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Adaptive Meshing for the Boundary Integral Equation Method: 
Definition and Test of an Error Estimator 

Bidjan Haghi Ashtiani, Laurent Krahenbuhl, Alain Nicolas 
Centre de Gtnie Electrique de Lyon - UPRESA CNRS 5005 - ECL, BP 163,69131 Ecully Cedex (France) 

Abstract - During last years, numerous authors have 
developed adaptive meshing methods based on efficient error 
estimators for the Finite Element Method. In this paper we 
propose a similar tool, meant expressly for the Boundary 
Integral Equation Method (BIEM). We will first present the 
expression of the proposed error estimator, then analyze its 
properties in the context of a specific BIE program and for a 
simple electrostatic structure. We present finally the 
implementation of this estimator in association with novel 
techniques for adaptive meshing. 

Index terms - Boundary Integral Equation Method, adaptive 
meshing, error control, iterative solver, electrostatics. 

I.  INTRODUCTION 

In comparison with the Finite Element Method (FEM), the 
Boundary Integral Equation Method (BIEM) offers important 
advantages to solve linear field problems. Particularly, a 
surface description of the modeled objects is sufficient. In 
return, the BIEM matrix is full and moreover generally ill- 
conditioned : then direct-solvers have to be used. It follows 
very high computation costs : the BIEM seems limited to 
rather simple applications. 

In this paper, we propose some trails, which will probably 
allow to extend the field of the BIEM : adaptive meshing with 
accuracy control (the mesh is refined only where it is useful), 
associated to a technique of non-connected mesh allowing 
very high variations of the mesh density, and to a technique of 
local solution refinement, which avoids to solve the complete 
linear system for each mesh step. Moreover, this local solver 
could in the future run into a real iterative solver for the 
BIEM matrices. 

We will here only consider electrostatics (BIEM Green's 
formulation [ 2 ] ) ,  but the proposed method is also valid for 
other applications or formulations of the BIEM. Our tests will 
be done on a simple benchmark problem (Fig. 1), including 
various boundary conditions (Dirichlet on the upper cube, 
dielectric boundary on the lower cube). In principle, the mesh 
has to be denser along the angles of the upper cube, and on 
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Fig. 1 : Test Problem and location of the test-area 

the studied area of the lower cube. For E, =1 in the lower 
cube, the (quasi) exact solution can be determined on it : this 
allows very accurate testings 

11. BIEM FORMULATION 

From Green's theorem and Laplace's equation we get: 

Y 

F s ( P , V , a J A )  
S : surface of the studied domain 
Qs (P) : solid angle from P to S 

Gp ( Q )  = - : Green's function 

V : electric potential 

This equation is valid for each point P (inside, on, or 
outside S), if the correct value is assigned to the solid angle 
0. To solve numerically this Boundary Integral Equation, we 
have to discretize the potential V and its normal 
derivative using a surface finite element mesh: 
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integral value F, I C l ,  discretized value a,V, 

' nodes collocation points 

1=1,3 

Fig 2 Example of potential values on the test area (Fig 1) 
in respect of the same solution 

and to search for the best values of V, and d,Vl,. The 

solution must set the discrete value ? of V nearer to its 
integral value F,: 

- - -  
!2s(P). V(P) -+ Fs(P, V, v' ) VP E S (3) 

The point collocation method ([2], Fig. 2) is the simplest 
way to obtain this result : the two values of V are equalized 
on as many points on S as there are unknown coefficients in 
? and (the corresponding matrix is dense and non- 
symmetric; a direct method is used for solving the linear 
system). 

111. ERROR FUNCTION 

We propose to define the following error function [3 ,4]  : 
- -  - - -  

Es(P,V,V ) = [ ~ s ( P ) . V ( P ) - F s ( P , V , ~  ) I / ( V m a x - V m n )  (4) 

This function (defined for PES) vanishes on every 
collocation points (Fig. 2, 3), and oscillates near zero between 
these points. We will discuss the use of this function as error 
estimator in a process of adaptive meshing: Figures 3 and 4 
make already visible the link between the mesh refinement, 
the mean value of Es and the accuracy of the solution. 

IV. IMPLEMENTATION 

A. Discretization. In the 3D-BIEM program used to test 
this error function, we did following choices concerning 
discretization: 

- the surface is meshed using first order triangles: the use of 
plan facets makes the computation of singular integrals easier, 
and triangles facilitate the local mesh refinements. 

- the surface electric potential is discretized using first 
order weighted functions (that is the lowest order which 
ensures the continuity of potential). 
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Fig. 3 : Es on the test-area as function of the mesh refinement 
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Fig. 4 Solution V on line 00' (Fig 1) for the different mesh refinements 

- the normal derivative of V is supposed constant on each 
triangle. this choice is coherent with precedent, and it makes 
the analytic computation of integrals (1) possible. It permits 
also to skip the question of discontinuities on angles and 
corners. 

B. Numerical integration. The linear BIE system is built 
by writing (3) ,  either on every node of the surface mesh (if 9 
is unknown) or on the center of gravity of every triangle (if 
the normal derivative is unknown). For a boundary 
between two dielectric media, neither 9 nor ?'are known 
and (3) has to be written on nodes for the first side (boundary 
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of the first dielectric medium) and on centers of gravity for 
the other. 

