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Abstract—We present a numerical method based upon the
resolution of boundary integral equations for the calculation of
the effective permittivity of a lossless composite structure
consisting of a two component mixture, each with its own
dielectric  and  shape  characteristics. The topological
arrangements  considered  are . periodic  lattices  of
inhomogeneities. Our numerical simulations are compared to the
effective medium approach and with results of previous works.

I. INTRODUCTION

In recent years industries such as the acrospace,
electronics, - and telecommunications have continuously

supported the development of new materials and particularly
composites for their capability to improve sensitivity and
selectivity of devices. A wide variety of applications have
been studied e.g. captive video disk units, electromagnetic
absorbing materials, microwave systems, carbon-black
polymer- to cite but a few., The characterization of
heterogeneous media requires a rigorous topological analysis.
The dielectric properties of these structures strongly depend
on the internal structure of the medium i.e. the shape, the
volume fractions, and the arrangement of the different
components. At first, this paper describes the effective
medium approach for the calculation of the dielectric constant
of composite materials. We further present the application of
boundary integral equation method and discuss the obtained
results for various shape of the components. Finally, we show
how the dielectric properties of the composite can be affected
by the topological arrangement of inhomogeneities especially
for crystalline lattices.

1I. EFFECTIVE MEDIUM APPROACH

In low frequency modeling of composite materials, the
concept of effective periiitivity can be used to describe
media that are quasi homogeneous to the extent that no
scattering, effects are significant as the wave propagates into
these materials. The spatial variation of the incident electric
field must be very large compared to the size of the
inhomogeneities dispersed in the medium. The limit for the
size of the inclusions is about A/2m where A is the
wavelength of the electric field probing the medium [1]. At
higher frequencies scattering effects take over and the
concept of effective permittivity loses its meaning. Consider
an inhomogeneous mixture consisting of inclusions with
permittivity €, embedded in a host medium of permittivity
€,. The average displacement vector D is related to the
macroscopic field E as follows

D=¢E=¢,E+P (1)

where P is the polarization in the material.

The polarization can be calculated from the effective or
local electric field E,: '

P = NoE, (2)
N being the number of polarizable inhomogeneities per-unit
volume, O being the polarisability of the inclusions.

The effective electric field is the sum of the macroscopic
field £ and the depolarization field which is calculated using
the decomposition of Yaghjian [2]:

|
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E, =E+
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P (3)
where the source dyadic L depends on the shape of the
inclusions. From the previous equations, one cai express.the
effective permittivity of the medium as follows:
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Equation (4) requires the calculation of the polarizability
a. This entails solving the internal and external fields of an
inclusion ie. to find analytical solution to the Laplace's
equation. Approximate solutions can be found for particular
shapes of the inhomogeneities e.g. spherical, ellipsoidal, or
cylindrical particles. ‘

Unfortunately this approach cannot take into account the
interaction effects between scatterers and therefore is limited
to dilute mixtures. Moreover, “the case of touching
inhomogeneities cannot be considered- because of problems
associated to boundary conditions. .

II. BOUNDARY INTEGRAL EQUATION METHOD

The solution of the Laplace equation can be computed by
applying boundary integral equation. (BIE) method. Upon
using Green's theorem, we can write the local potential
V(M), inside a spatial region €2, in terms of V(P) and the
normal derivative dV(P)/odn, P being any point on the
boundary X (with no overhangs) of Q2:
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where A denotes the solid angle under which the point M
sees the oriented surface X, n is the normal unit vector
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oriented outward to Z, ds is a surface element of £ and G is
the Green function defined in [3].

Considering the property of periodicity of the structure,
the composite geometry is reduced to a unit cell. The
constituent of permittivity €, occupying the volume €, is
embedded in the region Q, of permittivity €£,. In that case
(5) reads for the domain 7 (i =1,2) as

Jcls (6)

Moreover, we have

oV

Rad
T on

oV
g —1 =
on

(7

2

by the virtue of interface conditions. The implementation of
the BIE method consists in dividing the boundaries into finite
elements and for each finite element, the potential and its
normal derivative are calculated on the nodes thanks to
interpolating functions [3). Following this way, integral
equations are transformed into a matrix equation which is
solved, from the boundary conditions displayed in Fig. 1 and
2, using numerical technique ¢.g. Gauss method.

Hence, the effective permittivity of the medium is
obtained from the potential and its normal derivative by
considering two types of configuration:

I) Inclusions are isolated (sparse mixture). The medium
of permittivity €, cannot intercept the sides of the
parallelipipedic cell (see Fig. 1). In that case, the effective
permittivity in the direction corresponding to the applied field
is calculated using the following relation:

o2
R * n

where V, —V, denotes the slope of potential imposed in the z
direction, e the thickness in the same direction, and S the
side surface of the unit cell perpendicular to the applied field.

2) Inclusions are allowed to fused each other (dense
mixture). The region of permittivity €, can intercept the sides
of the unit cell (see Fig. 2). In that case, we have to take into
account the electric displacement flux through the area S, for
the calculation of the effective permittivity in the direction
corresponding to the applied field:

J.eéK c/s‘+J.£9—‘i
5, 28’1 2 i 5 l(')Il

In these two configurations, the effective permittivity in
the other directions (x and y) can be found similarly by
modifying the boundary conditions in the unit cell.

Vv, —
ds=¢, B (8)

P 4

Vo —
ds :ﬁ:—’_)—ﬁ(Sl‘FSg) €]
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IV. RESULTS

We turn now (o a presentation of our numerical results
concerning the effective permittivity of a composite as a
function of the permittivities and the volume fraction of the
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Fig. 1. Boundary conditions in the unit cell of a sparse composite.
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Fig. 2. Boundary conditions in the unit cell of a dense composite.

constituents. In the subsequent sections, we consider different
shapes of inhomogeneities and compare the data obtained by
the BIE method with standard analytical calculations resulting
from the effective medium approach. Finally, we examine
how the effective permittivity can be affected by the
crystalline arrangement of the periodic structure.

