) .  We denote by 
E, and E,, the effective permittivity in the perpendicular and 
parallel direction to the cylinder axis respectively. The 
numerical results obtained by the BIE method for rods 
( h =  16r) and discs ( r = S h )  are displayed in Fig. 7. They 
illustrate the anisotropy of the medium. It is difficult to 
compare these data with standard analytical models because 
they are rigorously valid for infinite cylinders or discs having 
low thicknesses only [SI. We have noted an important 
deviation between numerical and analytical models even at 
low concentration of inhomogeneities. 
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Fig. 7. Effective Permittivity of 11 periodic coinposite with cylindrical 
inclusions. 

Fig. 8. Field distribution i n  ;I body-centered cubic lattice of perfectly 
conducting spheres. 
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Fig. 9. Internal wxc1ure of an hexagonal lattice 
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Fig. IO. Effective Permittivity of hexagonal lattices 

E. Dependence on the crystalline structure. 

For cubic lattices, results obtained by the BIE method are 
identical to those presented in [7], [8]. Fig. 8 illustrates the 
field distribution in a body-centered cubic lattice. Finally, we 
examine the permittivity of an hexagonal lattice of perfectly 
conducting spheres (0, -+ +m). The internal structure of the 
material is displayed in Fig. 9. This type of composite is 
anisotropic ( E , ~  # E ? )  and we observe in Fig. 10 that the 
permittivity depends strongly on the specific ratio cla at low 
concentration of inhomogeneities. 

V. CONCLUSION 

The BIE method is an efficient and powerful tool to 
describe the permittivity of lossless periodic composites. It 
gives accurate results by taking into account edge and 
proximity effects and is not limited by the volume fraction of 
inhomogeneities. This numerical technique can be easily 
extended to multiphase structures containing arbitrarily 
shaped components. 
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