To get pertinent values of Es (after resolution of the BIE), 
it is necessary to be able to calculate the surface integral Fs(P) 
on any point P of every triangles (not only on the mesh-nodes 
or on the centers of gravity). Now, basic integrants in (1) are 
singular : we compute it using the best methods found in the 
literature [5, 61. 

- for the Green's function, related to the normal field 
V'(zero-order), analytic results will be used close to the 
element, and Gaussian one-point integration farther; 

- For the solid-angle, related to the potential V, we use 
Gaussian multi-points integration, with eventually a recurrent 
cupping up of elements' (depending on the relative distance 
to the element). 

In all cases, these techniques make the numerical errors on 
Fs very lower as Es. 

V. ESTIMATION OF Es AND VALIDATION 

The decision to refine (or not) a given triangle depends on 
the extreme values of IEsl on this triangle. To find this 
maximum, we have normally to compute Fs on numerous 
points of the triangle (Fig. 3). In practice, it is possible to 
define a priori a few strategic points, which give sufficient 
information (has this triangle to be refined, or not ?), but at a 
lower cost: we have carry out numerous tests, and we 
concluded that statistically good results are obtained on nodes 
when the collocation points are the center of gravity of 
elements, and reciprocally. 

This fact can be verified from the results corresponding to 
the meshes of Fig. 3, which are synthesized on Fig. 5 : each 
point on this figure presents this estimation 8 s  of the maximal 
value of Es, as function of the real maximum of Es, on a given 
element. Obviously, the statistic correlation is excellent for 
the elements of the three successive meshes of the test area. 

For this test, the relative permittivity of the dielectric cube 
was set to one : the (quasi) exact solution for the lower cube 
can be obtained by solving the BIE only on the upper cube. 
Then, it is possible to compare the values of the estimator Es 
with the real error, for each element of the test area. Figure 6 
presents the correlation for the 3 meshes : this constitutes an 
experimental validation of Es as an error estimator for the 
BIEM. 
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Fig. 5: Estimation of the maximum of Es on each element 
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Fig. 6: Comparison between E and the real error 
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Fig. 7 : Subdivision of a (< bad n element 

VI. MESH REFINMENT AND LOCAL SOLUTIONS 

To test this error estimator, we implemented it in a process 
of adaptive meshing for BIEM. We start with a minimum 
mesh of the studied structure. After resolution, 8, is 
calculated for each element. If th i s  error es t ima to r  i s  g ree t e r  
than a given level (2% in Our we subdivide the 
element, according to Fig. 7. Another resolution is linked, and 

A maximum number of subdivisions is a priori defined; farther, the 

'It could happen that a <(bad D element is not detected. During our tests, 
inte rant is supposed constant on the last sub-element. 

we observed that such an element was always detected during the next step 
of the adaptive mesh generation. 
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so on, until 8, is less than the fixed limit value on all the 
elements 

In comparison with the classical techniques of adaptive 
meshing, used in particular with finite elements [l], our way 
presents two particularities : 

- we do not search to get a <<conformable >> mesh by 
propagating the subdivisions (Fig. 6). So it is possible to 
obtain very high variations of the mesh density, which 
minimizes the number of unknowns. Of course, this leads to 
discontinuous values of T on the boundary between two non 
conformable elements, but this is not a priori unfavorable : 
this does not prevent to compute exactly the integral form (1), 
and this provides an additional error estimator (based on the 
value of the jump of potential along this b o ~ n d a r y ) ~ .  

- I n  theory, the full BIE problem has to be solved again 
after each mesh refinement and the total CPU-time becomes 
steeply too high. In fact, the solution on nodes which are G far 
from >> the refinement area is << not very >) modified. Then, to 
save on computation time, we have successfully tested local 
resolutions (Fig. 8): for each step of the process of adaptive 
meshing, the values of V and V' are kept, except for the 
elements which have just been subdivided. 

The approximate solution for the final mesh could be 
improved by using such recurrent local resolutions (iterative 
scanning of the geometry). So we expect to obtain a real 
iterative solver for the BIE. However, the example below 
proves that simple local resolutions give already a wonderful 
accuracy (Fig. 9). 

VII. CONCLUSION 

In this paper, an error estimator for the boundary integral 
equation method is proposed. The good correlation with the 
real error is shown in a simple electrostatic case. 

The implementation is presented in a process of adaptive 
mesh generation, which calls on techniques of non 
conformable elements and local resolutions, to save on CPU- 
time. These techniques could shortly lead to an iterative 
method efficient to solve the linear systems stemming from 
the BIEM. 

In principle, the error estimation is not limited to 
electrostatics, and a similar estimator could be developed for 
all the applications of the BIEM. 

By the fact, the degree of non conformability can be controlled. If 
necessary, the adjacent element will he divided. 

Fig 8 ' solution refinement using non conformable subdivisions of elements 
and local resolutions of the BIE linear system 

Fig. 9 : comparison between the exact (global) BIEM solution for step 2 and 
the local solution of Fig. 8 
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