A. Composite with spherical inclusions

Consider a periodic composite with spherical inclusions of
permittivity €, embedded in a crystalline fashion (simple
cubic lattice) in a homogeneous matrix of permittivity €,.
The material can be described by a unit cell consisting in a
spherical inclusion of radius r centered in cube of unit side.
Beyond the touching spheres condition (r > 0.5), the sphere
is allowed to grow and intercept spheres in adjacent cells
according to [4]. The unit cell structure is described in Fig. 3.
The effective permittivity of the medium is calculated from
the polarizability of the inhomogeneities

g -t
3 5
o =4nrie, ——2

10
€, +2¢, (1o

and the dyadic source L=1/3 (7 being the unit tensor) by
substituting these values in (4). This leads to Rayleigh
formula [5]:

g, +2e,+2f(€,~¢,)

€=¢ (n
“e,+28, — f(g, +28,)
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where f denotes the volume fraction of the inclusions. The
values of the effective permittivity resulting from our
numerical simulations are compared to those computed by a
Fourier expansion technique [4] and deduced from (11). (see
Fig. 4). The data obtained by the BIE method and in [4] are
quite similar in the entire
inhomogeneities except in the region of percolation
(f =0.523). The standard analytical model of Rayleigh is
limited to fow values of the inclusion concentration.

B. Composite with cubic inclusions

Now, we consider the effective permittivity of composite
with cubic inclusions. The geometry of the unit cell consists
of a cubic particle of permittivity £, centered in a cubic
region of pelmmlwty €, as described in [6]. Since for cubic

inclusions L = 1/3 the permittivity of the medium can be
also approached with Rayleigh formula. The results obtained
by the BIE method are shown in Fig. 5. The behaviour of the
effective ~ permittivity —at  high  concentration  of
inhomogeneities is rather different {rom that observed in Fig.
4. We explain this observation from the fact that, due to the
particular geometry, inclusions cannot intercept each other
over the entire range of f. Therefore, the electric field is
always concentrated in the region of low permittivity.

C. Composite with ellipsoidal inclusions.

For periodic mixtures of ellipsoidal inclusions, the
effective permittivity is calculated by Sillars formula resulting
from the effective medium approach [5]. Since ellipsoidal
inclusions are spatially dissymmetric, the medium is
anisotropic. The effective permittivity is described by a
diagonal tensor composed of three components corresponding
to the permittivity in the directions x, y and z

(81 —&,)f

8,~Z€2 ] +. N
&, +ie ~&,)(I- fim,

(12)

[=x,y,2

where f is the volume fraction of the ellipsoidal inclusions
and n; their depolarization factor in the { direction [S].

For our simulations, we consider an array of prolate
spheroids (h=c=a/4) oriented in the x direction. The
numerical data computed by the BIE method are compared to
those calculated with (12) (see Fig. 6). The great deviation
between these two models, particularly in the x direction, can
be explained by the fact that Sillars formula is unable to take
into account the local field intensification (edge effect) at the
extremity of ‘the ellipsoidal’ particle and the effect of
proximity of the inclusions. The BIE method does not suffer
from these disadvantages.

D. Composite with cylindrical inclusions.

We examine now the effective permittivity of a composite
with cylindrical inclusions.

range of the volume fraction of

Fig. 3. A mesh of the spherical inclusion in the unit cell of the composite
beyond the touching spheres condition.
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Fig. 4. Effective permittivity of a periodic composite with spherical
inclusions. ‘
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Fig. 5. Effective permittivity of a periodic composite with cubic inclusions.
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Fig. 6. Effective permittivity of a periodic- composite” with ‘spheroidal
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The unit cell of the material consists in a cylindrical
particle of radius r, length h and permittivity €; embedded
in a parallelipipedic region of permittivity €,. We distinguish
between two types of configurations: Inclusions can be
~assimilated to discs (r >> h) or rods (r << h). We denote by
€, and £, the effective permittivity in the perpendicular and
parallel direction to the cylinder axis respectively. The
numerical results obtained by the BIE method for rods
(h=16r) and discs (r =5h) are displayed in Fig. 7. They
illustrate the anisotropy of the medium. It is difficult to
compare these data with standard analytical models because
they are rigorously valid for infinite cylinders or discs having
low thicknesses only [5]. We have noted an important
deviation between numerical and analytical models even at
low concentration of inhomogeneities.
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Fig. 7. Effective Permittivity of a periodic composite with cylindrical
inclusions.

Fig. 8. Field distribution in a body-centered cubic lattice of perfectly
conducting spheres.

Fig. 9. Internal structure of an hexagonal lattice.
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Fig. 10. Effective Permittivity of hexagonal lattices .

E. Dependence on the crystalline structure.

For cubic lattices, results obtained by the BIE method are
identical to those presented in [7], [8]. Fig. 8 illustrates the
field distribution in a body-centered cubic lattice. Finally, we
examine the permittivity of an hexagonal lattice of perfectly
conducting spheres (6, — +oo). The internal structure of the
material is displayed in Fig. 9. This type of composite is
anisotropic (€, #¢€,) and we observe in Fig. 10 that the
permittivity depends strongly on the specific ratio c/a at low
concentration of inhomogeneities.

V. CONCLUSION

The BIE method is an efficient and powerful tool to
describe the permittivity of lossless periodic composites. It
gives accurate results by taking into account edge and
proximity effects and is not limited by the volume fraction of
inhomogeneities. This numerical technique can be easily
extended to multiphase structures containing arbitrarily
shaped components.
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